
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.1 JANUARY 2020
177

LETTER

On the Detection of Malicious Behaviors against Introspection
Using Hardware Architectural Events∗

Huaizhe ZHOU†, Haihe BA†, Yongjun WANG†a), Nonmembers, and Tie HONG†, Member

SUMMARY The arms race between offense and defense in the cloud
impels the innovation of techniques for monitoring attacks and unautho-
rized activities. The promising technique of virtual machine introspec-
tion (VMI) becomes prevalent for its tamper-resistant capability. How-
ever, some elaborate exploitations are capable of invalidating VMI-based
tools by breaking the assumption of a trusted guest kernel. To achieve a
more reliable and robust introspection, we introduce a practical approach
to monitor and detect attacks that attempt to subvert VMI in this paper.
Our approach combines supervised machine learning and hardware archi-
tectural events to identify those malicious behaviors which are targeted at
VMI techniques. To demonstrate the feasibility, we implement a prototype
named HyperMon on the Xen hypervisor. The results of our evaluation
show the effectiveness of HyperMon in detecting malicious behaviors with
an average accuracy of 90.51% (AUC).
key words: virtual machine introspection, hardware architectural events,
supervised machine learning

1. Introduction

The proliferation of cloud computing also makes it an at-
tractive target for malicious attacks. Attackers benefit from
the flexibility and scalability features of the cloud to deploy
and propagate malware. For instance, a corrupted virtual
machine image can infect all the virtual machines built with
that image. Although many significant efforts continue to
detect and protect cloud from corruption, sophisticated ad-
versaries frustrate the efforts by using advanced malicious
code.

In addition to provisioning and managing resources ef-
fectively, virtualization also has the potential to improve
guest system security significantly. By combining isola-
tion, inspection, and interposition provided by the hyper-
visor, the method referred to as virtual machine introspec-
tion (VMI) [1] can analyze and manipulate the guest sys-
tem operating from the hypervisor. It enables the tamper-
resistant monitoring of guest VMs. So in recent years, the
increasing solutions resort to VMI to deal with security is-
sues in the cloud environment [2]. VMI has become a rela-
tively mature technique with a range of valuable researches
on bridging the semantic gap [3]. However, existing solu-

Manuscript received August 9, 2019.
Manuscript revised September 9, 2019.
Manuscript publicized October 9, 2019.
†The authors are with the College of Computer, National Uni-

versity of Defense Technology, Changsha, Hunan, China.
∗This research was funded by the National Natural Science

Foundation of China under Grant No. 61402508, No. 61303191
and No. 61472439.

a) E-mail: wangyongjun@nudt.edu.cn
DOI: 10.1587/transinf.2019EDL8148

tions are brittle since they implicitly assume the guest OS
is benign [4]. The fragile assumption could be violated by
elaborate malware or rootkits to trick an introspection-based
security monitor [4].

Moreover, the most of existing methods always require
specialized knowledge about guest OS to reconstruct the
high-level rich semantic view of the introspected VM. They
depend on source code or debugging symbols of a specific
version of the guest OS, which makes them hard to gener-
alize. To abstract data structures relevant to OS information
accurately, they also have to keep up with an update of the
OS version, which inevitably increases the complexity of
development.

Given the shortcomings of existing VMI methods, our
research focuses on the reliable and unified monitoring to
identify malicious activities in the VM without introspec-
tion. The most significant challenge is how to character-
ize program behavior factually out of the VM. This process
consists of two tightly coupled phases: tracing and profil-
ing. In the tracing phase, we concern about the capture of
relevant system events with high fidelity. And in the profil-
ing phase, we focus on analyzing the obtained data to clas-
sify the state of the system effectively. Motivated by recent
work [5], which leverage hardware performance events and
machine learning methods to detect malware, we exploit the
available hardware features to characterize program behav-
ior.

In this paper, we present HyperMon — a hardware-
based monitoring system that uses low-level hardware in-
formation available at the VMM layer to identify malicious
activities against VMI techniques inside guest VMs. The
presented system traces the information generated by the
program interacting with the hardware during its execution.
To achieve reliable monitoring, HyperMon traces the hard-
ware architectural events, which cannot be manipulated by
attackers in the guest VM. Then we identify the program’s
behaviors in a derivation pattern, which is different from the
previous method based on OS knowledge. Our derivation
pattern employs machine learning methods to analyze the
captured data and build a statistical model for a specific pro-
gram. To demonstrate the feasibility of HyperMon to iden-
tify malicious activities in the VM, we implement a proto-
type system on the Xen hypervisor and evaluate it with a set
of malware. In summary, we make the following contribu-
tions:

• A reliable approach to monitor program behaviors in

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers



178
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.1 JANUARY 2020

VMs. We present our derivation-based method which
utilizing supervised machine learning and architectural
events to build statistical models for programs.
• A portable monitoring system. We implement Hyper-

Mon on Xen hypervisor and make it rely on common
architectural events which are available on most pro-
cessors. It is OS-independent and can cover different
platforms as it works by hardware.
• A practical supplement to existing VMI-based solu-

tions. We demonstrate that HyperMon’s ability can
be used to detect kernel rootkits which can circumvent
VMI-based method.

