
2646
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

LETTER

SDChannelNets: Extremely Small and Efficient Convolutional
Neural Networks

JianNan ZHANG†, JiJun ZHOU†, JianFeng WU†a), Nonmembers, and ShengYing YANG†, Member

SUMMARY Convolutional neural networks (CNNS) have a strong
ability to understand and judge images. However, the enormous parameters
and computation of CNNS have limited its application in resource-limited
devices. In this letter, we used the idea of parameter sharing and dense
connection to compress the parameters in the convolution kernel channel
direction, thus greatly reducing the number of model parameters. On this
basis, we designed Shared and Dense Channel-wise Convolutional Net-
works (SDChannelNets), mainly composed of Depth-wise Separable SD-
Channel-wise Convolution layer. The advantage of SDChannelNets is that
the number of model parameters is greatly reduced without or with little
loss of accuracy. We also introduced a hyperparameter that can effectively
balance the number of parameters and the accuracy of a model. We evalu-
ated the model proposed by us through two popular image recognition tasks
(CIFAR-10 and CIFAR-100). The results showed that SDChannelNets had
similar accuracy to other CNNs, but the number of parameters was greatly
reduced.
key words: convolutional neural networks, parameter sharing, convolution
kernel, reducing the number of model parameters

1. Introduction

In recent years, convolutional neural networks have
achieved remarkable success in the field of computer vision.
Since AlexNet [7] won the championship of the Imagenet
Large Scale Visual Recognition Challenge [6] in 2012, con-
volutional neural networks have been widely applied and
studied. Later, various convolutional neural network mod-
els were proposed, such as VGG16 [4], which has 128 mil-
lion parameters, and ResNet [5], which is a 152-layer con-
volutional neural network. As can be seen, in order to im-
prove the accuracy, deeper and wider convolutional neural
networks are designed. However, it will lead to a great in-
crease in the number of parameters and the amount of com-
putation. In many practical applications, models need to run
on resource-limited devices, such as embedded devices and
mobile phones, so more efficient models are required.

In this paper, we designed a new convolutional neu-
ral network structure for resource-limited environment. Our
main contribution is to propose a novel method for channel-
wise convolution. In this method, each convolutional layer
has only one convolution kernel, and an input feature map
is convolved with only a part of the convolution kernel each
time and generates a single-channel feature map, and then

Manuscript received June 9, 2019.
Manuscript revised August 8, 2019.
Manuscript publicized September 10, 2019.
†The authors are with The Institute of Electron Device and Ap-

plication, Hangzhou Dianzi University, Hangzhou, China.
a) E-mail: wujianfengwz1020@163.com

DOI: 10.1587/transinf.2019EDL8120

multiple single-channel feature maps are connected into
multi-channel feature map output. Our idea of parameter
sharing and dense connection has not only reduced a large
number of parameters but also enhanced the communication
among the channels of feature maps. We substituted this
convolution algorithm for the 1 × 1 convolution in Mobile-
NetV2 [9], which greatly reduced the number of network pa-
rameters without or with little loss of accuracy.

2. Related Work

Tuning deep neural architectures to strike an optimal bal-
ance between accuracy and performance has been an ac-
tive research field for the recent years [9]. Many teams
have designed models with higher or similar accuracy and
much fewer parameters compared with early models such
as AlexNet, VGGNet, GoogLeNet [8] and ResNet.

MobileNets [10], proposed depthwise separable convo-
lution i.e. 3×3 convolution is decomposed into 3×3 single-
channel convolution and 1 × 1 convolution, features of each
channel are extracted by single-channel convolution at first,
and then fused by 1 × 1 convolution.

ChannelNets [11] proposed a channel-wise convolu-
tion algorithm, which replaces dense connections between
feature maps with sparse connections. To be specific,
channel-wise convolution is equivalent to performing one-
dimensional convolution using a one-dimensional small
convolution kernel in the channel direction, and then car-
rying out the above operation on each channel using this
convolution kernel.

However, both MobileNets and ChannelNets have dis-
advantages. In MobileNets, the parameters of 1×1 convolu-
tion account for the majority of the total number of network
parameters, reaching 74.59%. In ChannelNets, firstly, the
channel-wise convolution algorithm has certain limitations
in changing the number of channels, and can only maintain
or reduce other than increase the number of input channels;
secondly, ChannelNet-v2 only changed the last depth-wise
separable convolution layer of ChannelNet-v1 into depth-
wise separable channel-wise convolution layer at a cost of
loss of 1% accuracy in ImageNet data set. It can be seen
that sparse connection between channels of feature maps
will cause certain information loss.

