
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.10 OCTOBER 2019
2043

LETTER

Block Level TLB Coalescing for Buddy Memory Allocator

Jae Young HUR†a), Member

SUMMARY Conventional TLB (Translation Lookaside Buffer) coa-
lescing schemes do not fully exploit the contiguity that a memory allocator
provides. The conventional schemes accordingly have certain performance
overheads due to page table walks. To address this issue, we propose an
efficient scheme, called block contiguity translation (BCT), that accom-
modates the block size information in a page table considering the Buddy
algorithm. By fully exploiting the block-level contiguity, we can reduce
the page table walks as certain physical memory is allocated in the con-
tiguous way. Additionally, we present unified per-level page sizes to sim-
plify the design and better utilize the contiguity information. Considering
the state-of-the-art schemes as references, the comparative analysis and the
performance simulations are conducted. Experiments indicate that the pro-
posed scheme can improve the memory system performance with moderate
hardware overheads.
key words: architectures, memory allocation, translation lookaside buffer,
page table, performance

1. Introduction

A modern system typically accommodates memory man-
agement units (MMUs) to enhance memory utilization.
MMU enables us to isolate the virtual address space from
the resource constrained physical address space. However,
MMU has certain performance overheads due to page table
walks. To conduct an address translation, MMU accesses
the main memory to acquire page table entries. This is called
page table walk. The acquired page table entries are stored
in a TLB for further use. The frequent page table walks
can significantly degrade performance because an applica-
tion can be stalled. Therefore, it is desired to reduce the
page table walks and their overheads.

Modern OS (Operating System) allocates a physical
memory typically in block level. As an example in Linux,
the Buddy algorithm [1] is widely used as a default mem-
ory allocator that efficiently allocates free memory blocks
for an application. A block contains the contiguous power-
of-2 pages (or bytes). Traditionally, to exploit the contiguity
and reduce page table walks, an architecture defines mul-
tiple page sizes. However, the traditional design does not
fully exploit the capability of the contiguous allocator. Sup-
pose OS allocates an 128kB sized physical block. If 128kB
page size is not defined in the architecture, the system treats
the block as 32 separate (4kB sized) pages. In this case,
MMU conducts page table walks to separately acquire the

Manuscript received May 7, 2019.
Manuscript publicized July 17, 2019.
†The author is with Vietnamese-German University, Binh

Duong, Vietnam.
a) E-mail: JaeYoung.Hur@gmail.com

DOI: 10.1587/transinf.2019EDL8089

4kB pages. As a result, the traditional design can suffer from
performance overheads due to page table walks. To reduce
the overheads, we propose a novel technique that coalesces
contiguous ranges in block level. Our approach combines
the advantages of the block-level coalescing and the effi-
ciency of a legacy memory management scheme. The main
contributions of this paper are:

• To reduce page table walks, we propose the block-level
TLB coalescing scheme considering the Buddy algo-
rithm. In our scheme, a page table walk acquires the
entire block mapping information. The acquired infor-
mation is coalesced in a single TLB entry.
• To simplify the design and better utilize the contiguity,

we present unified page sizes in a level of the hierar-
chical page table structure.
• The memory system performance and TLB hardware

overheads are evaluated.

The paper is organized as follows. In Sect. 2, related
work is described. In Sect. 3, we present the conventional
designs. In Sect. 4, we present our design. In Sect. 5, the
experimental results are described. Finally, the conclusions
are drawn in Sect. 6.

2. Related Work

A number of TLB coalescing schemes mainly considering
the Buddy algorithm are reported. In [2], the contiguity of
equal sized blocks is represented in a page table. The TLB
in [2] has hybrid type entries. To determine the block size,
the special OS process is required. Our work is similar to [2]
in that a certain concept of block-level contiguity is utilized
in a page table. Our work differs from [2] in the following
ways. First, in our design, the actual contiguity of possibly
variable sized blocks in the physical address space is rep-
resented. Second, the TLB in our design has homogeneous
type entries in that the contiguity is represented in any entry.
Third, our design does not require the special OS process.

In our prior work [3], the page-level contiguity infor-
mation is represented in a page table. In [3], the contiguity
is represented for 4kB page size. Our work is close to [3] in
that the contiguity information is accommodated in a page
table. Our work differs from [3] in the following ways. First,
the block-level contiguity is represented in a page table that
can outperform [3]. Second, we present unified per-level
page sizes that can represent the larger contiguity than [3].

