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Prediction-Based Scale Adaptive Correlation Filter Tracker
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SUMMARY Although correlation filter-based trackers have demon-
strated excellent performance for visual object tracking, there remain sev-
eral challenges to be addressed. In this work, we propose a novel tracker
based on the correlation filter framework. Traditional trackers face diffi-
culty in accurately adapting to changes in the scale of the target when the
target moves quickly. To address this, we suggest a scale adaptive scheme
based on prediction scales. We also incorporate a speed-based adaptive
model update method to further improve overall tracking performance. Ex-
periments with samples from the OTB100 and KITTI datasets demonstrate
that our method outperforms existing state-of-the-art tracking algorithms in
fast motion scenes.
key words: visual tracking, correlation filter, scale prediction, model up-
date, fast motion

1. Introduction

Visual object tracking, which has applications in a wide
range of areas, is a fundamental problem in computer vision.
Despite significant progress in recent years, object track-
ing remains a challenging problem due to uncertain factors,
such as scale variation, fast motion, and motion blur.

After the development of Bolme et al.’s MOSSE [1] al-
gorithm, which uses correlation filtering methods for track-
ing, discriminative correlation filter (DCF)-based methods
have gained popularity and have been constantly evolv-
ing. In recent years, DCF-based approaches have shown
outstanding results in object tracking benchmarks [2], [3].
The improvement in DCF-based tracking performance is
mainly due to improvements in feature selection [4], [5],
scale estimation [4], [6], [7], and tracking models [5], [8]–
[11]. Among them, DRT [10] takes both discrimination and
reliability information to reduce the tracking-model degra-
dation caused by the unexpected salient regions on the fea-
ture map. Furthermore, ASRCF [11] adopts an adaptive
spatial regularization scheme to learn an effective spatial
weight for a specific object and its appearance variations,
and therefore result in more reliable filter coefficients dur-
ing the tracking process. Early correlation filter class track-
ing algorithms, such as CSK [12], and KCF [8], have a fixed
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template size. When the tracking target scale changes, the
tracker is unable to accurately locate the target, causing an
excessive amount of interference information to be learned.
To solve this problem, a scale pool method is proposed. The
SAMF [4] algorithm scales the initial target at seven differ-
ent levels, calculates the corresponding response values, and
selects the target scale value with the largest response. The
DSST [6] approach treats target tracking as two independent
problems, namely target center translation and target scale
change, then proposes a fast scale estimation approach by
learning distinct filters for translation and scale. Both al-
gorithms alleviate the impact of scale changes on tracking
performance to some extent. However, the algorithms have
issues keeping up with the scale changes of fast moving tar-
gets. Although increasing the number of layers in the scale
pyramid can improve performance, this also increases the
time cost and negatively impacts the speed of the correlation
filter tracking methods. Furthermore, these methods are lim-
ited to tracking using a fixed number of scales. When a scale
outside the preset scale range, the filter learns a significant
amount of background information, excessive attention, and
target local texture.

To overcome these limitations, we propose a scale es-
timation and adaptive model update approach based on the
correlation filter framework. The key contributions of this
work can be summarized as follows. First, we add scale pre-
diction to the scale adaptive scheme to extend the capability
of the tracker, thereby allowing it to handle scale changes
in fast motion situations. Secondly, we use a speed-based
model update method to reduce unnecessary learning and
improve model robustness. Experiments were performed on
fast motion sequences from the OTB100 [3] and KITTI [13]
datasets. The results show that our method can achieve bet-
ter performance on target tracking tasks than existing state-
of-the-art trackers in fast motion scenes.

2. The Proposed Approach

Recently, the ECO [14] tracker has achieved excellent per-
formance on different benchmark datasets. Thus, we based
our implementation on the ECO tracker.

2.1 The ECO Tracker

The ECO algorithm extracts a D-dimensional feature
x1

j , . . . , x
D
j from an image patch and introduces an interpo-
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lation function bd to interpolate the discrete image feature
function xd

j [n] into the continuous domain [0,T ) ⊂ R to ob-

tain Jd xd(t).

