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On the Distribution of p-Error Linear Complexity of p-Ary
Sequences with Period pn

Miao TANG†, Juxiang WANG††a), Nonmembers, Minjia SHI†††, Member, and Jing LIANG††††, Nonmember

SUMMARY Linear complexity and the k-error linear complexity of pe-
riodic sequences are the important security indices of stream cipher sys-
tems. This paper focuses on the distribution of p-error linear complexity
of p-ary sequences with period pn. For p-ary sequences of period pn with
linear complexity pn − p+ 1, n ≥ 1, we present all possible values of the p-
error linear complexity, and derive the exact formulas to count the number
of the sequences with any given p-error linear complexity.
key words: periodic sequence, k-error linear complexity, counting func-
tion, stream ciphers

1. Introduction

Sequences with good pseudorandomness and complexity
properties are widely used as key streams in cryptographic
applications [1]–[3]. Among the measures commonly used
to measure the complexity of a sequence S is its linear com-
plexity LC(S ). In engineering terms, the linear complexity
LC(S ) is defined to be the length of the shortest linear feed-
back shift register (LFSR) that can generate S . The LFSR
that generates a given sequence S can be determined by the
well-known Berlekamp-Massey algorithm [4], for this algo-
rithm requires only 2LC(S ) consecutive bits to completely
determine the linear complexity of S . Hence, high linear
complexity is essential for cryptographic applications.

For a cryptographically strong sequence, the linear
complexity should not decrease drastically if a few bits are
changed, since knowledge of the first few terms can allow
the efficient generation of a sequence which closely ap-
proximates the original sequence. This observation moti-
vates the definition of the k-error linear complexity of se-
quences [2], [5]. The k-error linear complexity of a periodic
sequence S , denoted by LCk(S ), is defined to be the mini-
mum linear complexity of S that can be obtained by chang-
ing up to k bits in one period and identical changes in all
other periods. Cryptographically strong sequences should
not only have a large linear complexity, but also have a large

Manuscript received May 9, 2019.
Manuscript revised July 27, 2019.
Manuscript publicized September 2, 2019.
†The author is with the Department of Applied Mathematics,

Anhui Agricultural University, Anhui 230036,China.
††The author is with the School of Mathematics and Physics,

Anhui Jianzhu University, Anhui 230601, China.
†††The author is with the School of Mathematical Sciences,

Anhui University, Anhui 230601,China.
††††The author is with the Ministry of General Education, Anhui

Xinhua University, Anhui 230088,China.
a) E-mail: wjxahjzdx@163.com

DOI: 10.1587/transinf.2019EDL8093

k-error linear complexity at least for small k.
For a given periodic binary sequence S of period N =

2n, the linear complexity can be more efficiently computed
via the Chan-Games algorithm [6] with O(N) bit operations,
while the Berlekamp-Massey algorithm requires O(N2) bit
operations. Stamp and Martin [5] extended the Chan-Games
algorithm for computing the k-error linear complexity of
S for a fixed k. Generalization of these results to pn-
periodic sequences over the finite field GF(pm), were shown
in [2], [7], [8]. For binary sequences of period 2n, Ruep-
pel [1] presented the counting function for the number of se-
quences with fixed linear complexity. In [9], [10], the count-
ing function for the number of sequences with fixed 1-error
linear complexity are presented. The counting functions on
k-error linear complexity in the case k = 2 and k = 3 was
treated in [11] and [12], respectively. For p-ary sequences
of period pn, the counting function for the number of se-
quences with fixed linear complexity and fixed 1-error linear
complexity, were shown in [13], [14], respectively.

The rest of this paper is arranged as follows. Section 2
introduces some basic definitions and previously related re-
sults. Section 3 presents the counting function for the num-
ber of sequences with given p-error linear complexity. The
expected value of p-error linear complexity of sequences
with linear complexity pn− p+1 is also calculated in Sect. 3.

2. The p-Ary Sequences of Period pn

Let S = s1, s2, . . . be a p-ary sequences of period pn, where
p is a prime. The linear complexity of S is defined to be the
least nonnegative integer t for which there exist coefficients
d1, d2, . . . , dt ∈ Fp such that

si+t + d1si+t−1 + · · · + dt si = 0, for all integers i ≥ 1.

