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Mal2d: 2d Based Deep Learning Model for Malware Detection
Using Black and White Binary Image

Minkyoung CHO†a), Member, Jik-Soo KIM†b), Jongho SHIN†c), and Incheol SHIN††d), Nonmembers

SUMMARY We propose an effective 2d image based end-to-end deep
learning model for malware detection by introducing a black & white em-
bedding to reserve bit information and adapting the convolution architec-
ture. Experimental results show that our proposed scheme can achieve su-
perior performance in both of training and testing data sets compared to
well-known image recognition deep learning models (VGG and ResNet).
key words: malware detection, deep learning, binary image

1. Introduction

Conventional antivirus solutions detect a malware by ex-
tracting the signature from a binary file, and comparing it
with the malware database [1]. However, over 100 millions
of new malwares are published every year [2], [3] so that the
overall size of signature database also needs to increase sig-
nificantly and rapidly, which can be a potential performance
bottleneck in malware detection mechanisms. In addition,
the built signatures can be easily bypassed by changing only
a small part of binary signature [4].

Alternatively, researchers have investigated exploiting
deep learning mechanisms in malware detection to over-
come these weakness of signature-based approaches. Deep
learning does not require any fixed features or signatures
a priori, and it can automatically learn features from data.
Since the extracted features are coming from common parts
of various malware samples rather than only one (as in the
existing signature-based malware detection approaches), it
becomes much more difficult to bypass these features. Also,
the inference time is constant (actually linear to the input
dimension), so that we can effectively check if a given file
is malware, independent of the number of malware samples
retrieved.

There have been several studies to detect malwares
based on 2d image similarities. Some researchers observed
that binary images of malwares are closely correlated, i.e.,
similar images are belonging to the same type of malwares,
while distinct images are based on different malware types.
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Nowadays, the deep learning in image recognition shows an
excellent performance, and in this work, we effectively ex-
tend the previous image based malware detection approach
by employing several optimization techniques for binary im-
age processing in deep learning models.

In this paper, we design and implement an end-to-
end 2d-based deep learning model for malware detec-
tion (“Mal2d”). Our algorithm does not require any pre-
processing for extracting features or interpreting a portable
execution header (PE header) of files. Existing approaches
of 2d image similarity based malware detection deep learn-
ing models mainly treat binary files as grayscale images
(i.e., converting a byte to a gray scale 0 ∼ 255), which can
potentially result in information loss of bits in a byte. To
address this problem, we introduce a black & white embed-
ding to reserve bit information and adapt the convolution
architecture. Given an input binary file, we simply trans-
form it into a black and white image where each bit con-
siders a pixel with 0 or 1, which can be subsequently de-
ployed to our customized deep learning model. To validate
the effectiveness of Mal2d, we have performed a compara-
tive analysis of our proposed malware detection deep learn-
ing model with two well-known models for image recogni-
tion (e.g. VGG [5], ResNet [6]) with various data sets and
performance metrics. Evaluation results show that our pro-
posed model achieves better performance in both of training
and testing data sets.

2. Related Work

Nataraj et al. [7] proposed a malware detection based on im-
age similarity. They treated a binary file as an 8-bit gray
scale image where each byte considered a pixel with value
0 ∼ 255. Using Gabor filters, they extracted 320 features
from each binary file and then classified them by k-nearest
neighborhood algorithm. They observed that the malwares
in the same type had similar features on their grayscaled im-
ages. Hence, it is a smooth extension to apply image based
deep learning models for malware detection.

Rezende et al. [8] introduced a malware detection
method using pre-trained VGG16, one of well-known deep
learning models for object detection. They first extracted
features from the bottleneck layer of VGG16, trained by Im-
ageNet dataset, and then trained a SVM classifer with the
extracted features to detect malwares.

Some approaches directly train a deep learing model
with malware data, instead of using pre-trained models.
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Khan et al. [9] used two famous deep learning models,
ResNet [6] and GoogLeNet [10], for malware detection
without modification. In their experiments, ResNet has bet-
ter performance than GoogLeNet.

In this paper we focus on 2d image based deep learn-
ing models for malware detection, to decide if given a file
is a malware. You may confuse with malware classification
problems, to classify what type of malware is for a given
malware. Some deep learning approaches for malware clas-
sification have been researched seperately [11], [12].

