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Constant-Q Deep Coefficients for Playback Attack Detection

Jichen YANG†∗a), Nonmember, Longting XU††∗b), Member, and Bo REN†††, Nonmember

SUMMARY Under the framework of traditional power spectrum based
feature extraction, in order to extract more discriminative information for
playback attack detection, this paper proposes a feature by making use of
deep neural network to describe the nonlinear relationship between power
spectrum and discriminative information. Namely, constant-Q deep coeffi-
cients (CQDC). It relies on constant-Q transform, deep neural network and
discrete cosine transform. In which, constant-Q transform is used to con-
vert signal from the time domain into the frequency domain because it is
a long-term transform that can provide more frequency detail, deep neural
network is used to extract more discriminative information to discriminate
playback speech from genuine speech and discrete cosine transform is used
to decorrelate among the feature dimensions. ASVspoof 2017 corpus ver-
sion 2.0 is used to evaluate the performance of CQDC. The experimental
results show that CQDC outperforms the existing power spectrum obtained
from constant-Q transform based features, and equal error can reduce from
19.18% to 51.56%. In addition, we found that discriminative information
of CQDC hides in all frequency bins, which is different from commonly
used features.
key words: playback attack detection, log power spectrum, octave power
spectrum, linear power spectrum, constant-Q transform

1. Introduction

There can be three general types of spoofing attacks when
deploying an automatic speaker verification (ASV) system.
These are speech synthesis [1], voice conversion [2] and
playback attack [3]. In playback attack, a pre-recording of
the actual voice of a legitimate client [3] is played back to
the ASV system, making it difficult type of attack to de-
tect. As a result, playback attack presents a serious threat to
ASV. This motivates the need to develop dedicated spoofing
countermeasures. This paper, is mainly focused on playback
attack detection.

To date, the most popular feature used in play-
back attack detection is constant-Q cepstral coefficients
(CQCC) [4], such as in [5]. In addition, extended constant-Q
cepstral coefficients (eCQCC) [6] was also used.
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The method of traditional power spectrum based fea-
ture extraction usually applies discrete cosine transform
(DCT) on log power spectrum (LPS) and then selects the top
ranked coefficients as final feature. However, it’s difficult to
design rules to extract more discriminative information from
LPS for playback attack detection.

Note that deep neural network (DNN) has feature
learning ability and can extract the information that hand-
crafted design can’t do [7]. In order to extract more dis-
criminative information from LPS for playback attack detec-
tion, DNN is proposed to describe the nonlinear relationship
between LPS and discriminative information to discrimi-
nate playback speech from genuine speech in this work. In
addition, constant-Q transform (CQT) rather than discrete
Fourier transform (DFT) is selected to convert speech form
the time domain into the frequency domain because CQT
is a long-term transform and it can provide more frequency
details than DFT.

As discussed above, a new feature is proposed here,
which is obtained by combining CQT, DNN and DCT. In
which, CQT is used to supply the base to obtain LPS, DNN
is used to generate more discriminative information from
LPS for playback attack detection and DCT is used to decor-
relate among the feature dimensions. We name the feature
as constant-Q deep coefficients (CQDC).

The remainder of the paper is organized as follows.
Section 2 introduces previous works about power spectrum
based feature extraction and Sect. 3 introduces how to ex-
tract CQDC. Section 4 gives the experimental results and
corresponding analysis, which is based on ASVspoof 2017
version 2.0. Finally, Sect. 5 concludes the paper.

2. Previous Works

In this section, previous works on how to extract features
from LPS obtained from CQT will be introduced. To date,
there are three methods about how to extract feature from
LPS of CQT, they are CQC [6], CQCC [4] and eCQCC [6].
Next, we will introduce them simply.

Figure 1 (a) and Fig. 1 (b) give the diagram of CQC and
CQCC extraction, respectively. From Fig. 1 (a), it can be
seen that there are four modules in CQC extraction. They
are CQT, power spectrum, log and DCT, in which CQT
is used to convert signal from the time domain into the
frequency domain, followed by the power spectrum at the
based of CQT, next LPS can be obtained, finally, DCT is
used to decorate among the feature dimensions and CQC
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Fig. 1 Schematic diagram of LPS based feature extraction, which in-
cludes (a) diagram of CQC extraction, (b) diagram of CQCC extraction
and (c) diagram of CQDC extraction.

can be obtained by selecting the first few top ranked coeffi-
cients.