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers



LETTER
2647

3. SDChannelNets Architecture

3.1 SD-Channel-Wise Convolution

First, let’s start with a standard convolutional layer. The
standard convolutional layer chooses a feature map F with a
size of Df × Df × m as an input and outputs a feature map
G with a size Dg ×Dg × n, where Df is the width and height
of the input feature map, m is the number of channels of the
input feature map, Dg is the width and height of the output
feature map, and n is the number of channels of the output
feature map. The standard convolution layer also contains a
convolution kernel K with a size of Dk × Dk ×m × n, where
Dk is the width and height of the convolution kernel, and m
and n are the previously defined number of input channels
and number of output channels respectively.

The number of parameters of a convolutional layer de-
pends on the number of parameters of the convolutional ker-
nel, which largely depends on the size of the m × n term.
Therefore, the fact that the parameters of the convolutional
kernel are mutually independent in the channel direction is
an important factor leading to the large number of parame-
ters of the convolutional layer. In order to compress the size
of m×n term, we proposed an SD-channel-wise convolution
algorithm with parameter sharing and dense connection.

The input and output feature maps of the SD-channel-
wise convolution layer are the same as the input and output
feature maps of a standard convolution layer, but the SD-
channel-wise convolution kernel has only one long convolu-
tional kernel. The input feature map is convolved with only
one part of the long convolutional kernel each time and this
part is shared by the parameters, which replaces the con-
volution operation of the mutually independent convolution
kernels in the standard convolution layer. To be specific,
we started with a special case of Df = 1 and Dk = 1,
dotted the input feature map of 1 × 1 × m with channels
(1 + x ∗ S ) ∼ (m + x ∗ S ) of the long convolutional ker-
nel, and obtained an output feature map with dimensions of
1× 1× n, where x ∈ N and x < n, S is the stride in the chan-
nel direction. In the case of Df > 1, the above convolution
operation is carried out for each position in the space.

When S is not 1, in order to keep m and n constant, the
size of the convolution kernel will increase with the increase
of S . Thus, in SD-channel-wise convolution, the number of
parameters is:

Dk · Dk · (m + (n − 1) · S ) (1)

With the approach of parameter sharing, we avoided
the m × n term and greatly reduced the number of parame-
ters. It is worth noting that when the stride S in the channel
direction is greater than or equal to the number m of input
channels, the SD-channel-wise convolution is equivalent to
the standard convolution.

Fig. 1 1 × 1 SD-channel-wise convolution.

3.2 Depth-Wise Separable SD-Channel-Wise Convolution

Depth-wise separable convolution is a key building block for
many efficient neural network architectures [9]. It decom-
poses standard convolution into depth-wise convo-lution
and 1×1 convolution. The depth-wise convolution is used to
filter the features of each channel, and the 1× 1 convolution
is used to merge these features. This idea of factorization
greatly reduces the amount of computation and the number
of parameters. However, 1 × 1 convolution still contains
many parameters. In MobileNets, the number of parameters
of 1 × 1 convolution accounts for 75% of the total number
of parameters in the model. To tackle this problem, we re-
placed 1 × 1 convolution with 1 × 1 SD-channel-wise con-
volution. The 1 × 1 SD-channel-wise convolution is shown
in Fig. 1.

The number of parameters in the 1 × 1 convolution:

1 · 1 · m · n (2)

The number of parameters in the 1×1 SD-channel-wise
convolution:

1 · 1 · (m + (n − 1) · S ) (3)

With the approach of parameter sharing, we reduced
the number of parameters:

1 · 1 · (m + (n − 1) · S )
1 · 1 · m · n ≈ 1

n
+

S
m

The model size and accuracy are balanced by changing
the stride S in the channel direction. In the extreme case of
S = 1, the number of parameters of the 1 × 1 SD-channel-
wise convolution is tens to hundreds of times smaller than
the number of parameters of the 1 × 1 convolution.

3.3 SDChannelNets

SDChannelNets are constructed using depth-wise separable
SD-channel-wise convolutions. We followed the basic ar-
chitecture of MobileNetV2 and made a fair comparison with
MobileNetV2. Firstly, in order to minimize computa-tions,
we removed the first 1 × 1 convolution from the bottleneck
block of MobileNetV2. Then, in order to keep the number
of channels consistent with it, we set the depth multiplier of
the depth-wise convolution as 6 or 1. Lastly, we replaced
the second 1 × 1 convolution in the bottleneck blocks with
1×1 SD-channel-wise convolution. After the above modifi-
cation, the bottleneck block constituted the SDC-bottleneck
block in SDChannelNet. The input and output sizes of the



2648
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

Fig. 2 Illustration of SDC-bottleneck block and comparison with the
bottleneck block of MobileNetV2.