The rest of the paper is organized as follows: Sect. 2
presents the problems that motivate our work. Section 3 in-
troduces our approach, and Sect. 4 evaluates the feasibility.
Conclusions are given in Sect. 5.

2. Problem Statement

Despite their advantages over other monitoring systems,
VMI-based solutions have to bridge the semantic gap be-
tween the behaviors of the guest system and the information
observed at the hypervisor. The existing VMI-based moni-
toring tools use data structures contained in the guest OS as
“templates” to cast low-level information to VM’s semantic
entities. However, current VMI techniques are not sufficient
to reconstruct the high-level rich semantic view of the in-
trospected VM. Since current VMI-based solutions assume
that the kernel data of the guest OS is conforming to a spe-
cific pattern. It is an inadvisable assumption with respect
the guest OS kernel could be compromised by sophisticated
malware, which is most often the case in security issues.
Once compromised, the semantics of kernel data structures
become questionable.

There are three major classes of threats against to VMI
techniques, including Kernel Object Hooking (KOH) at-
tacks, Direct Kernel Object manipulation (DKOM) attacks,
and Direct Kernel Structure Manipulation (DKSM) attacks.
They can disrupt the system information obtained by VMI
techniques. Because a successful DKSM attack hinges on
kernel control flow hijacking such as KOH attacks [4], we
focus on the first two classes of attacks:
Kernel Object Hooking (KOH). A KOH attack attempts to
modify function pointers located in various structures of the
kernel. By overwriting the function pointer with malicious
address, an attacker is allowed to interpose on desired kernel
operations to hide information. The common structures ex-
ploited by attackers include Interrupt Descriptor Table (IDT)
and system call table. For instance, an attacker can hook the
service function called NtQueryDirectoryFile() in the
System Service Dispatch Table (SSDT), which is the Win-
dows equivalent of the Linux system call table, to hide ma-
licious files in guest OS.
Direct Kernel Object Hooking (DKOM). A DKOM at-
tack tries to modify kernel data structures in the memory
directly through a loadable module or user-level accessing.

DKOM attacks are distinct from hooking based attacks de-
scribed above since they only modify data values. A typical
example of such attacks is hiding a malicious process from
the process list. An attacker can achieve this by altering the
values of FLINK and BLINK in the struct EPROCESS under
Windows.

Additionally, the kernel update or variant of OS may
invalidate previous VMI-based systems which build on the
semantic knowledge of the former OS. The administrators
must keep up with all the internal changes of the guest even
though there are no attacks above.

Given the fragility and mutability of the data structures
of guest OS, we aim to explore other data available in the
virtualized environment for extracting security-relevant in-
formation. The intuition motivating our research is that the
operations in the guest system should be accomplished by
hardware support. The architectural events of related hard-
ware components can be used as the indicators of behaviors
inside the guest VM. For example, a page fault trap can be
used to analyze memory access behavior. It is inefficient
for inferring high-level behavior by interpreting architec-
tural events. We employ a derivation pattern which builds
a statistical model of the guest system by learning instead of
inspecting the content of architectural events. Our goals in
this paper are: (1) to exploit available features of hardware
to derive program behavior in the VM, (2) to strengthen ex-
isting VMI-based solutions by identifying malicious activi-
ties against VMI techniques.

3. Proposed Approach

Our overall approach comprises two steps. The first step
is to trace the execution of the program inside the VM and
extract related events. The second step is to analyze the cap-
tured data to profile the behavior pattern for identifying ma-
licious activities against VMI techniques. In this section, we
describe each step in detail.

3.1 Architectural Events Tracing

To identify malicious activities inside the guest VM, we
need to trace a set of architectural events which can indi-
cate specific behaviors of programs. According to the goals
of this work, the requirements we set out for events tracing
are defined as follows:

(R1) Non-intrusive manner The tracing scheme should
work in a non-intrusive manner to keep the trans-
parency of VMI techniques.

(R2) Reliability The traced events should not be tampered
or forged by adversaries in the guest VMs.

(R3) Portability The tracing scheme is independent of the
guest OS and can be deployed on the most virtualized
platforms with little effort.