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers



2044
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.10 OCTOBER 2019

3. Conventional Designs

We review the conventional MMU operation, the prior TLB
coalescing schemes, and their issues.

3.1 Traditional MMU Operation

When an application is invoked, OS allocates a memory
space. An address space is divided in pages. In Fig. 1 (a),
the application requires six virtual pages with VPNs (vir-
tual page numbers) 0∼5. OS finds free spaces in a physical
memory. In Fig. 1 (a3), two blocks are available in the phys-
ical memory. As an example, in Block1, StartPPN (Start
physical page number) is 4 and EndPPN (End physical page
number) is 7. OS maps VPNs into PPNs. The Buddy alloca-
tor conducts the mapping in block level with the granularity
of power-of-2 pages. Then OS constructs a page table for
the mapping and stores the page table in main memory. In
Fig. 1 (b), the page table contains six PTEs (page table en-
tries). A PTE contains a single page mapping information
between VPN and PPN. Figure 1 (a2) depicts the PTE for-
mat in ARM v7 architecture [4].

When the application runs, a master accesses memory
with virtual address (VA). Then MMU conducts a TLB
lookup to check whether the PPN for the VPN is stored in
TLB. If the PPN is not stored in TLB (or TLB is miss),
MMU conducts a page table walk, acquires the PTE, and
stores the PTE in TLB. Finally, MMU translates the virtual
address into the physical address by converting VPN into
PPN. In Fig. 1 (b), TLB contains six entries for VPNs 0∼5.
To do this, six page table walks can be required.

3.2 TLB Coalescing

To improve TLB utilization and reduce page table walks,
multiple PTEs can be coalesced in a single TLB entry. To
do this, the contiguity information can be represented in a
page table. The system behavior is significantly affected
by the representation methodology. Figure 2 (a) depicts the

Fig. 1 Traditional MMU operation.

page table format of the anchor translation (AT) scheme [2].
The contiguity indicates how many pages are contiguous in
the ascending direction starting from an anchor entry. In
[2], the contiguity information is represented in every other
equal sized virtual block (called Distance). The special OS
process is required to determine the Distance (block size)
value in the heuristic way. The TLB has two types (anchor
and regular) of entries. The contiguity is represented only
in the anchor entry. Two issues of [2] are the followings.
First, only when the page table walk for an anchor entry is
finished, TLB acquires the contiguity information. As an ex-
ample, in Fig. 2 (a), the page table walk for VPN 1 acquires
no contiguity information until the page table walk for VPN
0 is finished. Accordingly, page table walks can undesirably
occur. Second, the contiguity value larger than the Distance
can not be represented. Consequently, it is difficult to cap-
ture the actual contiguity information and fully exploit the
capability of a memory allocator.

Figure 2 (b) depicts the page-level contiguity represen-
tation in [3]. The contiguity indicates how many next pages
are contiguous in the ascending direction starting from an
accessed entry. As an example, the page table walk for
VPN 1 acquires the information that the contiguity value
is 2. This means the next two PPNs 6∼7 are contiguous to
PPN 5. A main issue is that Fig. 2 (b) does not represent the
contiguity in the descending direction. The page table walk
for VPN 1 does not acquire the information that PPN 5 is
contiguous to PPN 4. Accordingly, to access VPN 0, an ad-
ditional page table walk is required. If the address pattern of
an application is descending or random, certain page table
walk overheads still can remain.

4. Proposed Design

In this section, we describe the property of the Buddy allo-
cator and present our design to exploit the property.

4.1 Property of Buddy Allocator

We observe the significant property that StartPPN is aligned
with a block size. In other words, StartPPN is multiple of
a block size. Suppose the block size is 2n pages where n is
an unsigned integer. We formulate StartPPN and StartVPN
using a modulo operation as follows.

StartPPN = PPN − (PPN % 2n) (1)

Fig. 2 Page table formats for TLB coalescing.



LETTER
2045

StartVPN = VPN − (VPN % 2n) (2)

where PPN is the mapped physical page number for the
accessed VPN. Considering the block size is 2n pages,
EndPPN and EndVPN are:

EndPPN = StartPPN + 2n − 1 (3)

EndVPN = StartVPN + 2n − 1 (4)

Equations (1)∼(4) suggest that, if value n is known for the
single page mapping information (VPN, PPN), the entire
block mapping information can be obtained.