In addition, the linear complexity of the zero sequence 0 is
defined to be 0. For periodic sequences, knowing one period
means we know the whole sequence. Hence, we denote the
linear complexity of S by LC(S ) or LC(s(n)), where s(n) =

(s1, s2, . . . , spn ) is one period of S . Let the vector e(n) has the
same length with s(n) over Fp. The k-error linear complexity
of S can be denoted by LCk(S ) or LCk(s(n)),

LCk(S ) = min{LC(s(n) + e(n)) : w(e(n)) ≤ k},
where the Hamming weight w(e(n)) denotes the number of
nonzero terms of e(n).

For a given p-ary sequence of period pn, Kurosawa et
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al. [15] showed that the minimal value kmin for which the k-
error linear complexity LCk(S ) of S is strictly less than its
linear complexity LC(S ) is exactly determined by

kmin = Prod(pn − LC(S )),

where Prod(c) =
∏n−1

j=0(i j + 1) if the integer c =
∑n−1

j=0(i j p j).
Evidently, kmin = p for any p-ary sequences of period pn

with linear complexity pn − p + 1.
For p-ary sequences of period pn, Meidl and Nieder-

reiter [13] showed that the number N(L) of sequences with
linear complexity L, is determined by

N(L) =

{
1, L = 0,
(p − 1)pL−1, 1 ≤ L ≤ pn.

(1)

For a given p-ary sequence of period pn with linear com-
plexity pn, Meidl and Venkateswarlu [14] presented that the
1-error linear complexity of S is 0 or of the form

pn − pr+1 + c, 0 ≤ r ≤ n − 1, 1 ≤ c ≤ pr+1 − pr − 1.

In [14], it also has been showed that the number N1(L) of
sequences with linear complexity pn and 1-error linear com-
plexity L is given by

N1(L) =

{
(p − 1)pn, L = 0,
(p − 1)2 pL+r, L � 0.

(2)

Given a p-ary sequence S of period pn, its linear com-
plexity can efficiently be computed by the generalized Chan-
Games algorithm [2]. Since we will use some aspects of
the generalized Chan-Games algorithm in the following, we
present a short description. Let ϕ(n)

u , u = 0, 1, . . . , p − 1, be

the mappings from F pn

p to F pn−1

p , n > 1, by

ϕ(n)
u (s(n))i=

p−u−1∑
j=0

(
p − j − 1

u

)
s j·pn−1+i, i=1, 2, . . . , pn−1.

Suppose that u, u = 0, 1, . . . , p − 1, is the least number such
that ϕ(n)

u (s(n)) � 0. Then the linear complexity of S is given
by

LC(s(n)) = (p − u − 1)pn−1 + LC(s(n−1)),

where s(n−1) = ϕ(n)
u (s(n)). The generalized Chan-Games al-

gorithm is obtained by applying this result recursively until
n = 0. In the final step we will have a sequence with pe-
riod s(0). The linear complexity LC(s(0)) = 1 if s(0) � 0 and
LC(s(0)) = 0 if s(0) = 0. It obviously that s(0) = 0 if and only
if S is the zero sequence 0.

Let S be a p-ary sequence of period pn. We collect
some obvious properties of the linear complexity LC(S ) and
the mappings ϕ(n)

u , u = 0, 1, . . . , p − 1, n > 1.
P1: w(ϕ(n)

u (s(n))) ≤ w(s(n)), u = 0, 1, . . . , p − 1.
P2: LC(S ) < pn if and only if s(n) has the zero sum property,
that is,

∑pn

j=1 s j = 0.

P3: LC(S ) = 0 if and only if s(n) = 0.
P4: LC(S ) = pn − p + 1 if and only if s(1) =

(ϕ(2)
0 ϕ

(3)
0 · · ·ϕ(n)

0 (s(n))) and s(1) = (a, a, . . . , a), a � 0 ∈ Fp.
Then the Hamming weight w(s(r)) ≥ p for all 1 ≤ r ≤ n,
where s(r) = ϕ(r+1)

0 ϕ(r+2)
0 · · ·ϕ(n)

0 (s(n))).
P5: For any b ∈ Fp and vector (s1, s2, . . . , sp) with
ϕ0(s1, s2, . . . , sp) � 0, it suffices to alter exactly one
bit in {s1, s2, . . . , sp} to obtain ϕ0(s1, s2, . . . , sp) = 0 and
ϕ1(s1, s2, . . . , sp) = b. Moreover, the way of the bit changes
is unique.

