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High Noise Tolerant R-Peak Detection Method Based on Deep
Convolution Neural Network∗

Menghan JIA†a), Feiteng LI†, Zhijian CHEN†, Nonmembers, Xiaoyan XIANG††, Member,
and Xiaolang YAN†, Nonmember

SUMMARY An R-peak detection method with a high noise tolerance
is presented in this paper. This method utilizes a customized deep convo-
lution neural network (DCNN) to extract morphological and temporal fea-
tures from sliced electrocardiogram (ECG) signals. The proposed network
adopts multiple parallel dilated convolution layers to analyze features from
diverse fields of view. A sliding window slices the original ECG signals
into segments, and then the network calculates one segment at a time and
outputs every point’s probability of belonging to the R-peak regions. After
a binarization and a deburring operation, the occurrence time of the R-
peaks can be located. Experimental results based on the MIT-BIH database
show that the R-peak detection accuracies can be significantly improved
under high intensity of the electrode motion artifact or muscle artifact noise,
which reveals a higher performance than state-of-the-art methods.
key words: electrocardiograph, noise tolerance, convolution neural net-
work, dilated convolution

1. Introduction

Growing aging population and aggravating environmental
problems have led to an increasing interest in wearable
healthcare monitoring devices. Being an important part,
the wearable electrocardiogram (ECG) monitoring system
is widely concerned. In general, the ECG data is sampled at
wearable devices and further analyzed on the cloud. How-
ever, with complex environments of the acquisition devices,
the sampled ECG signals are often superimposed with var-
ious kinds of noises, such as power line interference (PLI),
baseline wandering with respiration (BW), electrode motion
artifact (EM) and muscle artifact (MA) noise. Among them,
the BW and EM noises can reach 100% peak-to-peak ECG
amplitude, while the MA noise can even reach 500% during
a period of 100-500ms [1], which results in a great challenge
to the analysis of ECG signals.

Researchers have proposed several noise tolerant al-
gorithms to analyze ECG signals and detect R-peaks [1]–
[5]. Friesen G M et al [1] utilizes the amplitude, deriva-
tive, and frequency spectrum of ECG signals to identify R-
peaks. [2]–[4] change the shape of the signal by mathe-
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matical transformations and then locate R-peaks based on
the amplitude and other features of the ECG. To improve
the robustness, both [3] and [4] filter the signal first. How-
ever, filtering does not work for the EM or MA noise, be-
cause the spectrum distributions of these noises are simi-
lar to that of the effective ECG signals. Nakai Y et al [5]
adds a template matching technique with short time auto-
correction on the traditional detection method such as con-
tinuous wavelet transform (CWT). Experiments in [5] show
that with the increase of noise intensity, its detection perfor-
mance drops greatly. Therefore, in extreme environments
with high-intensity noises, all the methods above are not
suitable for R-peak detection.

Different from finding features manually, in this let-
ter, we propose a noise tolerant R-peak detecting algorithm
based on a deep convolution neural network. The network
inputs a piece of sliced ECG signal at a time and gives every
point’s probability of belonging to the R-peak regions. Then
a post-processing step is added to analyze the probabilities
and get the location of R-peaks. We evaluate this method
by the MIT-BIH database [6]–[8] and experimental results
show that the R-peak detection performance of this method
can be significantly improved at low SNR.

2. Methods

There are certain morphological and temporal features of R-
peaks in the ECG. For example, R-peaks tend to have larger
amplitude, and the intervals of consecutive R-peaks are sim-
ilar. In the case of high-intensity noises, some morpholog-
ical features can still be retained, and the temporal features
of R-peak will not be destroyed. Therefore, we use a deep
learning network to learn the morphological and temporal
features of R-peaks in noisy ECG signals. We consider the
sampled ECG points within 0.05s from R-peaks as the R-
peak regions. The points in the R-peak regions are classified
as “1”, and the other points are classified as “0”. The net-
work outputs the predicted probabilities. Then all the net-
work outputs are analyzed in the post-processing stage to
locate the R-peaks.

2.1 Network Architecture

The blocking diagram of the proposed deep convolution
neural network (DCNN) is shown in Fig. 1. The first five
layers of convolution are used for preliminary feature ex-
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Fig. 1 Blocking diagram of the proposed R-peak detection method.
Where “Conv” stands for the convolution layer, “BN” stands for the batch-
normalization layer, “ReLU” stands for the activation layer with rectified
linear units and “Dilated Conv” stands for the dilated convolution layer.

traction from the data. Then, two parallel dilated convolu-
tion layers with different sampling rates, also called atrous
spatial pyramid pooling (ASPP) layers in [9] are added. Be-
cause of the diversity of the convolution scales, the network
can extract morphological and temporal features from di-
verse fields of view. The last convolution layer and the soft-
max layer are used to comprehensively analyze all the fea-
tures and get the predicted probabilities. After each convolu-
tion computation, we add a batch-normalization (BN) layer
to get higher learning rates and be less careful about the ini-
tialization of the weights [10]. Rectified linear units (ReLU)
are used for activation function to train faster while keeping
a high performance [11]. The original ECG recording con-
tains the most morphological features, so we slice pieces of
continuous data from it as the inputs of the network by a
sliding window. If the recording contains multiple channels,
all the channels will input to the network simultaneously,
and the network will fuse different channels and output a
comprehensive prediction. After that, the window moves a
certain distance in the direction of time and slices another
data as the next input. By shortening the moving distance
of the sliding window, for example, setting the moving dis-
tance to half the width of the sliding window itself, every
sample point can be analyzed multi times for higher detec-
tion performance, as shown in Fig. 2. The average value of
the input data is set to 0 to make it easier for the network to
extract features between data without being affected by the
offset.

