706

IEICE TRANS. INF. & SYST., VOL.E103-D, NO.3 MARCH 2020

[LETTER

Fast Inference of Binarized Convolutional Neural Networks
Exploiting Max Pooling with Modified Block Structure

SUMMARY This letter presents a novel technique to achieve a fast in-
ference of the binarized convolutional neural networks (BCNN). The pro-
posed technique modifies the structure of the constituent blocks of the
BCNN model so that the input elements for the max-pooling operation are
binary. In this structure, if any of the input elements is +1, the result of
the pooling can be produced immediately; the proposed technique elim-
inates such computations that are involved to obtain the remaining input
elements, so as to reduce the inference time effectively. The proposed tech-
nique reduces the inference time by up to 34.11%, while maintaining the
classification accuracy.

key words: binarized neural networks, embedded systems, convolutional
neural networks, inference, deep learning

1. Introduction

Binarized convolutional neural network (BCNN) is a class
of the CNN where each element of the weights and fea-
tures is represented in a single bit. The inference of the
full-precision CNN is usually involved with a massive num-
ber of multiply-and-accumulate (MAC) operations. In the
inference of the BCNN, however, the MAC operation can
be substituted by the simple XNOR-bitcount operation [1]
equivalently, so that it is promising to achieve a fast infer-
ence even in the traditional CPU-based system. Moreover,
the BCNN shows a good accuracy performance, which is
comparable to that achieved by the full-precision CNN, in
particular for the classification of the small-scale datasets
(e.g. CIFAR-10[2], SVHN [3]). For this reason, the BCNN
is attracting practical interests to realize an artificial intel-
ligence in a computation-limited device that has neither a
GPU nor a dedicated accelerator [4].

The previous studies regarding the BCNN are focused
on how to close the accuracy gap from the full-precision
CNN while achieving an efficient implementation owing to
the binarization. Courbariaux et al. presented BinaryNet [5],
which is a pioneering work to show the potential of the
BCNN that achieves a good accuracy in the classification
of small-scale datasets. Rastegari et al. presented XNOR-
Net[1], of which block structure is modified by employing
the scaling factors to compensate the loss due to the bina-
rization. Zhou et al. presented DoReFa-Net [6], where the

Manuscript received September 10, 2019.
Manuscript revised November 15, 2019.
Manuscript publicized December 3, 2019.

"The authors are with School of Electronics & Information En-
gineering, Korea Aerospace University, 76, Hanggongdaehak-ro,
Deogyang-gu, Goyang-si, Gyeonggi-do, Republic of Korea.

a) E-mail: tachwan.kim @kau.ac.kr
DOI: 10.1587/transinf.2019EDL8165

Ji-Hoon SHIN', Nonmember and Tae-Hwan KIM'®, Member

gradients as well as the weights and features are represented
as low-bitwidth data. Recently, Lin et al. presented ABC-
Net[7], where the weights and features are binarized to-
gether with multiple binary bases, showing significant im-
provement in the classification accuracy. Some researchers
developed dedicated processors to accelerate the inference
of the BCNN [8], [9].

This study shows an efficient technique to make the in-
ference of the BCNN even faster. The proposed technique
modifies the block structure so that the input elements for
the max-pooling operation are binary. If any of the input el-
ements is +1, the pooling operation can be finished early by
returning +1 without considering other remaining input ele-
ments. The computations involved to obtain other remaining
elements within the window can be eliminated effectively to
reduce the inference time. The experimental results show
that the proposed technique reduces the inference time by
21.76% and 34.11% for the CIFAR-10 and SVHN classifi-
cation, respectively, while maintaining the classification ac-
curacy.

The rest of this letter is organized as follows. Sec-
tion 2 explains the conventional BCNN with its block struc-
ture. Section 3 presents the proposed technique to achieve
a fast inference of BCNN. Section 4 evaluates the proposed
technique based on the experimental results. Finally, Sect. 5
draws the conclusion.

2. Conventional BCNN

The BCNN model can be described as a set of blocks con-
nected in series, where each block has such an identical
structure that is shown in Fig. 1[1], [5], [10]. In the fig-
ure, the input/output feature (I, O), and weight (W) for the
block are binary. The pooling divides input into the non-
overlapped pooling windows and select maximum within
each window, extracting higher-level features. The scal-
ing and batch normalization normalizes the input making
it have a balanced distribution for the subsequent binariza-
tion. They are performed in a single step since they can
be merged into an affine transform efficiently [1], [10]. The

W— (Affine transform)

. . Scaling
4' B lut s
I 1nary convolution Batch normalization

Max pooling Binarization O

Fig.1 Conventional structure of each block composing the BCNN[1],
[51, [10]. The thick and thin arrows represent the real and binary elements,
respectively.

