
174
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.1 JANUARY 2020

LETTER

Mode Normalization Enhanced Recurrent Model for Multi-Modal
Semantic Trajectory Prediction

Shaojie ZHU†,††a), Nonmember, Lei ZHANG†,††b), Member, Bailong LIU†,††, Shumin CUI†,††,
Changxing SHAO†,††, and Yun LI†,††, Nonmembers

SUMMARY Multi-modal semantic trajectory prediction has become a
new challenge due to the rapid growth of multi-modal semantic trajectories
with text message. Traditional RNN trajectory prediction methods have the
following problems to process multi-modal semantic trajectory. The distri-
bution of multi-modal trajectory samples shifts gradually with training. It
leads to difficult convergency and long training time. Moreover, each modal
feature shifts in different directions, which produces multiple distributions
of dataset. To solve the above problems, MNERM (Mode Normalization
Enhanced Recurrent Model) for multi-modal semantic trajectory is pro-
posed. MNERM embeds multiple modal features together and combines
the LSTM network to capture long-term dependency of trajectory. In addi-
tion, it designs Mode Normalization mechanism to normalize samples with
multiple means and variances, and each distribution normalized falls into
the action area of the activation function, so as to improve the prediction
efficiency while improving greatly the training speed. Experiments on real
dataset show that, compared with SERM, MNERM reduces the sensitiv-
ity of learning rate, improves the training speed by 9.120 times, increases
HR@1 by 0.03, and reduces the ADE by 120 meters.
key words: multi-modal, semantic trajectory, mode normalization

1. Introduction

Trajectory prediction has become important in location-
based applications. With the development of mobile Inter-
net, social media has produced mass multi-modal semantic
trajectory data. Unlike ordinary GPS trajectories, user pref-
erences and text information describing user activities are
added to reflect user intents and have great potential in im-
proving trajectories prediction accuracies.

Traditional trajectory prediction methods, such as Hid-
den Markov Model [1] and Matrix Factorization [2], ne-
glect the long-term dependency of the trajectory. Neural
networks can effectively deal with long-term dependency.
ST-RNN [3] models the temporal relationship combining
the spatiotemporal law and recurrent neural network. LSTM
(Long Short-Term Memory) network [4] is used to solve the
long-term dependency in trajectory. Convolutional neural
networks can also effectively extract the spatial regularity of
trajectories [5]. The above methods only consider temporal

Manuscript received July 5, 2019.
Manuscript revised September 7, 2019.
Manuscript publicized October 4, 2019.
†The authors are with School of Computer Science and Tech-

nology, China University of Mining and Technology, Xuzhou,
221116, China.
††The authors are with Engineering Research Center of Mine

Digitalization, Ministry of Education, Xuzhou 221116, China.
a) E-mail: 1208162499@qq.com
b) E-mail: zhanglei@cumt.edu.cn

DOI: 10.1587/transinf.2019EDL8130

and spatial features neglecting semantic features of trajec-
tory.

There are few researches on multi-modal semantic tra-
jectory prediction. SERM (Semantics-Enriched Recurrent
Model) [6] combines multiple modal features (user, loca-
tion, time, text) to predict trajectory. There is a drawback
in SERM. With the training, the distribution of multi-modal
trajectory samples shifts and falls gradually to the derivative
saturation region of activation function. Therefore, the con-
vergence time increases greatly as the parameters are always
updated with a small gradient.

In order to solve the problem, we propose MNERM
(Mode Normalization Enhanced Recurrent Model) for
multi-modal semantic trajectory. Considering that the mi-
gration direction of each modal feature is not consistent, so
the dataset has multiple distributions and using a single dis-
tribution to normalize is not effective. We introduce the MN
(Mode Normalization) mechanism [7] to monitor the distri-
bution of multi-modal trajectory sample in real-time by gat-
ing function, and standardize the trajectory samples by using
the estimators of corresponding patterns. After normalized,
the mean and variance of the sample fall into the action area
of the activation function, and the corresponding derivative
is far from the saturation area. Thus the model maintains
a large gradient to update the parameters, which reduces
the sensitivity of learning rate, ensures that the model can
quickly converge and improves the effectiveness of predic-
tion.