P6: The set (ϕ(n+1)
0 )−1(s(n)) = {v ∈ F pn+1

p |ϕ(n+1)
0 (v) = s(n)} of

preimages of s(n) has cardinality p(p−1)pn
.

3. Results and Proofs

In this section, we concentrate on the p-ary sequence of pe-
riod pn with linear complexity pn − p + 1, n ≥ 1.

Lemma 1. Let S be a p-ary sequence of period
pn with linear complexity pn − p + 1, n ≥ 1. Then
w(s(n)) = p if and only if the nonzero elements of s(n) are
si1 p+1, si2 p+2, . . . , sip p+p for some i j ∈ {0, 1, 2, . . . , pn−1 − 1},
j = 1, 2, . . . , p, and si1 p+1 = si2 p+2 = . . . = sip p+p.

Proof According to P4, we have s(1) = ϕ(2)
0 ϕ

(3)
0 · · ·

ϕ(n)
0 (s(n))) and s(1) = (a, a, . . . , a), a � 0 ∈ Fp. Note that

s(1)
j =

∑pn−1−1
i j=0 si j p+ j, j = 1, 2, . . . , p. Then there is ex-

actly one nonzero element in {s j, sp+ j, . . . , spn−p+ j} for ev-
ery j = 1, 2, . . . , p. Moreover, the nonzero element si j p+ j =

s(1)
j = a. �

Lemma 2. Let S be a p-ary sequence of period pn

with linear complexity pn − p + 1 and w(s(n)) = p, n ≥ 1.
Let S = (s(n+1))∞ be a p-ary sequence of period pn+1 with
w(s(n+1)) > p and ϕ(n+1)

0 (s(n+1)) = s(n).
(1) Then the p-error linear complexity of S satisfies 1 ≤
LCp(S ) ≤ pn+1 − pn − p.
(2) For all the vectors t(n+1) such that t(n+1) is differs from
s(r+1) at most p terms, only one t(n+1) satisfies LC(t(n+1)) =
LCp(s(n+1)), else, the linear complexity of t(n+1) is more than
pn+1 − pn − p.

Proof Suppose that s(n)
i j p+ j is the nonzero element of

s(n) for every j = 1, 2, . . . , p. Obviously, it suffices to
alter appropriate p bits in s(n+1) to obtain ϕ(n+1)

0 (s(n+1)) =
0. It can be obtained by exactly one element change in
{s(n+1)

i j p+ j, s
(n+1)
pn+i j p+ j, . . . , s

(n+1)
(p−1)pn+i j p+ j} for every j = 1, 2, . . . , p.

Let t(n+1) be a vector such that LC(t(n+1)) = LCp(s(n+1)).
Then the p-error linear complexity of S is

LCp(s(n+1)) = (p − u − 1)pn + LC(t(n)),

where t(n) = ϕ(n+1)
u (s(n+1)) and u is the least number such that

ϕ(n+1)
u (s(n+1)) � 0, u = 1, 2, . . . , p − 1.

In the case that 2 ≤ u ≤ p − 1, the linear complex-
ity LC(t(n)) could be equal to any integer between 1 and pn.
Then we have 1 ≤ LCp(s(n+1)) ≤ pn+1 − 2pn. We now show
the case that u = 1. According to P5, it suffices to alter ex-
actly one bit in {s(n+1)

i j p+ j, s
(n+1)
pn+i j p+ j, . . . , s

(n+1)
(p−1)pn+i j p+ j} to obtain

ϕ0(s(n+1)
i j p+ j, s

(n+1)
pn+i j p+ j, . . . , s

(n+1)
(p−1)pn+i j p+ j) = 0
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and

ϕ1(s(n+1)
i j p+ j, s

(n+1)
pn+i j p+ j, . . . , s

(n+1)
(p−1)pn+i j p+ j) = b

for any b ∈ Fp, j=1, 2, . . . , p. Then t(n)
i1 p+1, t

(n)
i2 p+2, . . . , t

(n)
ip p+p ∈

Fp could be arbitrary value by altered appropriate p bits in
s(n+1). For t(1) = (ϕ(2)

0 ϕ
(3)
0 · · ·ϕ(n)