4.2 Block-Level Coalescing

We represent the block size information (value n) in a page
table entry. Considering the block size is the power-of-2
number, the value n instead of the actual block size is rep-
resented to reduce the number of bits. In our method, when
any VPN is accessed, the information in Eqs. (1)∼(4) is ob-
tained. Figure 3 (a) depicts an example. When the page
table walk for VPN 1 is conducted, the entire mapping in-
formation of Block1 is obtained. Then the information is co-
alesced in a single TLB entry as depicted in Fig. 3 (b). When
VPNs 0∼3 are accessed later in any order, page table walks
can be avoided because TLB is hit. To do this, Eqs. (1)∼(4)
are implemented in TLB hardware. Note the modulo op-
eration (with the power-of-2 number) is implemented using
simple bit operations. The main advantage of our design is
that page table walks can be reduced. Table 1 shows the
number of page table walks for different address patterns.
In our design, regardless of address patterns, two page table
walks are required. This is because a single page table walk
acquires the entire block mapping information. For compar-
ison, in [2], [3], depending on address patterns, more page
table walks than our design can be required.

To support our design, OS (the Buddy allocator) should

Fig. 3 Block contiguity translation (BCT). (a) The contiguity value
(= log2 BlockSize) is represented in a page table. (b) A page table walk
acquires the entire block mapping information. The acquired information
is coalesced in a single TLB entry.

Table 1 The number of page table walks in different address pattern
examples for the mappings of Figs. 2 and 3.

Address VPN access Traditional AT PCA BCT
patterns order [2] [3]

Ascending 0, 1, 2, 3, 4, 5 6 2 2 2
Descending 5, 4, 3, 2, 1, 0 6 4 6 2

Mixed 4, 5, 1, 2, 3, 0 6 4 3 2

be modified. OS is required to set the block size informa-
tion in a page table entry. Note that when a page table is
constructed, OS inherently obtains the block size informa-
tion (value n). In Fig. 3 (a), when Block1 is allocated, the
block size (4 pages) is an available information. Then OS
simply writes the value 2 (= log2 4) in each entry. In prac-
tice, this can be implemented using several instructions. We
measured the allocation time overhead in the Linux-based
development platform. As a result, the overhead is less than
1% and can be insignificant.

4.3 Unified Per-Level Page Size

A page table is organized typically in multiple levels to
avoid the large sized contiguous page table. Traditionally, a
system only can represent the fixed page sizes defined in an
architecture. In ARM v7 architecture, the defined page sizes
are 1MB, 16MB (in level 1) and 4kB, 64kB (in level 2). We
call 1MB and 4kB as base page sizes in each level. When
a 64kB block is allocated, 64kB page size is used to repre-
sent the mapping. The system treats the block as a single
64kB page. The advantage is that only one coalesced TLB
entry is used. However, to use 64kB page size in the tradi-
tional way, there is an architectural limitation that StartVPN
should be multiple of 16 (pages). In other words, VA[15:12]
value should be zero [4]. This limitation makes OS often
difficult to use such a page size. Moreover, TLB has certain
hardware overheads to implement multiple page sizes.

In our scheme, page sizes are unified in a level. In
ARM v7 architecture, two base page sizes (1MB and 4kB)
are only implemented. Figure 4 depicts an example. Two
applications request 2MB and 16kB memory respectively.
Suppose a 2MB physical block is available for the first ap-
plication. In this case, two contiguous 1MB pages are allo-
cated. Then OS represents the contiguity value 1 (= log2 2)
in the level-1 PTE. Similarly, suppose a 16kB physical
block is available for the second application. Then OS rep-
resents the contiguity value 2 (= log2 4) in the level-2 PTE.
When MMU operates, only one coalesced TLB entry for
each application is required. Additionally, there is no limi-
tation of a virtual address. Moreover, the TLB hardware can
be simplified because 64kB and 16MB page sizes are elimi-
nated. In our experiment, by simplifying the page sizes, the
hardware area is reduced by 15%. The maximum contiguity

Fig. 4 Unified per-level page sizes in the hierarchical page table. Page
sizes other than 1MB (for level 1) and 4kB (for level 2) are not required.