2. Mode Normalization Enhanced Recurrent Model

Given a set of grid-indexes L =
{
l1, l2, . . . , lDM

}
and a set

of users U =
{
u1, u2, . . . , uDu

}
. Where, DM and Du are

the total number of meshes and users. A multi-modal se-
mantic trajectory sequence of ui is defined as T (ui) =
{r1 (ui) , . . . , rk (ui) , . . . , rK (ui)}, ∀1 ≤ k < K. rk (ui) ∈ T (ui)
is a triple (tk, lk, ck). Where, tk is the timestamp, lk ∈ L is the
grid-index and ck is the text message.

As follows, MNERM consists of four parts:
(1) Joint embedding of multi-modal semantic trajec-

tory features. A Multi-modal semantic trajectory includes
grid-index, timestamp and text. For rk (ui) = (tk, lk, ck), we
transform tk, lk and ck into feature vectors etk , elk , eck by
embedding matrix Et, El and Ec. tk ∈ R48 represents di-
viding a week into 48 periods, ck ∈ RV represents a bag of
keywords from a V-dimensional vocabulary, and lk ∈ RDM .

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers



LETTER
175

The dimension of Et, El and Ec is Dt × 48, Dl × DM and
Dc × V , where Dt, Dl, Dc are the dimension of the em-
beddings. By concatenating these embeddings, we obtain
ek ∈ RDe , De = Dt + Dl + Dc.

(2) LSTM capturing long-term dependency. For T (ui),
the time step of LSTM is K. We take ek as the input of k-th
time step, then calculate the hidden state hk as (1):

hk ← f (W · hk−1 +G · ek + b) (1)

Where, hk ∈ RDh , Dh denotes the number of hidden neurons
and hk−1 is the previous hidden state. The involved parame-
ters are: Dh ×Dh matrix W, Dh ×De matrix G and bias term
b ∈ RDh .

(3) Mode normalization for trajectory samples.
(4) User representation and parameter learning. (3) and

(4) will be explained in detail in subsequent chapters.

3. Mode Normalization for Trajectory Samples

The dimension of hidden state sequence x = {h1, h2, . . . , hK}
is K ×Dh, which is recorded as X. {x1, . . . , xn, . . . , xN} is the
batch samples sequence, N denotes the number of samples
in each batch.

Each sample is firstly classified by a set of gating
functions

{
g1, . . . , gk, . . . , gQ

}
, where gk: X → [0, 1] and∑Q

1 gk(x) = 1. xn is voted by its gate assignment as (2):

gnk ← [σ ◦ Ψ (xn)]k (2)

Where Ψ is an affine transformation: X → RQ and it is
followed by a softmax activation σ: RQ → [0, 1]Q.

We determine new component-wise statistics for each
distribution: Nk ← ∑n gnk , 〈x〉k ← 1

Nk

∑
n gnk xn,

〈
x2
〉

k
←−

1
Nk

∑
n gnk x2

n. The running estimates are updated in each iter-
ation with a memory parameter λ ∈ (0, 1], as (3) and (4):

〈x〉k ← λ〈x〉k + (1 − λ)〈x〉k (3)
〈
x2
〉

k ← λ
〈
x2
〉

k
+ (1 − λ)〈x2

〉
k (4)

The estimators for mean: μk ← 〈x〉k and variance: σ2
k ←〈

x2
〉

k
− 〈x〉2k are computed under weighing from the gating

network. Each sample is then normalized as (5):

MN (xn) � α

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Q∑

k=1

gk (xn)
xn − μk√
σ2

k + ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + β (5)

Where α and β are learned parameters, E is a small const
to avoid zero denominator. The test samples were normal-
ized by using the running average component-wise estima-

tors μk ←− 〈x〉k and σ2
k ←

〈
x2
〉

k − 〈x〉2k of the training
set. The sample xz = {h1, h2, . . . , hK} is transformed to
yz =

{
h1, h2, . . . , hK

}
after normalized, the dimension of yz

is also X.