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers

LETTER

707

Algorithm 1 Processing flow of the proposed block (for the inference), where the max-pooling is performed with the window

size of k X k and the stride of s.

Require: input feature I € 8> and weight W € BY/<hrx¢i,
Ensure: output feature O € B*o*/o.
1: for each (x,y), where x € {1,2,---,w,}andy € {1,2,---,h,} do

2: result < —1, where result denotes the result of a max-pooling operation.
3: for each (m,n), where m € {1,2,---,k}andn € {1,2,---,k} do > iteration for the elements within the max-pooling window.
4: result « sign(a - (Iy © W) + B), where Iy denotes the receptive field in I of the size wy X hy X ¢; centering around (s(x — 1) + m, s(y = 1) + n). »

affine transform and binarization of the binary dot-product result.
5 if result = +1 then

6 break the inner loop.
7: end if

8: end for

9 O(x,y) « result

0: end for

> Early terminate the iteration for the elements within the pooling window.

Pooling window

\ Max pooling ~ Affine transform / binarization

Every element in the window needs to be computed.

Fig.2 Processing in the conventional BCNN block, where the size of the
pooling window is 2 X 2.

block structure shown in the figure is quite different from
that of the full-precision CNN model [4], in that the pooling
is performed just after the binary convolution so as to avoid
the information loss due to the binarization.

The processing in the block is illustrated in Fig. 2. As
shown in the figure, each element in the pooling window is
calculated by the binary dot-product between the weights
and receptive field in the input feature, where the recep-
tive field is denoted by Iy in the figure and © is the binary
dot-product operator. The maximum of the elements in the
pooling window is selected, transformed by the affine func-
tion, and binarized into +1 by the sign function. For the
affine transform, the scaling parameter a and shifting pa-
rameter 8 can be obtained by investigating the statistics of
the weights and features while performing the training. It
should be noted that every element in the pooling window
needs to be considered for the pooling operation as long as
its value is less than the maximum possible real value.

3. Proposed Technique

The proposed technique modifies the block structure in or-
der to achieve a fast inference. The processing steps in
each block are rearranged so that the scaling and batch nor-
malization are performed prior to the pooling, as shown in
Fig. 3 (a). The structure is modified again by interchanging
the pooling with the binarization, as shown in Fig. 3 (b). Be-
cause this can be considered to applying the binarization,
which is a monotonically-increasing function, to each ele-
ment in the pooling window in a distributive way, it makes

W— (Affine transform)

. . Scaling . L }
I*l Binary convolution H Batch normalization H Max pooling H Binarization O

(@)

W—, (Affine transform)
Ial Binary convolution H Batchsn?xl'rlrlllaglization H Binarization}(Max pooling}vO
()

Fig.3 Modified structures of each block composing the BCNN, where

(a) and (b) are used for the training and inference, respectively. The thick
and thin arrows represent the real and binarized elements, respectively.

no difference in propagating the feature forward. However
in the backward propagation, the block structure shown in
Fig. 3 (b) cannot be used successfully. This is because it is
much probable that there are more than one maximum ele-
ments within the pooling window as each element is bina-
rized; one of which is to be selected ambiguously to prop-
agate the gradient backward. In consequence, the proposed
technique uses the block shown in Fig. 3 (b) for the purpose
of the inference, with the weights which have been trained
for the block shown in Fig. 3 (a).

The modified block can make the inference fast. The
elements within the pooling window has been binarized;
hence, the max-pooling operation can be finished early by
returning +1 if any of the elements is found to be +1 be-
cause the maximum possible value of the binarized elements
is obviously +1. Algorithm 1 delineates the processing flow
of the modified block, where the width, height, and chan-
nel are denoted by w, h, and c, respectively, with the ap-
propriate subscripts (i: input feature, o: output feature, f:
weight), and 8 = {—1,+1}. As described in Line 6, the
iteration for the elements within the pooling window is ter-
minated as soon as any of the elements is found to be +1.
As Algorithm 1 describes the per-channel processing flow,
the output feature of multiple channels may be produced by
performing it repetitively with the weight of each channel.

