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A Deep Neural Network for Real-Time Driver Drowsiness Detection

Toan H. VU†a), An DANG†b), Nonmembers, and Jia-Ching WANG†,††c), Member

SUMMARY We develop a deep neural network (DNN) for detect-
ing driver drowsiness in videos. The proposed DNN model that receives
driver’s faces extracted from video frames as inputs consists of three com-
ponents - a convolutional neural network (CNN), a convolutional control
gate-based recurrent neural network (ConvCGRNN), and a voting layer.
The CNN is to learn facial representations from global faces which are then
fed to the ConvCGRNN to learn their temporal dependencies. The voting
layer works like an ensemble of many sub-classifiers to predict drowsi-
ness state. Experimental results on the NTHU-DDD dataset show that our
model not only achieve a competitive accuracy of 84.81% without any post-
processing but it can work in real-time with a high speed of about 100 fps.
key words: driver drowsiness detection, ConvCGRNN, CGRNN

1. Introduction

Driver drowsiness detection (DDD) is one of vital compo-
nents in most driver monitoring systems since drowsy driv-
ing seriously involves to many traffic accidents. Drowsiness
can occur silently without self-awareness from drivers, im-
pairs driving performance, which leads to about 6% of all
crashes annually from years 2009–2013 according to [1].
Generally, an active DDD system keeping track of driver’s
behaviors in real-time provides timely reminders and warn-
ings to prevent any possible accidents. Existing approaches
for the DDD problem can be grouped into three major di-
rections: systems that use driving operation information
such as steering wheel angles and yaw angles [2]; sys-
tems that use physiological signals like electroencephalo-
gram (EEG) [3]; and systems that use video signals [4], [5].
The first direction is convenient for drivers but hard to sat-
isfy the requirement of accuracy and timeliness, while the
second direction is accurate but not convenient because of
wearable body sensors. In video-based DDD systems, an
in-vehicle camera is adopted to capture driver’s behaviors,
especially facial expression, to measure drowsiness levels,
which is more practically applicable. Our goal is to develop
a visual DDD system that is accurate and fast to be applied
in practice.

Drowsiness state can be indicated visually by some
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specific facial expressions such as yawning, eye-blinking,
eye-closing, and nodding which can be recognized by mon-
itoring different facial parts and global faces through time.
Therefore, a general DDD system consists of two parts: a
preprocessing step to extract facial information, and a clas-
sification model. The preprocessing step is to extract se-
quence of faces from video frames, typically involves a
set of face-related techniques including face detection, face
tracking, and face alignment. The way of combining these
techniques affects not only accuracy but overall speed of
a DDD system. In particular, previous works [4], [5], [9]
require face alignment to locate and learn relevant features
from specific facial regions. However, performing face de-
tection and alignment on every frames has many challenges
such as different illumination conditions, hard human poses,
and occlusions. Additionally, it increases overall processing
time. In our work, we work directly with global faces. Face
detection and face tracking are combined together to extract
driver’s faces from video frames, which is simple, accurate,
and very fast.

A classification model learns drowsiness-related fa-
cial features from video frames to estimate drowsiness lev-
els. Conventionally, features are extracted spatially on
each frame by a feature extraction method such as sparse
coding [4], deep belief network (DBN) [5]; before being
delivered to a temporal model like hidden Markov mod-
els (HMMs) to discover temporal dependencies between
consecutive frames. Recently, deep learning (DL) mod-
els are widely implemented for the problem with differ-
ent approaches such as long-term recurrent convolutional
networks (LRCNs) [6], ensemble modeling [7], multi-task
CNN [9], and 3D-CNN [8], [10]. The DL models are
accurate, but computationally high in common because
of window-based predictions. Furthermore, some post-
processing methods [6], [9], [10] can be applied to smooth
temporal predictions of model, which improves overall ac-
curacy, but is hard to be applied in reality. In this paper, we
develop a DL model that is not only accurate, but very fast
at inference time. The proposed model firstly extracts facial
representations from global faces by its CNN part, then its
ConvCGRNN part is to learn their temporal relations while
remaining spatial properties before feeding to a voting layer.
Specifically, the model sequentially makes predictions by
processing frame by frame instead of making window-based
predictions. Thus, it is very fast, consuming much less com-
putional cost, and capable to work in real-time.