Because CQT has geometrically frequency bins, the
LPS directly obtained from CQT can be named as octave
LPS and CQC can be regarded as feature extraction from oc-
tave LPS. Different from CQC, CQCC is extracted from lin-
ear LPS, which is shown in Fig. 1 (b). Compared Fig. 1 (a)
with Fig. 1 (b), it can be seen that the difference between
CQC and CQCC is the module of uniform resampling,
which plays the role of converting octave LPS into linear
LPS.

As introduced above, we know that CQC is extracted
from octave LPS and CQCC is extracted from linear LPS.
Octave LPS and linear LPS have different characteristic, for
example, octave LPS can reflect some characteristic of hu-
man auditory system while linear LPS doesn’t have such
characteristic. So the information in CQC and CQCC can
be complementary with each other. Based on this, eCQCC
is proposed by concatenating CQC and CQCC [6].

3. Constant-Q Deep Coefficients Extraction

This section describes how to extract CQDC. Figure 1 (c)
is the block diagram of CQDC extraction. From Fig. 1 (c),
it can be seen that CQDC extraction contains five modules,
namely, CQT, power spectrum, log, trained DNNextractor
and DCT. CQT first transforms speech from the time do-
main into the frequency domain. The power spectrum value
is then computed at the power spectrum stage. After octave
LPS, trained DNNextractor is then performed to extract dis-
criminative information from octave LPS. Finally, DCT is
used to decorrelate among the feature dimensions.

Fig. 2 Schematic diagram of genuine/playback classifier based on deep
neural network.

Compared CQDC extraction with CQC and CQCC ex-
traction in Fig. 1, it can be seen that CQC, CQCC and CQDC
are all extracted from LPS. In addition, DCT is used in their
extraction. However, there are several differences among
them:

• CQC and CQDC are extracted from octave LPS, while
CQCC is extracted from linear LPS that generated by
using the module of uniform resampling.
• Though CQC and CQDC are extracted from octave

LPS, CQC is obtained by applying DCT on octave LPS
while CQDC is obtained from a trained DNNextractor
plus DCT.
• The module of trained DNNextractor is the most dif-

ference between CQDC and CQC (CQCC).

Next, how to train DNNextractor will be introduced.
Note that DNN has good feature learning character,

which not only eliminates the complex process of hand-
crafted feature design but also has the potential of extract-
ing the information that are impossible to extract for hand-
crafted design [7]. So DNN can be used here to extract
more discriminative information from LPS to discriminate
playback speech from genuine speech. That’s to say, DNN
can play the role of describing the nonlinear relationship be-
tween power spectrum and discriminative information. As
for CQDC extraction in Fig. 1 (c), the module of DNNex-
tractor plays the role of extracting more discriminative in-
formation.

In our work, DNNextractor is obtained from a trained
classifier that is based on DNN. In other words, the DNNex-
tractor training consists of two steps: classifier based on
DNN training and converting classifier to DNNextractor.
The details are as following:

Firstly, a genuine/playback speech classifier based on
DNN is trained, which is shown in Fig. 2. From Fig. 2, it
can be observed that the classifier consists of input layers,
two hidden layers and output layer. In which, the input is
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eleven spliced frames centered by current frame, the output
is the label of the current frame corresponding to.

Secondly, note that for the DNN, the higher layer, the
more semantic. As for the trained DNN, there are more dis-
criminative information in the second hidden layer than the
first hidden layer. In other words, the second hidden layer
has more semantic function and more discriminative infor-
mation can be obtained from the layer. So DNNextractor is
obtained by removing the output layer of the trained DNN.

4. Experiments and Evaluation

In this section, CQDC is evaluated using ASVspoof 2017
corpus version 2.0 (ASVspoof 2017 V2).

4.1 Database Introduction

ASVspoof 2017 V2 [8] released in 2018, which is consti-
tuted by three subsets: training set, development and evalu-
ation set, Table 1 gives some details of ASVspoof 2017 V2.