Jd{xd}(t) =
Nd−1∑
n=0

xd[n]bd

(
t − T

Nd
n

)
(1)

The interpolated samples Jd xd(t) are superimposed on
shifted versions of the interpolation function bd ∈ L(T ). The
feature value xd[n] is used as the weight of each of these
shifted versions. Function bd is based on a cubic spline ker-
nel b(t).

To reduce the number of model parameters, a factor-
ization convolution method is introduced. Some of the fil-
ters learned by C-COT contain negligible energy which con-
tribute very little to locating the target, but their presence af-
fects the training time. Thus, our approach does not learn
separate filters for each channel. We use a set of filters
f 1, . . . , f c, where C < D. The filter for feature layer d is then
constructed as a linear combination

∑ C
c=1 pd,c f c of the filters

f c using a set of learned coefficients pd,c. These coefficients
can be expressed compactly as a D × C matrix P = (pd,c).
The new multichannel filter can be expressed as P f . Then,
the detection scores of the target can be written as follows:

SP f {x} = P f ∗ J(x) =
∑
c,d

pd,c f c ∗ Jd{xd} = f ∗ PT J{x}

(2)

The last equation is based on the linearity of convo-
lution. Therefore, the factorized convolution can also be
viewed in the following manner, in which each position t
of the feature vector J{x}(t) is first multiplied by the matrix
PT , after which the obtained C-dimensional feature map is
convolved with the filter f . In other words, the matrix PT

can be regarded as a linear dimensionality reduction opera-
tor.

To avoid the large memory requirements and computa-
tional burden caused by the larger set of training samples,
the ECO tracker utilizes a probabilistic generative model of
the sample set that achieves a compact description of the
samples by eliminating redundancy and enhancing variety.
Traditional filters are learned by minimizing the following
objective:

E( f ) =
M∑
j=1

α j

∥∥∥S f {x j} − y j

∥∥∥2
+

D∑
d=1

∥∥∥ω f d
∥∥∥2

(3)

Assuming that the joint probability distribution of the
sample feature map is x and the expected response score
y is p(x, y), the intuitive objective is to find the filter that
minimizes the expected correlation error. This is obtained
by replacing (3) with

E( f ) = E
{∥∥∥Sf {x} − y

∥∥∥2
}
+

D∑
d=1

∥∥∥ω f d
∥∥∥2

(4)

where E is the expectation of a random variable subject
to the joint probability distribution p(x, y). The original

loss function is obtained when p(x, y) =
∑M

j=1 α jδx j,y j (x, y),
where δx j,y j represents the Dirac impulse for the training
sample (x j, y j). Because the expected output scores y j corre-
sponding to different frames are the same, this can be written
as y j = y0. Thus, the sample distribution can be expressed
as p(x, y) = p(x)δy0(y). At this stage, it is only necessary to
find a more suitable p(x, y). Introducing a Gaussian Mixture
Model (GMM), the following is obtained:

p(x) =
L∑

l=1

πlN(x; μl; I) (5)

where L represents the number of Gaussian components
N(x; μl; I), and πl and μl correspond to the weight and mean,
respectively, of the component l. Finally, the loss function
changes to,

E( f ) =
L∑

l=1

πl

∥∥∥S f {μl} − y0

∥∥∥2
+

D∑
d=1

∥∥∥ω f d
∥∥∥2

(6)

The number of samples is reduced from M to L us-
ing the method above. The ECO [14] tracker employs the
Gauss-Newton and use the Conjugate Gradient methods to
optimize the quadratic subproblems.

2.2 Scale Prediction

As discussed earlier, we adopt the scale adaptive method
based on prediction to avoid the problem of scale outside
the preset scale range when moving rapidly. Even if the tar-
get scale changes drastically, accurate scale estimation can
be done using a few scale search regions. Depending on the
continuity of the motion of the object, the scale change dur-
ing the movement may be gradual instead of abrupt. There-
fore, the forward difference is used to calculate the scale
change and estimate the target scale in the next frame. This
can be expressed as follows:

S′j+1 = S j +

H∑
h=1

2−hη(S j−h+1 − S j−h) (7)

where S j represents the target scale of frame j, S′j+1 is the
predicted target scale, H is the memory factor indicating the
number of frames affecting the scale prediction, and η is the
weight with respect to the rate of change. Considering that
the rate of change of the scale of the target motion differs
between scenes, if a fixed value of η is used, the tracker may
lag when the target’s speed suddenly increases or decreases.