To sumarize, our contributions are listed as follows.
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– We develop a deep neural network (DNN) model for the
problem of real-time driver drowsiness detection in videos.
The model is designed to work directly with global faces
extracted from video frames by a combination of face de-
tection and tracking techniques.

– We propose the use of ConvCGRNN to learn temporal de-
pendencies while still preserving spatial relations from rep-
resentations extracted from global faces by a CNN, and a
voting layer to measure drowsiness state.

– We conduct experiments on the public NTHU-DDD
dataset to evaluate performance of the proposed model. Our
model achieves a competitive accuracy of 84.81% without
any post-processing, and about 100 fps inference speed.

2. Our Approach

The proposed DDD system is illustrated in Fig. 1. Given a
video stream, a preprocessing step including face detection
and tracking extracts driver’s face from each frame. These
faces are sequentially processed by a deep neural network
(DNN) model to determine drowsiness state. In this section,
the preprocessing step is presented before the DNN model
is described in detail.

2.1 Preprocessing

The preprocessing step is to extract driver’s faces from video
frames. Typically, face detection is employed to extract
faces from images, but it can have various difficulties such
as different illumination conditions, hard poses, and occlu-
sions. Performing face detection on every frames also in-
creases processing time. In our work, we make a combi-
nation of face detection and tracking which is accurate and
much faster. Driver’s face is firstly detected by a face de-
tector, then face locations are determined and tracked by a
tracker at subsequent frames. To prevent drifting problem
in tracking, we perform face detection after a cycle. If it
detects successfully, we reinitialize the tracking state; other-
wise, we keep tracking the current state.

In our implementation, we employ MTCNN [12] for
face detection, and a correlation function in dlib [11] for

Fig. 1 The proposed driver drowsiness detection system.

tracking. The cycle time is fixed to 45 timesteps which
corresponds to three seconds in our experiments. After ex-
traction, faces are converted to grayscale, and resized to
128 × 128.

2.2 Deep Neural Network Model

The proposed DNN model consists of three components: a
convolutional neural network (CNN), a convolutional con-
trol gate-based recurrent neural network (ConvCGRNN),
and a voting layer. It sequentially processes input faces to
estimate drowsiness states (yes or no) at every timesteps.

• CNN. The CNN is to extract facial representations from
each input face, and is constructed in a VGG-style [13] with
batchnorm [15] after every convolutional layers. The details
of the CNN part is shown in Table 1. Its output is a feature
map with size of (128 × 8 × 8). Each 128D vector in the
feature map corresponds to a receptive field which covers
almost the input face.

• ConvCGRNN. ConvCGRNN is a convolutional version of
control gate-based recurrent neural network (CGRNN) [14]
which is designed for effective sequence modeling with a
low resource-consumption by employing an additional con-
trol gate. Figure 2 illustrates the computational structure of

Table 1 The DNN architecture. (convX − Y and convcgX − Y denote
convolutional layer and ConvCGRNN layer respectively, where X is kernel
size, Y is number of output channels. Stride size is one for all convolutional
layers in both CNN and ConvCGRNN. Batchnorm and ReLU are applied
after every convX − Y; batchnorm is applied after every convolution op-
erators of input in ConvCGRNN, which are not shown for brevity. mpX
presents a max-pooling layer where X is kernel size and stride size. f c− X
denotes a fully-connected layer with output size X.)

Name Configuration Output size
Input input (1 × 128 × 128)

conv3 − 16 + mp2
conv3 − 32 + conv3 − 32 + mp2

CNN conv3 − 64 + conv3 − 64 + mp2
conv3 − 128 + conv3 − 128 + mp2

conv3 − 128 + conv3 − 128 (128 × 8 × 8)
convcg1 − 128

ConvCGRNN convcg1 − 128 (128 × 8 × 8)
64 × ( f c − 128) + ReLU

Voting 64 × ( f c − 1) + sigmoid (64)
Output global max pooling (1)

Fig. 2 Computational structure of a ConvCGRNN cell. (Blue arrows
present convolution operators.)
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a ConvCGRNN cell. it, ht, ĥt, and ct are input, hidden state,
temporal state, and control gate at a time step t, respectively.
They are all referred as feature maps.