4.2 Evaluation Rule and Experiment Setup

According to ASVspoof 2017 challenge rule, equal error
rate (EER) is used as evaluation metric. In addition, all
the parameters in CQT are the same as [4]. The static
dimension of CQDC is set to 1024. Since our previous
works [6], [9], [12] have shown dynamic features can give
better performance and static features will degrade the per-
formance in playback attack detection, so only dynamic fea-
tures combinations of CQDC are taken into account. Fur-
ther, D and A stand for delta and acceleration, respectively.

The Computational Network Toolkit (CNTK) [10] is
used to train DNNs, which are used as classifier in our ex-
periment. In our experiments, there are two types classi-
fier, one is used to obtain DNNextractor and the other is
used for CQDC classifier. For the first type classifier, it
has one input layer, two hidden layers and one output layer
and the nodes of input layer, 1st hidden layer, 2nd hidden
layer and output layers are 9493, 863, 1024 and 2, respec-
tively. After the classifier training is finished, the DNNex-
tractor can be obtained by removing the output layer. For
863-dimension LPS is given to the DNNextractor as the in-
put, 1024-dimension CQDC can be obtained. For the second
types of classifier, three four-layer DNNs are trained, which
have two hidden layers with 512 nodes at every layer and
an output layer with 2 nodes and an input layer constituted
by an 11-frame context window of the input feature vector.
The feature combinations for CQDC require different input
layers. For example, for CQDC-D and CQDC-A, the input

Table 1 Some details of ASVspoof 2017 V2.

Subset
Num

Speakers Utterances Genuine Spoofed
Training 10 3,014 1,507 1,507

Development 8 1,710 760 950
Evaluation 24 13,306 1,298 12,008

layer consisted of 1024 × 11 nodes inclusive of five frames
each on the left and right whereas for CQDC-DA, the input
layer was 2048 × 11.

In our DNNs training, sigmoid network is used for
the hidden layers training and cross-entropy with softmax
is used as training criterion. The input data is normalized
by using mean and variance normalization. In DNN train-
ing, stochastic gradient descent is used. Totally, there are
25 epochs for every DNN training, in which the first epoch
has a learning rate of 0.8, 3.2 for the next 14 epochs and then
0.08 for the rest epochs. The first epoch has a minibatch size
of 256 and the rest epochs have a minibatch size of 1024. A
momentum value is set as 0.9.

4.3 Experiment Results and Analysis

Table 2 gives the experimental results on development
and evaluation set using dynamic feature combinations of
CQDC in terms of EER.

From the performance of CQDC on development set in
Table 2, it can be seen that CQDC-DA and CQDC-D can
give the first and the second best performance on develop-
ment set and then CQDC-A performs the worst.

From the performance of CQDC on evaluation set in
Table 2, it can be found that CQDC-D and CQDC-DA per-
forms much better than CQDC-A on evaluation set. In addi-
tion, CQDC-D gives a little better performance than CQDC-
DA on evaluation set. Which is different from that the per-
formance of CQDC-D is worse than CQDC-DA on devel-
opment set. The reason may be that there are some types
playback speech only appear in evaluation set.

4.4 Comparison with Different Dimensions

In traditional features extraction for speech recognition and
speaker recognition, 13, 20 and 30 are often selected as
static dimension. In our work, CQDC is a high dimension
feature, so not only traditional low dimensions such as 13,
20 and 30 but also high dimensions such as 512 and 863 are
selected. Table 3 shows the experimental result on evalua-
tion set using CQDC-D under different static dimensions of
CQDC in terms of EER.

From Table 3, it can be seen that when static dimension
equals 13, 20 and 30, the performance of CQDC-D is very

Table 2 Experimental results in EER (%) on ASVspoof 2017 V2 devel-
opment and evaluation set using dynamic features of CQDC.

Feature
Development set Evaluation set

Feature combinations Feature combinations
D A DA D A DA

CQDC 15.25 18.50 14.38 9.44 11.86 9.53

Table 3 Experimental results (EER (%)) on ASVspoof 2017 V2 evalua-
tion set using CQDC-D under different dimensions.