The designed events tracing scheme in our approach
focuses on low-level events instead of high-level behavior
such as system calls. There are abundant events that can be



LETTER
179

collected during the execution of programs, such as instruc-
tion mix and I/O requests. The prior works have shown that
these events can provide sufficient information for malware
detection [5]. To meet the requirement R1, we select the
events that can be collected in the hypervisor. The events
such as instruction mix are out of the scope of our work.

The selected events include privileged operations, in-
terrupts, control register (CR) accesses, virtual machine ex-
tensions (VMX) instructions, I/O requests, and hypercall
events. These events derive from guest OS execution and
can be used to infer malicious behaviors. For instance, we
can identify a hidden process by analyzing events of CR3
register writing. In the virtualized environment, the events
above are enforced by hardware-assisted virtualization and
can not be circumvented by attackers in the VM, which
meets the requirement R2.

The hypervisor lies beneath the guest OS and guaran-
tees its execution correctly by intervening in its interaction
with the hardware. Our events tracer is capable of recording
the occurrence of an architectural event by intercepting it in
the hypervisor. In our work, the events tracer targets a set of
common events of modern virtualized platforms to meet the
requirement R3. All the events we are interested in will be
stored in a log file.

3.2 Behavior Profiling

To profile the behavior of programs in the guest VM, we
need to filter and aggregate the traced event sequences to
generate features. The features used in our work are con-
structed in the following steps. First, we divide an event se-
quence into multiple subsequences based on the domain ID,
since the traced log file contains events from all the VMs
running on the hypervisor. We leverage the VM scheduling
events to separate and aggregate all the events into VMs.
Next, we apply statistical methods on the event sequences
to generate feature vectors. We use time-based windows to
generate the features of all the selected events. These fea-
tures are constructed by counting the occurrences of selected
events within the window. Finally, the features of different
events are aggregated into a vector for model building.

To identify malicious activities more accurately, we se-
lect the most informative features before the models built.
First, we check all available features manually and exclude
those appears all-zeros. Then we investigate the rest fea-
tures and select the most informative ones according to the
mutual information (MI) scores. Finally, we select 12 infor-

Fig. 1 The mutual information scores of the selected features.

mative features to build behavior profiles of VMs. Their MI
scores are shown in Fig. 1. The selected features contribute
more information to generating a unique profile than others.
Table 1 lists the top-4 features (due to space limitations) in
the rank of MI scores and explains the details of them. Once
the features are selected, the dataset used to build models
only need to contain feature vectors that correspond to the
chosen features.

3.3 Implementation

We implement the approach in the HyperMon monitor-
ing system based on Xen hypervisor. Our implementation
assumes that the underlying hardware and hypervisor are
trusted. We illustrate the architecture of HyperMon in Fig. 2.
The overall system consists of two subsystems: (1) events
tracing and (2) behaviors analysis. The first subsystem exe-
cutes each benign program or rootkit in a VM and collects
event traces during the execution. This subsystem integrates
with the target hypervisors, i.e., Xen in our implementation.
Once the VM starts running, the monitor module starts the
events tracing tools in the events tracer module at the hyper-
visor. We implement the events tracer module by modifying
xentrace tool to trace the selected events during execution
of monitored VM. At the end of each tracing procedure, the
captured data are copied to the dataset for behaviors analy-
sis.

The second subsystem constructs statistical models for
program behaviors to identify malicious activities in the
VM. Our behaviors analysis subsystem is implemented in
Python 3.7. The feature constructor module creates fea-
tures with the method described in Sect. 3.2. We make
use of the scikit-learn package to implement the model
builder module. We implement four classifiers for compar-
ison, including k-Nearest Neighbors (k-NN), Decision Tree
(DT), Random Forest (RF), and AdaBoost. In the training
phase, this subsystem trains each classifier with the train-
ing dataset. With the trained classifiers, the detector module
in the first subsystem can detect malicious activities against

Table 1 Top-4 features selected in HyperMon based on MI.

Features ID Description

11 # of page fault events captured by Xen
5 # of operations for updating page tables
8 # of VMExit events caused by accessing CR registers
4 # of VMExit events caused by violating access per-

missions of EPT

Fig. 2 The architecture overview of HyperMon.



180
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.1 JANUARY 2020

Fig. 3 Receiver Operating Characteristic (ROC) curves of trained mod-
els. The AUC of k-NN, DT, RF and AdaBoost is 88.40%, 91.57%, 92.49%,
91.53% respectively.

VMI and inform the VMI-based tools to correct their results
in the detection phase.