3. Architecture and Implementation

Our new 2d-based deep learning model for malware detec-
tion accepts raw binary file itself and decides if it is mali-
cious or not. We introduce a new embedding method where
a binary input file is considered as a black and white bi-
nary image, not a grayscale image (as in the most previous
2d-based studies). In addition, we optimize model param-
eters (filter size, kernel size, pool size) to be suitable for
the binary image data. In the experiments, we use two dif-
ferent datasets for evaluating models. For training purpose,
we use KISA Malware Challenge 2018 [13] dataset, and for
testing, we utilize a dataset for Microsoft Malware Classifi-
cation Challenge (BIG 2015) at Kaggle [14].

3.1 Black and White (0/1 Bit) Embedding

Figure 1 shows an illustrative example of transforming the
input file. In the previous approaches, each byte in a binary
file considers a pixel value from 0 to 255, which may not be
an appropriate way for binary file conversion. For example,
some fields of PE Header, or some bit positions represent
a flag that a certain characteristic is on or off. 1(0x0001),
2(0x0010), 16(0x1000) are different values, and it does not
mean that 0x0010 is nearer than 0x1000 at 0x0001. One hot
encoding may use this case, however, each byte transforms
to 255 dimensional vectors so that it makes the model pa-
rameter extremely huge. Therefore, we treat the binary file
as an one/zero (black and white) bit image, rather than as a
grayscale byte image.

3.2 Architecture

Our model architecture depicted in Fig. 2 is similar to other
convolution neural network (CNN) models, consisting of
two blocks by two convolutions and a max pooling to extract
features from input, and three dense layer to classify with
the extracted features. However, our model is specialized
for handling binary image data. For example, in our con-
volution layers, the kernel size and stride size are the multi-
plies of power of two (i.e., (16, 64), (8, 8), (8, 32), (16, 16))
not conventional odd numbers (e.g., (3, 3) or (5, 5)). Since
an executable file format strictly follows byte alignment,
the choice of the multiplies of power of two at kernel size
and stride size will prevent from disrupting byte alignment
during training. The global max pooling layer basically

Fig. 1 Embedding: grayscale (left) v.s. black and white (right)

Fig. 2 Diagram of our model

captures the most significant features from each convolu-
tion layer’s activation map. In addition, it can help to deal
with various file sizes without affecting any layers in our
model (especially dense layers). In our model, most acti-
vation functions use rectified linear unit (ReLU) except the
last dense layer which uses sigmoid for activation function.
Note that the stride size at the third and fourth convolution
layers is relatively bigger than the kernel size so that we skip
some output features from the previous layers. Nevertheless,
with various combination of model parameters, this type of
a little odd architecture shows the best and stable perfor-
mance. Further research may be required to investigate the
effects of this approach.

3.3 Data Sets

One of the most difficult problems to malware research is
collecting malware samples. Most existing research works
have collected some malware samples from antivirus com-
panies or well-known malware websites. However, they
cannot freely open and share these datasets because they do
not have any copyrights, and real malware samples could
be reused for malicious purposes. Recently, EMBER [15],
a malware dataset with 1.1 million samples has been pub-
lished. Unfortunately, they only provide the analysis results
of malware’s portable executable (PE) header along with
SHA256 hash codes, which identify original binary files.
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They do not reveal binary format data which we need in
order to train and test our models.

For our experiments, we tried to find reliable and
trustable data sets with binary format. At KISA Malware
Challenge 2018, KISA provides total 8,904 binary files for
the purpose of contests which are composed of 2,721 be-
nign files and 6,183 malware files. KISA dataset con-
sists of 2,478 malware families classified by avclass pro-
gram [16]. Among these malware families, 2,368 ones are
singleton (only one file) so that this dateset includes a quite
wide range of malware samples. The top 5 malware fam-
ilies are Darkcomet(a.k.a Backdoor), Upatre(a.k.a Trojan),
Virut(a.k.a Botnet), Gandcrab(a.k.a Randsomeware), and
Virlock(a.k.a Randsomeware).

In our experiments, KISA dataset is used for training
phase. The dataset is split into two sub-datasets for training
(8,000 samples) and validation (904 samples) purposes. The
validation dataset is used to fairly evaluate a training model
and help to prevent a model from over-fitting against the
training dataset too much. Also, for the purpose of testing
models, we use a well-known data set from Microsoft Mal-
ware Classification Challenge (BIG 2015) at Kaggle which
provides 10,868 malware files with 9 different malware
types: Ramdit(a.k.a Worm), Lollipop(a.k.a Adware), Ke-
lihos.ver3(a.k.a Backdoor), Kelihos.ver1(a.ka.a Backdoor),
Vundo(a.k.a Trojan), Simda(a.k.a Backdoor), Tracur(alias
Genome, a.k.a Trojan), Obfuscator.ACY(a.k.a Obfuscated
malware), and Gatak(a.k.a Backdoor) [14]. Note that KISA
dataset also includes all Microsoft’s 9 malware families
(among 2,478 families). The contest gives us text type dis-
assembly files, rather than binary format. Fortunately, we
can translate disassembly files into binary format files. Note
that disassembly files do not have PE header of the file so
that we cannot fully restore the original malwares. However,
this data set is useful enough to compare the performance.