0 (t(n))), it suffices to select
appropriate t(n)

i1 p+1, t
(n)
i2 p+2, . . . , t

(n)
ip p+p ∈ Fp to obtain t(1) = 0,

then we get 1 ≤ LC(t(n)) ≤ pn − p and pn+1 − 2pn + 1 ≤
LCp(s(n+1)) ≤ pn+1 − pn − p. This proves that the p-
error linear complexity of S can be the arbitrary integer
lies in [1, pn+1 − pn − p]. Note that the way of the bit
changes is unique. Then there is only one vector t(n+1)

satisfies LC(t(n+1)) = LCp(s(n+1)) ∈ [1, pn+1 − pn − p].
Else, we have that t(n) = ϕ(n)

1 (t(n+1)) � 0. Since we can
not select appropriate t(n)

i1 p+1, t
(n)
i2 p+2, . . . , t

(n)
ip p+p ∈ Fp to obtain

t(1) = ϕ(2)
0 ϕ

(3)
0 · · ·ϕ(n)

0 (t(n))) = 0, then we get LC(t(n+1)) >
pn+1 − pn − p. �

The following theorem presents all possible values of
the p-error linear complexity of p-ary sequences of period
pn with linear complexity pn − p + 1, n ≥ 1.

Theorem 1. For any p-ary sequence S of period pn

with linear complexity pn − p + 1, the p-error linear com-
plexity of S is either zero or of the form

pn − pr+1 + c,

where 1 ≤ r ≤ n − 1 and 1 ≤ c ≤ pr+1 − pr − p.
Proof According to P4, we have w(s(n)) ≥ p. Obvi-

ously, the p-error linear complexity of S is 0 in the case
that w(s(n)) = p. We now show the case w(s(n)) > p. Sup-
pose that r, 1 ≤ r ≤ n − 1, is the largest integer such that
w(s(r)) = p. Then the p-error linear complexity of S is

LCp(s(n)) = pn − pr+1 + LCp(s(r+1)).

Note that the pr-periodic sequence with period s(r) =

ϕ(r+1)
0 (s(r+1)) satisfies LC(s(r)) = pr − p + 1 and w(s(r)) = p.

According to Lemma 2, we have 1 ≤ LCp(s(r+1)) ≤ pr+1 −
pr − p. Then the p-error linear complexity of S is of the
form

pn − pr+1 + c,

where 1 ≤ r ≤ n − 1 and 1 ≤ c ≤ pr+1 − pr − p. �
The following theorem presents the exact formulas to

count the number of p-ary sequences of period pn with lin-
ear complexity pn−p+1 and fixed p-error linear complexity.

Theorem 2. The number of p-ary sequences of pe-
riod pn with linear complexity pn − p+ 1 and p-error linear
complexity L is

Np(L) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(p − 1)ppn−p, i f L = 0,
(p − 1)2 pL+pr−1, i f L = pn − pr+1 + c,
0, otherwise,

where 1 ≤ r ≤ n − 1 and 1 ≤ c ≤ pr+1 − pr − p.
Proof For p-ary sequences of period pn with linear

complexity pn − p + 1, the sequences S with p-error lin-
ear complexity 0 are exactly the sequences with w(s(n)) = p.
According to Lemma 1, we have

Np(0) = (p − 1)pn−1 pn−1 · · · pn−1 = (p − 1)ppn−p.

For the sequences S with p-error linear complexity pn−
pr+1 + c, 1 ≤ r ≤ n − 1, 1 ≤ c ≤ pr+1 − pr − p, the p-error
linear complexity of S is

LCp(s(n)) = pn − pr+1 + LCp(s(r+1)).

Let t(r+1) be the vector such that LC(t(r+1)) = LCp(s(r+1)).
For every integer c, 1 ≤ c ≤ pr+1−pr−p, there are (p−1)pc−1

choices for t(r+1) such that LC(t(r+1)) = c by (1). Note that
s(r+1) differs from t(r+1) at exactly s(n+1)

i1 p+1, s
(n+1)
i2 p+2, . . . , s

(n+1)
ip p+p for

some i j ∈ {0, 1, 2, . . . , pr−1}, j = 1, 2, . . . , p. Then there are
(p − 1)pc−1(p − 1)pr pr · · · pr = (p − 1)2 pc+pr−1 choices for
s(r+1) by Lemma 2. Using P6 recursively we obtain that

(p−1)2 pc+pr−1 p(p−1)pr+1 · · · p(p−1)pn−1
= (p−1)2 ppn−pr+1+c+pr−1

is the number of p-ary sequences of period pn with linear
complexity pn − p + 1 and p-error linear complexity pn −
pr+1 + c. �

Theorem 2 permits the calculation of the exact formula
for the expected value of the p-error linear complexity of a
random p-ary sequences of period pn with linear complexity
pn − p + 1, n ≥ 1.