SDC-bottleneck block were exactly the same as the bottle-
neck block. The difference between the SDC-bottleneck
block and the bottleneck block is shown in Fig. 2. At the
same time, we also noticed that the number of parameters
in the dense connection layer of MobileNets accounted for
24.3% of the total number of parameters, so the convolution
layer with 1280 output channels was removed. After the re-
moval, the number of parameters and computation amount
of the dense connection layer of the model were only 1/4
of the original. It is worth mentioning that when the ba-
sic features are fewer and activated by a nonlinear activa-
tion function, more basic features will be lost, resulting in
fewer available features. Therefore, we removed the activa-
tion function Relu behind the first convolutional layer. This
operation raised the accuracy of our model on the CIFAR-
10 dataset by about 0.5%. The SDChannelNets structure is
shown in Table 1.

3.4 Model Expanding Hyperparameter

We chose the stride S of the SD-channel-wise convolution
in the channel direction as a hyperparameter, which can
be adjusted according to the required accuracy and num-
ber of parameters. Therefore, we designed three models,
SDChannelNet-S1, SDChannelNet-S64 and SDChannel-
Net-S192, with a stride in the channel direction being 1,
64 and 192 respectively. Their total number of parame-
ters ranged from 0.43 million to 0.7 million, about 12.6%
to 20.6% of MobileNetV2, and the computation was 150
multiply-adds, 50% of MobileNetV2. It is worth noting that

Table 1 SDChannelNet: each row describes a sequence composed of
one or more identical layers (blocks), which is repeated for n times. All
layers in the same sequence have the same number of c output channels.
The first layer of each sequence has a stride s, and all other sequences use
a stride 1. All convolutions use 3 × 3 convolution kernels. t denotes a
depth multiplier of the depth-wise convolution. The above structure takes
reference from MobileNetV2.

the reduction of computation is entirely due to the reduc-
tion of MobileNetV2, and the SD-channel-wise convolution
only reduces parameters without reducing computation.

4. Experiments

We evaluated our model on CIFAR [13] dataset and com-
pared it with other structural models and parameter reduc-
tion methods, such as pruning [17] and knowledge distilla-
tion [18].

4.1 Datasets

Both CIFAR-10 and CIFAR-100 are composed of 32 × 32
color images. Their training set and test set contained
50,000 images and 10,000 images respectively. The differ-
ence between them was that the images of CIFAR-10 were
classified into 10 categories, while the images of CIFAR-
100 were classified into 100 categories. For preprocessing,
we followed [15]. We trained with all the training images
and reported the error rate on the test set at the end of the
training.

4.2 Training

Following [15], all networks were trained by stochastic gra-
dient descent and used a weight decay of 10−4 and a Nes-
terov momentum of 0.9 [14]. In CIFAR, the batch size we
used for training was 64 and 250 epoch. The initial learning
rate was set as 0.1, and the learning rate was divided by 10 at
60% and 80% of the total training epochs. We added BN [2]
layer and Dropout [3] layer behind each convolution layer,
except for the first layer.

4.3 Classification Results on CIFAR

We trained SDChannelNets on CIFAR dataset using diffe-
rent channel strides, and compared them with other CNNs
and parameter reduction methods in terms of error rate and
number of parameters. The results are shown in Table 2.

Since the image size of the CIFAR dataset was 32 ×



LETTER
2649

Table 2 Comparison between SDChannelNets and other CNNs in terms
of the error rates(%) and the number of total parameters on the CIFAR-10
and CIFAR-100 test set. ∗ indicates results run by ourselves. + indicates
error with data augmentation.

32, in order to enable SDChannelNets to better adapt to this
input size, we changed the stride of the first three blocks or
layers with a stride of 2 to 1. That is to say, the input size
of the feature map of the average pooling layer is 8 × 8. To
compete fairly with MobileNetV2 and ChannelNet-v2, we
made the same change to them, too.

CIFAR-10. In Table 2, we can notice that the
SDChannelNet-S1 has the fewest parameters only 0.11 mil-
lion, decreasing by 95.2% compared with MobileNetV2,
and shows certain performance, thanks to SD-channel-wise
convolutions. When we set the channel stride of SDChan-
nelNets as 64, the number of parameters of SDChannelnet-
S64 was still small, only 0.21 million, 90.9% less than
the number of parameter of MobileNetV2. Meanwhile,
the error rate was 0.68% less than that of MobileNetV2
without data augmentation. In addition, the error rate of
SDChannelNet-S192 was lower than those of other CNNs
and parameter reduction methods in Table 2.