At a time step t, a temporal state is given by

ĥt = f (Wih ∗ it +Whh ∗ ht−1) (1)

and a control gate is computed as

ct = σ(Wic ∗ it +Whc ∗ ht−1) (2)

The new hidden state is derived as

ht = ct ⊗ ht−1 + (1 − ct) ⊗ ĥt (3)

where f is an activation function, and is commonly a hy-
perbolic tangent function; σ is a logistic sigmoid function.
Wih, Whh, Wic, and Whc are weight matrices. The symbol ⊗
denotes element-wise multiplication, ∗ denotes convolution
operator. Furthermore, batch normalization can be applied
after a convolution operator of input it; we do not apply it
after a convolution operator of the hidden state ht−1 to pre-
serve gating property of ConvCGRNN.

In Eqs. (1) and (2), convolution operator is applied on both
input and hidden state, which maintains spatial information
of these feature maps. From Eq. (3), the temporal state ĥt

works like a source of new information; the previous hidden
state ht−1 brings information from the past; and the control
gate ct scales the amount of information each source con-
tributes to the new hidden state ht. Thus, ConvCGRNN is
able to not only learn temporal long-term dependencies, but
preserve spatial properties of the input feature maps.

In this paper, we implement 2D convolution operator for
ConvCGRNN structure. As shown in Table 1, the Conv-
CGRNN part is constructed by two ConvCGRNN layers
with kernel size of 1 for all their convolution operators, and
output channel size of 128. This configuration enables the
ConvCGRNN to process each 128D vector on the CNN fea-
ture maps independently. Output of the ConvCGRNN at a
timestep is a feature map with size of (128 × 8 × 8). Each
128D vector on this feature map corresponds to a vector at
the same location on the CNN feature map, and represents
its temporal long-term dependencies.

• Voting layer. The voting layer is a set of two fully-
connected layers without weight-sharing (Table 1). The pur-
pose is to make independent decision for each 128D vector
of the ConvCGRNN feature maps. We can consider each lo-
cation vector on the feature maps has its own classifier. The
voting layer works like an ensemble of many classifiers; the
final output is a maximum value of the voting outputs.

Outputs of the model indicate the driver’s state (drowsi-
ness or non-drowsiness). Binary cross-entropy (BCE) loss
is used as a loss function for the problem. Overall, the cost
function is given by

C = − 1
N

N∑

i=1

[
yi log ŷi + (1 − yi) log(1 − ŷi)

]
+
λ

2
‖Θ‖2

(4)

Where the first term is BCE loss; the second term is weight-
decay regularization term. y is the output label; ŷ is the pre-
dicted probability. N is a batch size.

At inference time, the DNN model sequentially makes
predictions by processing frame by frame without the need
of resetting ConvCGRNN states. By this way, computa-
tional cost at a timestep is approximate to that of a similar
structure DNN processing an input image, which is low at
resource consumption.

3. Experiments

3.1 Dataset

We conduct experiments on the public NTHU-DDD
dataset [5] to validate performance of the proposed model.
The video dataset consists of both male and female partici-
pants with diversity in appearances, ethnicities. Videos are
recorded in a simulated environment under many scenarios
including BareFace, Glasses, Sunglasses, Night-BareFace
and Night-Glasses. They capture different driver’s behav-
iors such as Yawning, Nodding, Looking aside, Talking and
laughing, Sleepy-eyes, Drowsy, and Stillness. Some exam-
ple frames of the database are illustrated in Fig. 3. The
dataset provides four frame-level annotations: drowsiness,
head, mouth, and eye.

The dataset includes a training set that has 356 videos
of 18 subjects, and a test set that has 20 videos of 4 subjects.
In our experiments, we divide the training set into two parts:
14 subjects for training, 4 subjects for validation. Videos are
resampled to 15 fps.