Static dimension EER Static dimension EER

13 20.13 20 19.20
30 19.75 512 20.37
863 21.96 1024 9.44
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Table 4 Experimental results (EER (%)) on ASVspoof 2017 V2 evalua-
tion set comparison with some power spectrum based features with differ-
ent feature combinations.

Power spectrum Feature
Feature combinations
D A DA

Octave CQC 19.49 19.50 18.73
Linear CQCC 15.01 15.65 15.46

Octave and linear eCQCC 13.87 16.94 13.38

Octave CQDC 9.44 11.86 9.53

worse. It means that there is much difference for DCT play-
ing role between CQDC and traditional feature extraction.
When static dimension increases to 512 and 863, the perfor-
mance is still worse. When static dimension equals 1024,
in other words, all the frequency bins are used, CQDC-
D performs best. It means that there is much difference
between discriminative information in CQC (CQCC) and
CQDC. There is less discriminative information in the high
dimensions of CQC (CQCC), so only a few top ranked coef-
ficients are selected as final features. However, the discrim-
inative information hides in all frequency bins of CQDC, so
all the coefficients must be selected as final features.

4.5 Comparison with Power Spectrum Based Features

Table 4 gives the experimental results on evaluation set com-
parison with some power spectrum based features with dif-
ferent dynamic feature combinations in terms of EER.

From Table 4, several conclusions can be obtained: 1)
For feature combinations D, comparing with CQC, CQCC
and eCQCC, EER can reduce by 51.56%, 37.11% and
31.94%, respectively. 2) For feature combinations A, com-
paring with CQC, CQCC and eCQCC, EER can reduce by
19.18%, 24.22% and 29.99%, respectively. 3) For feature
combinations DA, comparing with CQC, CQCC and eC-
QCC, EER can reduce by 49.12%, 38.36% and 28.77%, re-
spectively. 4) In conclusion, the proposed feature based on
power spectrum can outperform better than traditional fea-
tures based on power spectrum, EER can reduce from from
19.18% to 51.56%, which can confirm that our proposed
idea is correct.

4.6 Comparison with Some Known Systems

Table 5 compares the performance of our proposed CQDC-
D based system with that of existing systems on the evalua-
tion set. In which, CQCCE represents a combination feature
by combining CQCC and log energy [8], qDFTspec rep-
resents DFT spectrum in q-log domian [11], CMPOC and
CQSPIC represent constant-Q magnitude-phase octave co-
efficients [9] and constant-Q statistics-plus-principal infor-
mation coefficients [12], respectively. In addition, MFCC
represents mel-frequency cepstral coefficients, LFS and
MFS represent linear filterbak slope and mel filterbank
slope [13], respectively.

From Table 5, it can be seen that CQDC-D based sys-
tem far outperforms most of existing systems for playback

Table 5 Comparison of CQDC-D based system against some existing
systems on the ASVspoof 2017 V2 evaluation set.

Feature Classifier EER

CQCCE [8] GMM 12.24
qDFTspec [11] GMM 11.19
CMPOC-D [9] DNN 14.93
eCQCC-DA [6] DNN 13.38

CQSPIC-DA [12] DNN 10.45
MFCC|LFS|MFS [13] GMM 6.23

CQCC|MFCC|LFS|MFS [13] GMM 6.60

CQDC-D DNN 9.44

attack detection. However, the performance of our sys-
tem based on CQDC-D is worse than the systems based
on MFCC|LFS|MFS and CQCC|MFCC|LFS|MFS [13]. The
reason is that the systems based on MFCC|LFS|MFS and
CQCC|MFCC|LFS|MFS are based on decision-level feature
switching. In such systems, every feature and its corre-
sponding GMM are selected by a switching method. In
other words, such systems are hybrid systems while our sys-
tem is only a single system.

5. Conclusion

In this paper, in order to extract more discriminative infor-
mation from power spectrum for playback attack detection,
CQDC is proposed by means of DNN to describe the nonlin-
ear relationship between power spectrum and discriminative
information. Our experimental results show that the pro-
posed CQDC can achieve far better performance on play-
back attack detection than traditional power spectrum based
features. In addition, we found that discriminative informa-
tion of CQDC hides in all the frequency bins.
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