4. User Representation and Parameter Learning

In order to predict the final location, firstly, we transform

hk ∈ RDh into ok ∈ RDM by ok ← H · hk + a. Secondly,
we use eui ← Eu · ui to embed user preference. Thirdly, we
combine eui and ok to ok by ok ← eui + ok. Where, H is a
DM × Dh transformation matrix, a ∈ RDM is a bias term and
Eu is a DM×Du embedding matrix. Finally, we input ok into
softmax activation σ to get yzk by yzk ← σ (ok).

To train the MNERM and infer the parameters, we use
cross entropy as the loss function. Given a training set with
Z samples, we define the objective function as (6):

J = −
Z∑

z=1

K−1∑
k=1

lk+1 log
(
yzk

)
+
δ

2
‖Θ‖2 (6)

Where Θ = {Et, El, Ec, Eu,W,G,H, b, a} denotes all the pa-
rameters to be estimated, and δ is a pre-defined const for reg-
ularization. We use Stochastic Gradient Descent and Back
Propagation Through Time to learn the parameter set Θ.

5. Experiments and Analysis

5.1 Dataset, Evaluation Metrics and Experiment Contents

Our experiments are based on multi-modal semantic trajec-
tory dataset of New York City. It consists of 3863 multi-
modal semantic trajectories of 235 users. The code is
completed under Python 2.7, Keras 2.2.4 and Tensorflow
1.5.0. Hardware is shown as: 12-core processor, 32G mem-
ory, NVIDIA Tesla P100 graphics card. MNERM is com-
pared with SERM [6] and BNERM (Batch Normalization
Enhanced Recurrent Model). Where, BNERM uses BN [8]
in the normalization phase.

We randomly select 80% trajectories as the training
data, and use the remaining 20% for testing. We use these
metrics to evaluate the performance. (1) HR@k (Hitting
Ratio @k) Examine whether the ground-truth location ap-
pears in the top-k result list. (2) ADE (Average Distance
Error) Calculate the average distance error of ground-truth
location and the top-5 result list. (3) CT (Convergence
Time) It includes the number of epochs and OAET (One-
step Average Epoch Time). We set the number of distribu-
tions Q = 2 for MNERM by several experiments. We set
Dl = Dt = Dc = Dh = 50 and N = 100 for the three meth-
ods.

We design experiments as follows: (1) We set the LR of
SERM model to 0.01, 0.001 and 0.0005. Then, we compare
HR@k, ADE and CT of SERM under corresponding LR.
We also compare the performance of different evaluation
metrics of the three methods under LR = 0.0005. (2) Un-
der LR = 0.0005, we compare the CT of the three methods
when their HR@k and ADE reach global optimum. (3) We
compare the optimal performance of HR@k and ADE for
SERM, BNERM and MNERM.

5.2 Experimental Analysis

In Fig. 1, with the increase of LR, SERM converges faster,
but the effectiveness of its HR@k and ADE fluctuates more



176
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.1 JANUARY 2020

Fig. 1 The convergence curve of HR@1, HR@20 and ADE.

Table 1 The optimal performance of HR@k, ADE(m) for SERM,
BNERM and MNERM under corresponding LR.

Method/LR HR@1 HR@5 HR@10 HR@20 ADE(m)
SERM/0.01 0.2251 0.4264 0.5109 0.5964 1624
SERM/0.001 0.2229 0.4255 0.5230 0.6145 1616

SERM/0.0005 0.2571 0.4504 0.5489 0.6204 1457
BNERM/0.0005 0.2394 0.4528 0.5255 0.6259 1438
MNERM/0.0005 0.2694 0.4747 0.5633 0.6478 1337

obvious and decreases gradually. It proves that SERM
is highly sensitive to LR. In Table 1, BNERM converges
quickly with LR = 0.0005, but the accuracy of HR@1 and
HR@10 are decreased by 0.0177 and 0.0234 than that of
SERM. It indicates that although BNERM reduces the sen-
sitivity of LR, the performance of some evaluation metrics
is reduced. Also, the convergence speed of MNERM under
LR = 0.0005 is only slightly slower than that of SERM un-
der LR = 0.01, and the performance of MNERM/0.0005 is
the best as is shown in Table 1.