CIFAR-100. In Table 2, although the error rate of
SDChannelNet-S192 was 1.11% higher than that of Mobile-
NetV2, the number of parameters of SDChannelNet-S192
was only 0.41 million, 84.2% lower than that of Mobile-
NetV2. Moreover, the results of SDChannelNet-S192 were
better than those of other CNNs and parameter reduction
methods except MobileNetV2 in Table 2. This confirms the
superiority of our convolutional compression method.

4.4 Parameters Accuracy Trade-Off

As shown in Table 2, the positive correlation between the
number of parameters SDChannelNets have and the accu-
racy they achieve. It can be seen that increasing the stride in
the channel direction is an effective method to improve the
model capability, and enables the model to achieve a good
compromise between the number of parameters and the ca-
pability of the model.

5. Conclusion and Future Work

In this letter, we proposed a novel convolution algorithm,

i.e., SD-Channel-Wise Convolution to replace traditional
convolution and reduce the number of model parame-
ters. We designed and used the Depth-Wise Separable SD-
Channel-Wise Convolutions to build a compact and effective
convolution neural network, called SDChannel-Nets. Then,
we used the stride of the SD-Channel-Wise Convolutions as
a hyperparameter to balance the accuracy and size of the
model. Finally, compared with other CNNs and parame-
ter reduction methods in experiments, SDChannelNets had
fewer parameters and a better identification effect, which
verified its compact and effective characteristics. We plan
to combine SD-Channel-Wise Convolutions with other pa-
rameter reduction methods in the future work to explore a
smaller and faster convolution neural network.

References

[1] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K.Q. Weinberger, “Deep
networks with stochastic depth,” European Conference on Computer
Vision (ECCV), 2016.

[2] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” International
Conference on Machine Learning (ICML), 2015.

[3] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” Journal of Machine Learning Research, pp.1929–
1958, 2014.

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, and
L. Fei-Fei, “Imagenet large scale visual recognition challenge,”
International Journal of Computer Vision (IJCV), vol.115, no.3,
pp.211–252, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp.770–778, 2016.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Im-
ageNet: a Large-Scale Hierarchical Image Database,” 2009 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), pp.248–255, 2009.

[7] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” Conference and
Workshop on Neural Information Processing Systems (NIPS), 2012.

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with con-
volutions,” Proc. Comput. vis. pattern recognit., pp.1–9, June 2015.

[9] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Inverted residuals and linear bottlenecks: Mobile networks for clas-
sification, detection and segmentation,” arXiv preprint: 1801.04381,
2018.

[10] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T.
Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient con-
volutional neural networks for mobile vision applications,” arXiv
preprint: 1704.04861, 2017.

[11] H. Gao, Z. Wang, and S. Ji, “ChannelNets: Compact and efficient
convolutional neural networks via channel-wise convolutions,” Con-
ference and Workshop on Neural Information Processing Systems
(NIPS), 2018.

[12] C.Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-
supervised nets,” AISTATS, 2015.

[13] A. Krizhevsky, “Learning multiple layers of features from tiny im-
ages,” Technical Report, University of Toronto, 2009.

[14] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” International Con-
ference on Machine Learning (ICML), 2013.

http://dx.doi.org/10.1007/978-3-319-46493-0_39
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/cvpr.2009.5206848
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/cvpr.2015.7298594


2650
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

[15] G. Huang, Z. Liu, L.V.D. Maaten, and K.Q. Weinberger, “Densely
Connected Convolutional Networks,” IEEE Conference on Com-
puter Vision & Pattern Recognition, pp.2261–2269, 2017.

[16] G. Larsson, M. Maire, and G. Shakhnarovich, “Fractalnet:
Ultra-deep neural networks without residuals,” arXiv preprint:
1605.07648, 2016.

[17] C. Lin, Z. Zhong, W. Wu, and J. Yan, “Synaptic strength for convo-
lutional neural network,” arXiv preprint: 1811.02454, 2018.

[18] C. Shu, P. Li, Y. Xie, Y. Qu, L. Dai, and L. Ma, “Knowl-
edge squeezed adversarial network compression,” arXiv preprint:
1904.05100, 2019.

http://dx.doi.org/10.1109/cvpr.2017.243