3.4 Implementation

We implemented our model with Keras in Tensorflow 1.13
and performed experiments on Ubuntu 18.04 desktop 64bit
OS with AMD 2700 (16 Core CPU), 32GB Memory and
NVIDIA Titan RTX (vram 24GB) GPU. The source code
and data will be published at github [17].

For the experiments, the hyper-parameters for opti-
mizations have been selected as follows. For the optimiza-
tion function, the stochastic gradient descent (SGD) is cho-
sen, the learning rate is set to 0.01, the nesterov option to
be true, the decay factor to 1e-6, and the momentum is set
to 0.9. The loss function is binary crossentropy since we
only need to decide whether the input file is malware or not.
The maximum epoch is set to 50. During the training pro-
cess, we use early stopping with validation accuracy to ob-
tain a reasonable model which does not substantially overfit
to the training data. All comparison models use these hyper-
parameters. Note that any changing of hyper-parameters
should not affect overall performance significantly.

4. Evaluation

In this section, we present comparative experimental results
of our proposed 2d-based malware detection deep learning
model with VGG and ResNet which are widely used in ex-
isting image recognition areas. We use VGG16, ResNet50
models implemented by official Keras team [18]. As we de-
scribed in Sect. 3.3, we leverage two different data sets for
training and testing purposes respectively. During the train-
ing phase, KISA dataset is used for training and validation,
and Microsoft dataset [14] is employed for testing purpose.
This is because we want to estimate how the models are gen-
eralized enough to effectively detect malwares.

For fair comparison, we use the first 65,536
(=256x256) bytes from each binary file because the archi-
tecture of VGG16 and ResNet50 was originally designed
to be suitable with 256x256 images. In our model, we
apply our black and white embedding respect to 256x256
input bytes, then finally obtain 256x2048 black and white
image. To verify the effectiveness of our embedding algo-
rithm, we introduce a modified version of our model, called
Mal2d/8, which divides the second dimension of the kernels
and strides by 8 in order to handle 256x256 grayscale im-
ages. This will demonstrate how much our black and white
embedding can affect the overall performance. Moreover,
we make another test cases for 4,096 (64x64) bytes in order
to investigate the performance impacts according to the size
of binary files. For each model, we have performed experi-
ments 10 times and choose the best one on the training set.
For the performance metrics, we use Accuracy, Precision,
and Recall as followings:

Accuracy = (T P + T N) / (T P + T N + FP + FN)

Precision = T P / (T P + FP)

Recall = T P / (T P + FN)

where TP, FP, TN, FN denote the number of malware detec-
tions proved to be true positive, false positive, true negative,
and false negative respectively.

Table 1 shows the experimental results in terms of ac-
curacy on training and validation based on the KISA dataset
(as described in Sect. 3.3). Most models can achieve over
97% of training accuracy, and also in validations they ex-
ceed over 85% of accuracy, which are reasonably high
enough. This can show that 2d image based approaches for
malware detection are actually effective.

According to Saito et al. [19], checking precision and
recall of models is more accurate to measure the model per-

Table 1 The accuracy result at the training set

models
64x64 256x256

train acc. valid acc. train acc. valid acc.
VGG16 0.9819 0.9215 0.9888 0.8905

ResNet50 0.9748 0.8927 0.8751 0.8451
Mal2d/8 0.9765 0.8938 0.9831 0.8518
Mal2d 0.9925 0.9281 0.9986 0.8971
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Table 2 Model comparison with precision and recall at the training set