To enhance the robustness of the system and improve
its response time. The value of η is dynamically adjusted
per the principle of classical feedback control, which is used
in traditional automation systems. This is shown in Fig. 1.
Ordinary control systems can achieve a stable output when
there is no interference. In such a scenario, closed-loop
control is not required. However, in this application, this
type of scenario is impossible. The feedback control sys-
tem is fully functional when there are unpredictable distur-
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Fig. 1 Flow chart of the scale adaptive scheme based on prediction
scales, joint scale rate of change, and feedback control to achieve scale
prediction. Scale prediction is added before the common multiscale track-
ing module, and the value of η is dynamically adjusted according to the
difference between the optimal scale S j+1 and the prediction scale S′j+1 to
achieve accurate scale estimation.

bances or unpredictable changes. In each frame, we use
Scale change = S j+1/S′j+1 to characterize the difference be-
tween the optimal scale and the prediction scale, the value of
η = ηScale change, and the closed-loop control scheme is
continuously corrected until it attains a steady state. There-
fore, it follows that the tracker should be able to adapt to fast
motion scenes.

2.3 Adaptive Model Update

To increase the accuracy of the location, the DCF tracker up-
dates the filter model every frame. However, in recent work,
it was demonstrated that ECO and Siamese networks were
found to perform well with infrequent updates to the model.
Therefore, we argue that excessive updates is unnecessary.

The optimization process should only begin when the
appearance of the target exhibits sufficient change. How-
ever, determining how much change is sufficient is not a
straightforward process, and may require complex and time-
consuming calculations. Inspired by the ALRCF [15] algo-
rithm, we argue that the necessary change in appearance de-
pends on the velocity of the target, defined as the pixel dif-
ference between the present and previous positions of the
object in each frame. Therefore, instead of ECO [14] using
a fixed update interval, we associate speed with the model
update interval (the other aspects of model update are the
same as ECO). Adjusting the velocity-learning rate formula
of the ALRCF, the following equation is obtained:

I =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝1 −
1

1 +
(

6
1+V

)6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ × Imax (8)

where V is the speed of the target, I is the template update
interval, and Imax is the preset maximum update interval, up-
dated every 8 frames. The dynamic update interval curve is
shown in Fig. 2.

When the speed is low, the appearance of the tar-
get changes only slightly. The model’s initial information
should be maintained as much as possible, corresponding to
a large update interval. When the speed is high, the appear-
ance of the target changes considerably and should be up-
dated to ensure the discriminative power of the model, cor-
responding to a smaller update interval. Algorithm 1 shows
the procedure for the tracker.

Fig. 2 Curve of velocity and learning rate.

Algorithm 1 Our tracker’s algorithm
Input:

x: training image patch
Pold: previous frame position
Sold: previous target scale

Output:
Pnew: new position
Snew: new target scale

1: translation estimation
• The response score is calculated according to Eq. (2).
• Set Pnew to the target position that maximizes the response.

2: Scale estimation
• Calculate the prediction scale Snew′ according to Sold using Eq. (7).
• Extract scale sample with scale Snew′ at Pnew and calculate the re-
sponse score.
• Set Snew to the target scale that maximizes the response.

3: Model update
• Calculate the update interval using Eq. (8).
• Update the model when the update interval is reached.

3. Experiments

3.1 Experimental Setup

Our proposed approach (PSCT) was evaluated along-
side four other state-of-the-art methods on the OTB2015
and KITTI datasets. KCF [8] and algorithms that use
multi-scale strategies were selected, specifically SAMF [4],
DSST [6], CCOT [5], and ECO-HC [14]. Twenty fast mo-
tion sequences were selected from the OTB2015 [3] and
KITTI [13] datasets to validate the algorithms’ ability to
track fast motion scenes.