Fig. 2 The sliding window extracts a piece of continuous data from the
original recording and moves half of the width at a time. The example ECG
data is from record 100 of the MIT-BIH Arrhythmia Database (MITDB)
added electrode motion noise at 6dB SNR. The sampling frequency of the
MITDB is 360Hz. Therefore, the width of the sliding window in the figure
is 360 points and the window moves 180 points at a time.

Fig. 3 Operation of post-process from four consecutive network outputs.
The input data of the network is shown in Fig. 2

2.2 Post-Process

The schematic diagram of the post-process in this method
is shown in Fig. 3. When completing the scanning of one
ECG recording by the sliding window, the network analyzes
multiple times for each sampling point and yields multiple
probabilities. We average the probabilities of the same point
for higher performance and then binarize the averaged prob-
abilities. There are two kinds of burrs in the binarized signal.
The first kind of burrs is the “0” values in continuous “1”s
and the second kind of burrs is the “1” values in continuous
“0”s, as shown in the dotted boxes of Fig. 3. Therefore, we
add a deburring step to remove these burrs. First, we con-
sider the continuous “0” values with widths less than 0.01s
as the first kind of burrs and correct them to “1”s. Then
the continuous “1” values with widths less than 0.03s are
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considered as the second kind of burrs and we correct them
to “0”s. Finally, the mid-point of continuous “1” values is
considered to be the occurrence time of the R-peak.

3. Experiment Results

The classification performance of the proposed method
is evaluated by the public ECG signal database, MIT-
BIH Arrhythmia Database (MITDB) [6], whose sample fre-
quency is 360 and the noise database, MIT-BIH Noise Stress
Test database (NSTDB) [7]. We select for the performance
evaluation of our technique with the BW, EM, and MA
noises, as recommended in the NSTDB. Three types of the
noises mentioned above with several SNRs are added for
training and testing by using the tool “nst” provided by the
PhysioNet [7], which is a necessary tool for [7]. Same as
[12], 22 recordings carefully selected in [6] are used for
training and another 22 for testing. As a widely accepted
classification, it ensures that the number of R-peaks and beat
types in each dataset are similar. During the training stage,
we use the ECG signals contaminated by different noises
with different SNRs (set as 24, 12, 6, 0) as the inputs. The
proportions of the training data containing EM, MA or BW
noise are all 1

3 , making the noise tolerant abilities of the net-
work similar.

The performance of the R-peak detection is mea-
sured by the sensitivity (S e) and positive predictivity (+P),
as recommended by the American Standard ANSI/AAMI
EC57 [13]. They are defined as Eq. (1), where T P, FN,
and FP are the number of true-positive, false-negative and
false-positive events, respectively. Comparisons with the
proposed method and the continuous wavelet transform
(CWT) [2], Hilbert transform with second threshold (HT w/
2nd Th) [3], empirical mode decomposition (EMD) [4] and
short-term autocorrelation with template (STAC w/ TM) [5]
for noise tolerant R-peak detection performances are shown
in Fig. 4, 5, 6. In addition, there are only R-peak detection
performances with the EM and MA noises in [2], [5].

S e =
T P

T P + FN
+P =

T P
T P + FP

(1)

The proposed method achieves 99.72% S e and 99.76%
+P when there is no noise in the test sets, reaching a rela-
tively high level. Due to the excellent feature extraction and
analysis capabilities, this method gets a significantly higher
R-peak detecting performance than traditional methods for
the ECG signals contaminated by the EM or MA noise. The
S e and +P of [2]–[5] all degrade substantially as the EM
or MA noise increases because these two noises fluctuate
frequently in a short time and traditional detection meth-
ods have been deceived. For example, when the SNR de-
creased to 0dB under the EM noise, the S e and +P of this
method are 96.7% and 94.1%, 5.6% and 22.5% higher than
[3] and much higher than others, as shown in Fig. 4. When

Fig. 4 The performance comparisons for the ECG contaminated by the
EM noise at different SNRs. (a) The sensitivity comparison. (b) The posi-
tive predictivity comparison.

Fig. 5 The performances comparison for the ECG contaminated by the
MA noise at different SNRs. (a) The sensitivity comparison. (b) The posi-
tive predictivity comparison.

Fig. 6 The performance comparisons for the ECG contaminated by the
BW noise at different SNRs. (a) The sensitivity comparison. (b) The posi-
tive predictivity comparison.

the ECG data is contaminated by the MA noise, the per-
formance of this method is also much higher than that of
traditional methods, as shown in Fig. 5.