Figure 4 illustrates the processing in the modified block
in the proposed technique. In the figure, the result of the
pooling operation can be obtained immediately since one of
the elements within the pooling window is found to be +1;
the operations to compute other remaining elements are re-

IEICE TRANS. INF. & SYST., VOL.E103-D, NO.3 MARCH 2020

708
Table 1 Inference time of the BCNN model for the CIFAR-10 classification.
Block Input Feature Size Weight Size Pooling | Pooling || Conv. Processing Time® | Prop. Processing Time® | Reduction
(bits) (bits) Size? Stride® (ms) (ms) (%)
CB1 32x32x24 3x3x24x128 - - 72.948 74.183 -
CB2 32x32x128 3x3x128x128 2 2 184.225 134.516 26.98
CB3 16 x 16 x 128 3x3x128 %256 - - 93.226 94.318 -
CB4 16 x 16 x 256 3% 3 %256 %256 2 2 167.445 113.171 3241
CB5 8 x 8 x 256 3x3x256x%x512 - - 84.629 86.133 -
CB6 8x8x512 3x3x512x512 2 2 147.378 80.876 45.12
FCB1 8192 8192 x 1024 - - 13.581 13.711 -
FCB2 1024 1024 x 1024 - - 1.746 1.778 -
FCB3 1024 1024 x 10 - - 0.024 0.025 -
| Overall | - - - -] 765.202 598.711 21.76
4 Corresponding to k in Algorithm 1.
b Corresponding to s in Algorithm 1.
¢ Processing time measured for the models designed with and without the proposed technique.
Table 2 Inference time of the BCNN model for the SVHN classification.
Block Input Feature Size Weight Size Pooling | Pooling || Conv. Processing Time® | Prop. Processing Time® | Reduction
(bits) (bits) Size? Stride® (ms) (ms) (%)
CB1 32x32x24 S5x5x%x24x128 2 2 159.246 76.044 52.25
CB2 16 x 16 x 128 3x3x128 %256 - - 93.292 94.468 -
CB3 16 x 16 X 256 3% 3x256x%x256 - - 180.473 183.087 -
CB4 16 x 16 x 256 3% 3 %256 %256 4 4 162.671 36.460 77.59
CB5 4 x4 %256 3x3x256x%x128 - - 4.208 4.285 -
CB6 4x4x128 3x3x128x128 - - 2.259 2.278 -
FCB1 2048 2048 x 128 - - 0.388 0.394 -
FCB2 128 128 x 128 - - 0.046 0.046 -
FCB3 128 128 x 10 - - 0.007 0.008 -
| Overall |]] - - 602.590 397.070 34.11

4 Corresponding to k in Algorithm 1.
b Corresponding to s in Algorithm 1.
¢ Processing time measured for the models designed with and without the proposed technique.

Pooling window

Affine transform M IF
/ binarization ax poolng

-
Binarydot-product
Other remaining elements need not to be computed.
N

Fig.4 Processing in the modified BCNN block used for inference in the
proposed technique, where the size of the pooling window is 2 X 2.

dundant and thus can be eliminated effectively. This is con-
trast to the conventional processing in Fig.2, where every
element within the window is always computed to get the
result of the pooling operation.

The ratios of +1’s within the pooling windows affect
the speed-up by the proposed technique. To be specific, if

the ratios of —1’s within the pooling windows were so high,
the speed-up by the proposed technique might not be sig-
nificant. The proposed technique avoids such situation ef-
fectively by using the modified block shown in Fig. 3 (a) for
training a model. Since the batch normalization provides el-
ements with a balanced distribution, it is not probable that
the ratio of —1’s within the pooling window is so high. Such
modification does not have any noticeable effect on the clas-
sification accuracy while making the speed-up by the pro-
posed technique significant, and this will be validated based
on the experimental results in the next section.

4. Experimental Results

The efficacy of the proposed technique has been evaluated
by investigating the inference time and accuracy of the im-
age classification tasks. The classification tasks of two data
sets (CIFAR-10[2] and SVHN [3]) have been performed
based on the BCNN models whose structures are summa-
rized in Tables 1-2. Each BCNN model is composed of sev-

LETTER

Table 3 Top-1 classification accuracy.
Classification Full-Precision
Conv. BCNN? | Prop. BCNN?
Task CNN
CIFAR-10 88.89% 88.88% 91.77%
SVHN 95.31% 95.40% 97.40%

2 BCNN models designed with and without the proposed technique.

eral convolutional blocks (CB) and fully-connected blocks
(FCB). Some CBs contain the pooling operations and others
do not. The BCNN model for the CIFAR-10 classification
has the same structure of that presented in [5] and the BCNN
model for the SVHN classification has been slightly modi-
fied taking the binarization into account from that presented
in [6].