2046
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.10 OCTOBER 2019

Fig. 5 Experimental results for rotated camera preview workload. An image size is 1280 × 720.

that can be represented is 2n MB. For comparison, in [3],
the maximum contiguity is 512kB.

5. Experimental Results

To evaluate the performance of our BCT design, a cycle-
based transaction-level performance model is implemented
in C++. The model is integrated in the simulation environ-
ment of [3]. We consider rotated camera preview workload
widely used in a mobile device, where a camera captures an
image and the rotated image is displayed. In this workload,
descending and ascending address patterns are mixed. We
conduct three performance simulations considering AT [2]
and PCA [3] schemes as references.

First, to evaluate memory system performance, we
measure execution cycles to finish a single frame. Fig-
ure 5 (a) depicts the results. When the physical memory
is fragmented, the physical pages are randomly generated.
We explore different contiguity levels. In case contiguity
level is 0%, the physical memory is fully fragmented. In
case contiguity level is 100%, a large chunk (128 pages) of
free blocks are available. It is desired that a large chunk
of free memory is allocated to an application. To evaluate
our performance in the conservative way, similar to [3], the
contiguous blocks in the physical memory is assumed to be
uniformly distributed. The main results of our experiments
are:

• The performance tends to improve as contiguity level
increases. This is because of the decreased page table
walks and the increased TLB hit rates.
• Our design performs better up to 18% than [2] and up

to 17% than [3]. This is because of the improved TLB
hit rates.

Second, to evaluate MMU performance, we measure
TLB hit rates. Figure 5 (b) depicts the results. When conti-
guity level is low, TLB hit rate is significantly low. When
contiguity level is 0%, TLB hit rate is 50%. This is undesir-
able and is because of the virtual address pattern. As con-
tiguity level increases, TLB hit rate increases. Our design
improves TLB hit rates up to 13% compared to [2], [3].

Third, to evaluate memory utilization, we measure the
percentage of page table walks in the total memory traffics.
Figure 5 (c) depicts the results. When contiguity level is
low, page table walks significantly and undesirably occupy

Table 2 TLB hardware area cost. The number of LUTs (Look-up
Tables) in Xilinx Virtex-7 xc7vx980t.

Area Traditional PCA [3] BCT

Number of LUTs 1811 4593 3268

the memory bandwidth. In Fig. 5 (c), when contiguity level
is 0%, page table walks occupy 34% of the memory traf-
fics. As contiguity level increases, page table walks tend to
decrease. Our design reduces page table walks up to 10%
compared to [2] and up to 9% compared to [3].

Finally, we evaluate the hardware overheads of our de-
sign. We implemented set associative (16 sets, 8 ways)
TLBs in Verilog and synthesized in Xilinx FPGA device.
Table 2 shows the area in the number of LUTs (Look-up Ta-
bles). The targeted device contains 612000 LUTs in total.
Our TLB requires 1.8× more area than the traditional de-
sign. This is because our TLB maintains a logic to handle
the contiguity information. Our TLB requires 29% less area
than [3]. This is because the allocation logic to merge the
ranges in [3] is not required.

6. Conclusions

We presented the block-level TLB coalescing scheme for
the Buddy allocator. We described the modified Buddy allo-
cator to support our scheme where the modification over-
head is insignificant. We presented the unified per-level
page sizes that can simplify the design and better repre-
sent the contiguity. By coalescing the contiguity informa-
tion in block level, the memory system performance, TLB
hit rates, and memory utilization can be improved with mod-
erate hardware overheads.

References

[1] K.C. Knowlton, “A fast storage allocator,” Commun. ACM, vol.8,
no.10, pp.623–625, Oct. 1965.

[2] C.H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid TLB coalescing: Im-
proving TLB translation coverage under diverse fragmented memory
allocations,” ACM/IEEE Int’l Symposium on Computer Architecture
(ISCA17), pp.444–456, Toronto, Canada, June 2017.

[3] J.Y. Hur, “Contiguity representation in page table for memory man-
agement units,” IEEE Trans. Very Large Scale Integr. (VLSI) Sys-
tems, vol.27, no.1, pp.147–158, Jan. 2019.

[4] ARM, Ltd., ARM Architecture Reference Manual, ARMv7-A Edi-
tion, available at http://www.arm.com

http://dx.doi.org/10.1145/365628.365655
http://dx.doi.org/10.1145/3140659.3080217
http://dx.doi.org/10.1109/tvlsi.2018.2870913