The frequency spectrum distribution of the BW noise is
different from that of most effective ECG signals [1], there-
fore, traditional methods can remove the BW noise at the
expense of only a small part of morphological features and
achieve high detecting performance. To balance the robust-
ness against all noises, the proposed method retains all the
morphological features of the ECG signals. When training,
the network will automatically get the best total noise toler-
ant performance. However, at this moment, the noise toler-
ant ability of the network against the BW noise is slightly
lower than other methods, as shown in Fig. 6. Even so, the
proposed algorithm can still achieve 92.3% S e and 92.0%
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+P scores at −6dB, making it possible to work well under
higher intensity of the BW noise.

4. Conclusion

This letter proposes a noise tolerant algorithm to detect R-
peaks. The proposed algorithm is combined with a deep
convolution neural network to give the probability of which
sampling points belonging to the R-peak regions and a post-
processing step to locate R-peaks. Experiments based on
the MIT-BIH database reveal that the R-peak detection ac-
curacies can be significantly improved under high-intensity
noises. Even at 0dB SNR, the proposed method can also get
more than 90% S e and +P scores under the BW, EM or MA
noise.

Acknowledgments

The authors acknowledge the support of the National Natu-
ral Science Foundation of China under Grant 61801425.

References

[1] G.M. Friesen, T.C. Jannett, M.A. Jadallah, S.L. Yates, S.R. Quint,
and H.T. Nagle, “A comparison of the noise sensitivity of nine
QRS detection algorithms,” IEEE Trans. Biomed. Eng., vol.37, no.1,
pp.85–98, Jan. 1990.

[2] I.R. Legarreta, P.S. Addison, M.J. Reed, N. Grubb, G.R. Clegg, C.E.
Robertson, and J.N. Watson, “Continuous Wavelet Transform Mod-
ulus Maxima Analysis of the Electrocardiogram: Beat Characteri-
sation and Beat-to-beat Measurement,” Int. J. Wavelets Multiresolut
Inf. Process., vol.03, no.01, pp.19–42, March 2005.

[3] N.M. Arzeno, Z.-D. Deng, and C.-S. Poon, “Analysis of
First-Derivative Based QRS Detection Algorithms,” IEEE Trans.
Biomed. Eng., vol.55, no.2, pp.478–484, Feb. 2008.

[4] H. Li, X. Wang, L. Chen, and E. Li, “Denoising and R-Peak De-
tection of Electrocardiogram Signal Based on EMD and Improved
Approximate Envelope,” Circuits, Systems, and Signal Processing,
vol.33, no.4, pp.1261–1276, April 2014.

[5] Y. Nakai, S. Izumi, M. Nakano, K. Yamashita, T. Fujii, H.
Kawaguchi, and M. Yoshimoto, “Noise tolerant QRS detection using
template matching with short-term autocorrelation,” 2014 36th An-
nual International Conference of the IEEE Engineering in Medicine
and Biology Society, Chicago, IL, pp.34–37, IEEE, Aug. 2014.

[6] G.B. Moody and R.G. Mark, “The impact of the MIT-BIH Arrhyth-
mia Database,” IEEE Eng. Med. Biol. Mag., vol.20, no.3, pp.45–50,
June 2001.

[7] G.B. Moody, W. Muldrow, and R.G. Mark, “A noise stress test for ar-
rhythmia detectors,” Computers in Cardiology, vol.11, no.3, pp.381–
384, 1984.

[8] A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C.
Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.-K. Peng, and H.E.
Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components
of a New Research Resource for Complex Physiologic Signals,” Cir-
culation, vol.101, no.23, June 2000.

[9] L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A.L.
Yuille, “DeepLab: Semantic image segmentation with deep con-
volutional nets, atrous convolution, and fully connected CRFs,”
arXiv:1606.00915 [cs], June 2016.

[10] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” Proceedings
of the 32nd International Conference on Machine Learning - Volume
37, ICML’15, pp.448–456, 2015.

[11] V. Nair and G.E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” Proceedings of the 27th International Confer-
ence on Machine Learning (ICML-10), pp.807–814, 2010.

[12] P. deChazal, M. O’Dwyer, and R.B. Reilly, “Automatic Classifica-
tion of Heartbeats Using ECG Morphology and Heartbeat Interval
Features,” IEEE Trans. Biomed. Eng., vol.51, no.7, pp.1196–1206,
July 2004.

[13] Testing and Reporting Performance Results of Cardiac Rhythm and
ST Segment Measurement Algorithms, Association for the Ad-
vancement of Medical Instrumentation, 1998.

http://dx.doi.org/10.1109/10.43620
http://dx.doi.org/10.1142/s0219691305000774
http://dx.doi.org/10.1109/tbme.2007.912658
http://dx.doi.org/10.1007/s00034-013-9691-3
http://dx.doi.org/10.1109/embc.2014.6943522
http://dx.doi.org/10.1109/51.932724
http://dx.doi.org/10.1161/01.cir.101.23.e215
http://dx.doi.org/10.1109/tbme.2004.827359