In Table 1, compared with SERM/0.01 and SERM/
0.001, SERM/0.0005 has the best performance of SERM.
Also, BNERM/0.0005 and MNERM/0.0005 are the optimal
performance of the corresponding models. So, compared
with SERM, the HR@1, HR@5, HR@10 and HR@20 of
MNERM increase by 0.0123, 0.0243, 0.0144 and 0.0274
respectively, and the ADE decreases by 120m.

We compare the CT of optimal performance for SERM,
BNERM and MNERM. Table 2 shows that the OAET of
BNERM and MNERM increases by 7s and 12s due to their
increasing computing, but the training speed of MNERM

Table 2 The CT(s) of optimal performance and the OAET(s) for SERM,
BNERM and MNERM under LR = 0.0005.

Method HR@1 HR@5 HR@10 HR@20 ADE OAET
SERM 45209 19080 18338 20299 51834 53

BNERM 5640 5400 4560 3600 4140 60
MNERM 4875 3770 3965 2925 3055 65

is 8.274, 4.061, 3.624, 7.939 and 15.967 times faster than
that of SERM for all metrics due to less epochs. In order to
measure the overall training speed, we compare the longest
CT of all metrics of SERM and MNERM, and conclude that
MNERM increases the training speed by 9.633 times as a
whole.

6. Conclusion

We have proposed the MNERM for multi-modal semantic
trajectory prediction. By allocating the trajectory samples to
multiple distributions and normalizing them, MNERM can
reduce the sensitivity of LR and increase the effectiveness of
prediction at the same time fast prediction.

Acknowledgments

This work was supported by the Fundamental Research
Funds for the Central Universities (2017XKQY078).

References

[1] C. Zhang, K. Zhang, Q. Yuan, L. Zhang, T. Hanratty, and J. Han,
“GMove: Group-level mobility modeling using geo-tagged social me-
dia,” Proc. 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp.1305–1314, ACM, 2016.

[2] N. Duong-Trung, N. Schilling, and L. Schmidt-Thieme, “Near real-
time geolocation prediction in twitter streams via matrix factoriza-
tion based regression,” Proc. 25th ACM International on Conference
on Information and Knowledge Management, pp.1973–1976, ACM,
2016.

[3] Q. Liu, S. Wu, L. Wang, and T. Tan, “Predicting the next location:
A recurrent model with spatial and temporal contexts,” 30th AAAI
Conference on Artificial Intelligence, 2016.

[4] F. Bartoli, G. Lisanti, L. Ballan, and A. Del Bimbo, “Context-aware
trajectory prediction,” 2018 24th International Conference on Pattern
Recognition (ICPR), pp.1941–1946, IEEE, 2018.

[5] J. Lv, Q. Li, Q. Sun, and X. Wang, “T-CONV: A convolutional neural
network for multi-scale taxi trajectory prediction,” 2018 IEEE Inter-
national Conference on Big Data and Smart Computing (BigComp),
pp.82–89, IEEE, 2018.

[6] D. Yao, C. Zhang, J. Huang, and J. Bi, “SERM: A recurrent model
for next location prediction in semantic trajectories,” Proc. 2017
ACM on Conference on Information and Knowledge Management,
pp.2411–2414, ACM, 2017.

[7] L. Deecke, I. Murray, and H. Bilen, “Mode normalization,” arXiv
preprint arXiv:1810.05466, 2018.

[8] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

http://dx.doi.org/10.1145/2939672.2939793
http://dx.doi.org/10.1145/2983323.2983887
http://dx.doi.org/10.1109/icpr.2018.8545447
http://dx.doi.org/10.1109/bigcomp.2018.00021
http://dx.doi.org/10.1145/3132847.3133056