Theorem 3. The expected value Ep of the p-error lin-
ear complexity of p-ary sequences of period pn with linear
complexity pn − p + 1 is

Ep = pn − p − 1 − p−pn+pn

p − 1
−

n−1∑
r=1

p−pr+pr+1.

Proof According to (1), there are (p − 1)ppn−p p-ary
sequences of period pn with linear complexity pn − p + 1.
From Theorem 2 we have

(p − 1)ppn−pEp =
∑

L

Np(L)L

=

n−1∑
r=1

pr+1−pr−p∑
c=1

(p − 1)2 ppn−pr+1+c+pr−1(pn − pr+1 + c)

= (p − 1)ppn+n
n−1∑
r=1

p−pr+1+pr−1
pr+1−pr−p∑

c=1

(p − 1)pc

−(p − 1)ppn
n−1∑
r=1

p−pr+1+pr+r
pr+1−pr−p∑

c=1

(p − 1)pc

+ppn
n−1∑
r=1

p−pr+1+pr−1
pr+1−pr−p∑

c=1

(p − 1)2cpc

= T1 − T2 + T3.

For the first term T1 we have

T1 = (p − 1)ppn+n
n−1∑
r=1

p−pr+1+pr−1(ppr+1−pr−p+1 − p)
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= (p − 1)ppn+n( n−1∑
r=1

p−pr+p(r−1) −
n−1∑
r=1

p−pr+1+pr)

= (p − 1)ppn−p(pn − p−pn+pn+n).

For the second term T2 we get

T2= (p−1)ppn
n−1∑
r=1

p−pr+1+pr+r(ppr+1−pr−p+1 − p)

= (p−1)ppn( n−1∑
r=1

p−pr+p(r−1)+r+1 −
n∑

r=2

p−pr+p(r−1)+r)

= (p−1)ppn−p(p2−p−pn+pn+n + (p−1)
n−1∑
r=2

p−pr+pr+r).
For the third term T3, using the identity

(p − 1)2
m∑

j=1

jp j = (p − 1)mpm+1 − pm+1 + p

we get

T3= ppn
n−1∑
r=1

p−pr+1+pr−1(p−1)(pr+1−pr−p)ppr+1−pr−p+1

− ppn
n−1∑
r=1

p−pr+1+pr−1(ppr+1−pr−p+1−p)

=T4 − T5,

where

T4= (p−1)ppn
n−1∑
r=1

p−pr+p(r−1)(pr+1−pr−p)

= (p−1)ppn−p((p−1)
n−1∑
r=1

p−pr+pr+r−
n−1∑
r=1

p−pr+pr+1)

and

T5 = ppn
n−1∑
r=1

p−pr+1+pr−1(ppr+1−pr−p+1 − p)

= ppn( n−1∑
r=1

p−pr+p(r−1) −
n∑

r=2

p−pr+p(r−1))

= ppn
(p−p − p−pn+p(n−1))

= (p − 1)ppn−p 1 − p−pn+pn

p − 1
.

By combinbining the formulas for T1, T2, T4 and T5 we get

Ep = pn − p − 1 − p−pn+pn

p − 1
−

n−1∑
r=1

p−pr+pr+1

4. Concluding Remarks

In this paper, we obtain exact results for the counting func-
tion and the expected value for the p-error linear complex-

ity of p-ary sequences of period pn with linear complex-

ity pn − p + 1, n ≥ 1. Note that the value p−pn+pn

p−1 and the

sum
∑n−1

r=2 p−pr+pr+1 in the formula for Ep is small. Hence
the value of Ep is approximately equals to pn − 2p − 1

p−1 .
From the above discussion, we know that there are many
sequences with large p-error linear complexity among all p-
ary sequences of period pn with linear complexity pn− p+1.
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