4. Evaluation

To gauge the ability of the proposed method to identify mali-
cious activities against VMI techniques, we deploy the pro-
totype system of HyperMon on our testbed equipped with
Intel i3-2130 3.4GHz processor and 16GB of RAM. We set
a VM which has one vCPU and 1GB of RAM to run be-
nign programs and rootkits. We installed Windows7 OS
and a set of programs essential for rootkits execution. To
profile behaviors of guest VM, we choose a set of sys-
tem programs and benchmark programs as benign programs.
We use different variants of well-known Windows7 rootkits
which cover the preceding attacks against VMI-based tools.
All the samples were collected from VirusTotal†. To vary
the collected traces to get close to the real world, we run
each benignware program and each malware program mul-
tiple times under different background conditions.

In our experiments, we divide our dataset into a train-
ing set and a testing set with a split of 80 : 20 ratio randomly.
To compare the feature values in the machine learning con-
text fairly, we normalize them to have a mean of zero and
a standard deviation of one. HyperMon creates statistical
models based on the training set to detect malicious activ-
ities in the VM. We measure the detection performance of
these models by accessing the trade-offs between the true
positive rates and false positive rates. Figure 3 shows the
ROC curves for different models.

The results show that the true positive rates of RF are
higher with most of the thresholds, compared to other mod-
els. RF model target classifying outliers in the dataset by
using a collection of DTs, which is suitable for identify-
ing malicious activities in the VM. Overall, HyperMon has
AUCs above 88% with different models. The best model in
our experiments, i.e., RF, has an AUC of 92.49%.

For the models involve randomness in their training,
the evaluation results fluctuate with different training and

†https://www.virustotal.com/

Table 2 Results of 10-fold cross-validation.

Models Precision[%] Recall[%] F1 Score[%] AUC[%]

Nearest Neighbors 85.69 89.41 87.39 87.25
Decision Tree 87.90 86.33 87.05 87.14

Random Forest 90.82 90.20 90.42 90.51
AdaBoost 88.30 86.76 87.31 87.52

testing. To avoid the overfitting of models and make the
evaluation independent of the splitting of the dataset, we use
cross-validation to evaluate our models in HyperMon. We
compare the evaluation results in terms of precision, recall,
F1-score, and AUC in both models.

Table 2 shows the average metrics for the performed
experiments over 10-fold cross-validation. According to
our results, the model of RF outperforms other models.
The mean AUC values of k-NN, DT, RF, and AdaBoost is
87.25%, 87.14%, 90.51%, and 87.52%, respectively. The
result illustrates the ability of hardware architectural events
for classifying malicious behavior from normal behavior.
Hence, in terms of identifying malicious activities against
VMI-based tools, HyperMon is effectively making it a per-
fect supplement to existing VMI-based tools.

5. Conclusions

In this paper, our work suggests the fragility of existing
VMI techniques in bridging the semantic gap. We demon-
strate and analyze how potential attacks could invalidate
VMI-based tools. Aimed at these problems, we introduce
HyperMon, a system that identifies malicious activities in a
VM based on hardware architectural features. HyperMon
traces low-level events at the hypervisor to construct fea-
tures. By utilizing supervised machine learning methods
with those features, HyperMon builds a statistical model for
program behaviors in a VM. The evaluation demonstrates
the feasibility of HyperMon in identifying malicious behav-
ior against VMI-based tools.

References

[1] T. Garfinkel and M. Rosenblum, “A virtual machine introspection
based architecture for intrusion detection,” Proc. Conference on Net-
work and Distributed System Security Symposium (NDSS), pp.191–
206, Internet Society, 2003.

[2] S. Laurén and V. Leppänen, “Virtual machine introspection based
cloud monitoring platform,” Proc. 19th International Conference on
Computer Systems and Technologies, pp.104–109, ACM, 2018.

[3] A. Saberi, Y. Fu, and Z. Lin, “Hybrid-bridge: Efficiently bridging the
semantic gap in virtual memory introspection via decoupled execution
and training memoization,” NDSS 2014, 2014.

[4] B. Jain, M.B. Baig, D. Zhang, D.E. Porter, and R. Sion, “Sok: Intro-
spections on trust and the semantic gap,” Proc. 2014 IEEE Symposium
on Security and Privacy (SP), pp.605–620, IEEE, 2014.

[5] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S.
Sethumadhavan, and S. Stolfo, “On the feasibility of online mal-
ware detection with performance counters,” Proc. 40th Annual Inter-
national Symposium on Computer Architecture, ISCA ’13, New York,
NY, USA, pp.559–570, ACM, 2013.

https://doi.org/10.1145/3274005.3274030
https://doi.org/10.14722/ndss.2014.23226
https://doi.org/10.1109/sp.2014.45
https://doi.org/10.1145/2485922.2485970