All algorithms were run with Matlab 2016b on an
Intel(R) Core(TM) i5-7400 CPU @ 3.00GHz with 8 GB
RAM. Histogram of Gradient (HOG) and Color Names
(CN) were used for feature representations. The filter size
was four times the target size, and HOG features were ex-
tracted using a cell size of 4 × 4. We utilized S = 17 scales
with a scale factor of a = 1.07. The initial value of the rate
of change of the scale was μ1 = 0.5. To compare the perfor-
mance of the different trackers, the algorithm was evaluated
using spatial robustness evaluation (SRE) via success and
precision plots. The success and precision plots illustrate
the overlap precision (OP) and distance precision (DP) of
the trackers over a range of thresholds. In the success plot,
the trackers are ranked according to the area under the curve
(AUC) score.



2270
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.11 NOVEMBER 2019

Fig. 3 Success and precision plots for the 20 fast motion video sequences
selected from OTB2015 and KITTI datasets. Success plots use mean AUC
for ranking and precision plots use threshold = 20 for ranking.

Table 1 Accuracy and speed comparisons on the test dataset. The best
two results are shown in red and blue fonts, respectively.

KCF SAMF CCOT ECO-HC PSCT

Success 0.458 0.568 0.695 0.704 0.792
Precision 0.816 0.834 0.870 0.900 0.977

FPS 203.9 18.4 5.3 54.2 54.9

Fig. 4 Visualization of the position error and overlap rate for each frame.
The results show that our tracker has better tracking capability than other
state-of-the-art methods for fast motion scenes.

3.2 Performance Comparison

Figure 3 show the ranking scores for the precision and suc-
cess plots. The AUC score of our tracker attained a value
of 79.2%, which was 8.8%, 9.7%, 22.4%, and 33.4% higher
than the ECO, CCOT, SAMF, and KCF algorithms, respec-
tively. It can be seen from Fig. 3 that the mean DP score
is 97.7%, which is greater than that of the algorithms. In
Table 1, the accuracies and speeds of the trackers on the
OTB2015 and KITTI datasets are summarized. Among
these methods, the tracker achieves excellent performance.

A set of video sequences was selected for the purpose
of analyzing the changes in the CLE and the overlap rate,
and comparing the performance of the different algorithms.
It can be seen from Fig. 4 that between frames 94 to 113, the
SAMF and KCF algorithms cannot keep up with the scale
change, hence why the overlap rate decreased from 77.4%
to 21% and the location error increased from 10.7 pixels to
50.3 pixels. The overlap rate continues to fluctuate in subse-
quent frames. At roughly frame 160, the performance of the
ECO tracker did not decrease rapidly, though the distance of
the target increased. Thus, the overlap rate decreased from
39.8% and the location error began to fluctuate until frame
184, at which point the position error increased rapidly and
the overlap rate dropped to zero. However, the overlap rate

Fig. 5 Comparison of performance between the optimized algorithm
(CCOTC) and the original algorithm (CCOT). CCOT, CCOT1, and CCOT2
correspond to the original algorithms with scales of 7, 9, and 11, respec-
tively.

of our algorithm maintained a value of 80% despite repeated
changes in the scale of the target, and the location error held
steady at approximately 10 pixels.

To verify the generality of the optimization method pre-
sented in this paper, it was tested against the CCOT algo-
rithm. The advanced algorithm (CCOTC) was compared
to CCOT in 20 fast-moving target scenarios. CCOT1 and
CCOT2 refer to the same algorithm with scale numbers of
9 and 11, respectively. In Fig. 5, it can be clearly seen that
CCOTC performs better than the original algorithm.

4. Conclusion

In this paper, we proposed an improved multiscale tracking
algorithm to solve the problem of keeping up with changes
in the target’s scale during fast motion. This was achieved
using multiscale tracking based on the scale of the predic-
tion rather than on the scale from the previous frame. Fur-
thermore, feedback control was used to improve the predic-
tion accuracy, and adaptive model updates based on speed
further improved the model’s robustness. Experiments on
the OTB2015 and KITTI datasets demonstrated that our ap-
proach outperformed most existing state-of-the-art trackers
in fast motion scenarios.
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