3.2 Training Details

We firstly initialize the CNN part by pretraining it on FER+
dataset [16] to learn rich facial representations from many
subjects. Specifically, images in FER+ are resized to 64×64;
two FC layers ( f c − 128 + ReLU + f c − 10) are added right
after the CNN part with an average pooling applied in the
middle. This pretraining step enables the DNN model to

Fig. 3 Example frames in the NTHU-DDD dataset from different
participants in various scenarios.
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Table 2 Detection performances of the proposed model on the test set of
the NTHU-DDD dataset.

Scenario Non-drowsiness Drowsiness Accuracy
F1-score (%) F1-score (%) (%)

Bareface 84.65 88.34 86.75
Glasses 70.00 82.59 77.97
Sunglasses 65.18 79.36 74.08
Night-Bareface 82.88 90.77 88.00
Night-Glasses 90.95 85.37 88.82
Overall 82.99 86.28 84.81

Table 3 Comparison of different methods on the test set of the
NTHU-DDD dataset.

Method Accuracy %
3D-DCNN [8] 71.20
Ensemble modeling [7] 73.06
Scale-Pruned 3D-CNN [10] 78.48
MSTN [6] 82.61
seqMT-DMF [9] 83.44
Human [7] 80.83
Ours 84.81

learn faster by a good initialization; and reduces bias in the
training data which contains a small number of subjects.

For training on the target DDD problem, the prepro-
cessing step is firstly applied to extract face sequences from
videos, normalize them to grayscale with size of 128 × 128.
To reduce overfitting, some data augmentation techniques
are employed such as random rotate, random resize & crop,
horizontal flip, and color jitter. We start training process
for input sequences with length one (static images), then in-
crease length of sequences to 60 (4 seconds). For optimiza-
tion, we use Adam optimizer [17] with a starting learning
rate of 1e − 4. Gradient clipping with the threshold of 1 is
also applied. The optimal set of parameters is chosen at the
highest performance on the validation set.

3.3 Experimental Results

The proposed model is evaluated on the test set of the
NTHU-DDD dataset. At inference time, the model make
predictions frame by frame without resetting hidden states
of the ConvCGRNN part. Prediction outputs are in range of
[0, 1]. We apply a threshold value 0.5 to decide drowsiness
state.

The detection performance are shown in Table 2. The
proposed system achieves an overall accuracy of 84.81%;
F1-scores for detecting drowsiness and non-drowsiness are
86.28% and 82.99%, respectively. The detection perfor-
mance on the Sunglasses and Glasses is the worst while
it is much better on Bareface, Night-Bareface, and Night-
Glasses. This may be due to the difference of occlusion
on each scenario; and it can prove the effectiveness of us-
ing an infrared (IR) illuminator at night time in the dataset.
Furthermore, we compare the results of our approach with
others that make no modification on the original dataset or
make no use of its test set (Table 3). Our method out-
performs other methods in term of accuracy, surpasses by
3.98% human performance [7].

Table 4 Processing speeds in the proposed DDD system.

Module Speed (fps)
Preprocessing (if face det. only) 5
Preprocessing (face det. + track) 60
DNN model 100

For comprehensive evaluation, processing time of each
module in the proposed DDD system is measured. By ap-
plying face detection and tracking together, the preprocess-
ing speed can reach 60 fps, is much faster about 12 times
than that of using only face detection. The DNN model
achieves a high inference speed of 100 fps. The number
can be still improved in the future since our implementa-
tion in the voting layer has not been optimal because of se-
quential computing. Thus, the proposed system satisfies the
real-time requirement of a DDD system.

4. Conclusions

We present a DDD system which is very accurate, and very
fast to work in real-time. The main component of the sys-
tem is a DNN model that works directly with global faces
extracted from video frames by a combination of face de-
tection and tracking techniques. The DNN consists of three
component: a CNN, a ConvCGRNN, and a voting layer;
works effectively to extract spatiotemporal representations
from input faces, and predict drowsiness state. At inference
time, the DNN sequentially processes frames from video
stream without resetting ConvCGRNN states, so inference
time is very fast. Experimental results on the NTHU-DDD
dataset illustrate the effectiveness and efficiency of the pro-
posed model.
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