models type
64x64 256x256

precision recall precision recall

VGG16
malware 0.9850 0.9854 0.9833 0.9838
benign 0.9669 0.9658 0.9632 0.9621

ResNet50
malware 0.9534 0.9926 0.9168 0.9481
benign 0.9814 0.8897 0.8721 0.8045

Mal2d/8
malware 0.9820 0.9694 0.9775 0.9765
benign 0.9325 0.9596 0.9468 0.9489

Mal2d
malware 0.9941 0.9871 0.9921 0.9905
benign 0.9711 0.9868 0.9784 0.9820

Table 3 Model comparison with precision and recall at the test set

models type
64x64 256x256

precision recall precision recall

VGG16
malware 0.9860 0.4659 0.9799 0.7437
benign 0.1167 0.9142 0.1946 0.8021

ResNet50
malware 0.9746 0.9637 0.9388 0.4845
benign 0.5890 0.6746 0.0813 0.5912

Mal2d/8
malware 0.9853 0.7239 0.9631 0.8214
benign 0.1939 0.8605 0.2039 0.5924

Mal2d
malware 0.9893 0.8561 0.9735 0.9220
benign 0.3206 0.8796 0.4003 0.6746

formance in the case of binary classification and unbalanced
data set. Our malware detection mechanism uses binary
classification and the data set is unbalanced since the num-
ber of malware files are two times more than that of benign
files. Therefore, we have employed recall and precision of
models as additional performance metrics and the results are
presented in Table 2.

In the training data set, the overall performances of all
comparison models are reasonably good enough as expected
(as seen from Table 2). Our proposed model (“Mal2d”)
consistently outperforms other models in all factors. In
addition, based on the comparison between “Mal2d” and
“Mal2d/8”, our black and white embedding has 2 ∼ 3% per-
formance gain for all cases. This empirically shows that
our embedding has meaningful effects. Since it only has the
value of 0 or 1 like one-hot encoding, it may make a prob-
lem simple to learn along with preserving the information of
some bit flags.

In Table 3, we present results against the test data set
from Microsoft Malware Contests, which does not disclose
themselves during the training stage. This result may show
the generality of a deep learning model. The original data
set consists of only malware samples so that for comparative
analysis with the previous results in Table 2, we added 893
benign files obtained from 32bit application executable files
in MS Windows 7.

Based on the experimental results in Table 3, we ob-
served that precisions for malware detection are relatively
preserved well, however the recall rates of VGG and ResNet
are significantly dropped over 20% ∼ 50%. On the other
hand, our model’s recall rate still preserves over 85% over-
all, potentially due to our relatively shallow layers than other
comparison models. Typically, deeper models can be ex-
pressed with much more complex functions, so that they

have higher chances to fall in over-fitting. Also with our
black and white embedding and the enforcement of byte
alignment (as discussed in Sects. 3.1 and 3.2), our model
can reduce the overall search space and achieve better gen-
eralization.

For the case of benign files in Table 3, we should con-
sider the results for reference only. The number of benign
files are relatively small and it has not been engineered for
a useful benchmark. However, these results of benign files
in a trained model gives us a hint about whether the model
shows only a biased answer without considering inputs. For
example, in the case of 256x256, the precision gap between
malware and benign files at ResNet is over 85%. Although
our proposed model’s gap is also high, but it can achieve
the smallest gap among the all comparison models. Inter-
estingly, ResNet in the case of 64x64 demonstrates the best
recall rate among all models. In this case, most experimen-
tal results were poor, however, only one out of ten was ex-
tremely superior. Similarly, we have found that some of
our models were superior to any other ResNet models in
test cases. However, the model cannot be chosen since we
typically select a model having the best performance in the
training dataset, not on the test dataset.

To summarize, our proposed model has achieved supe-
rior performance to the other models in both training and
test data sets. Through the experiments, we verified that our
architecture can prevent from disrupting the byte-alignment,
and help to learn the proper malware features. Also, we ob-
served that conventional deep learning approaches with im-
age recognition models can show reasonable performance
for malware detections, however, the models may have a
certain limit to generalize unseen data.

5. Conclusion

In this paper, we proposed an effective 2d based deep learn-
ing model for malware detection. We treat a binary file as
one/zero bit image and build our learning model with the
kernel and stride sizes to multiplies of power of two, in order
to optimize it for processing binary image files. Evaluation
results show that our proposed model can achieve higher ac-
curacy than other 2d based object recognition deep learning
models, VGG and ResNet.

Although, our solution has showed better performance
than other 2d based comparison models, it may not reach the
level of commercial malware detection solutions. The first
ranked team at MS Malware Classification Contest at Kag-
gle has deployed several features such as opcode counting
with 2,3,4-gram, assembly image feature, function names,
and consequently showed extremely high accuracy. Cur-
rently, merging multiple features might be a promising way
for malware detection. However, our ultimate goal is to de-
vise a simple yet effective mechanism to train a single deep
learning model with only binary raw input files.
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