The BCNN model for the CIFAR-10 classification has
been trained for 250 epochs based on the stochastic gradi-
ent descent optimizer of the initial learning rate of 0.1 and
momentum of 0.9, with the batch size of 512. The BCNN
model for the SVHN classification has been trained for 400
epochs with the same optimizer and batch size setting. Any
pre-processing or data augmentation techniques that can af-
fect the classification accuracy have not been used. Ta-
ble 3 summarizes the classification accuracy achieved by
the BCNN models with and without the proposed technique
along with that achieved by the full-precision models. The
table manifests that the BCNN is viable to achieve a good
accuracy for the classification of such small-scale datasets,
and this is as high as that achieved by the full-precision
model. More importantly, the difference of the accuracy
caused by the modified block structure in the proposed tech-
nique is not noticeable.

The classification tasks based on the BCNN models
have been implemented using C language and the inference
time has been measured under the embedded system with
800MHz ARM Cortex A9 processor, IGB SDRAM, and no
GPU. Any SIMD optimization has not been considered in
the implementation. Tables 1-2 analyze the inference time
by showing the per-block processing time. As shown in the
tables, the proposed technique is effective to reduce the pro-
cessing time of a block that contains the pooling operation.
The processing time of a block that does not contain the
pooling operation has been increased because of the over-
head to check the condition to terminate the iteration, but
it is slight. As a result, the proposed technique reduces
the overall inference time by 21.76% and 34.11%, for the
CIFAR-10 and SVHN classification, respectively.

It is worth making additional remarks:

o Fast inference is practically useful particularly for real-
izing near real-time applications such as the object de-
tection and semantic segmentation for the autonomous
driving. In addition, fast inference may lead low energy
consumption if the power consumption is maintained.

e There is a ready-made framework that makes the in-
ference faster targeting embedded devices [11]. It is
mainly based on the machine-dependent optimization;

709

whereas the proposed technique is based on the modi-
fication of the processing structure of the BCNN. Fur-
thermore, the framework is based on the post-training
quantization of the full-precision model. This is quite
different from the approach of the BCNN, where the
models are developed so that each element of features
and weights is represented in one bit and trained con-
sidering the binarization effects [1], [S]-[7]. More im-
portantly, the proposed technique is orthogonal to the
framework; that is, it is viable to make the inference
faster in combination with the machine-dependent op-
timizations provided by the framework.

5. Conclusion

This letter presents an efficient technique to make the in-
ference of the BCNN fast. The proposed technique modi-
fies the structure of the constituent blocks of the BCNN so
that the max-pooling operation may be finished early with-
out considering every element within the pooling window.
When applying the proposed technique to the BCNN mod-
els for the CIFAR-10 and SVHN classification, the over-
all inference time of the BCNN is reduced by 21.76% and
34.11%, respectively, while maintaining the classification
accuracy.

Acknowledgments

This research was supported by Basic Science Re-
search Program through the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Educa-
tion (2018R1D1A1A09082763) and the GRRC program of
Gyeonggi province [2017-B06, Research of Sensor Data
Processing Systems for Smart Mobility Assistance]. The
tools and environments were supported by IDEC, Korea.

References

[1] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural net-
works,” Proc. European Conf. Computer Vision, pp.525-542,
Springer, March 2016.

[2] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Tech. Rep., Citeseer, 2009.

[3] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A.Y. Ng,
“Reading digits in natural images with unsupervised feature learn-
ing,” Proc. NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, pp.1-9, NeurIPS Foundation, Dec. 2011.

[4] V. Sze, Y.-H. Chen, T.-J. Yang, and J.S. Emer, “Efficient process-
ing of deep neural networks: A tutorial and survey,” Proc. IEEE,
vol.105, no.12, pp.2295-2329, Dec. 2017.

[5] M. Courbariaux and Y. Bengio, “BinaryNet: training deep neural
networks with weights and activations constrained to +1 or —1,”
arXiv: 1602.02830, 2017.

[6] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-
net: Training low bitwidth convolu-tional neural networks with low
bitwidth gradients,” arXiv preprint arXiv:1606.06160, 2016.

[7] X. Lin, C. Zhao, and W. Pan, “Towards accurate binary convolu-
tional neural network,” Proc. Advances in Neural Information Pro-
cessing Systems, pp.345-353, Dec. 2017.

http://dx.doi.org/10.1007/978-3-319-46493-0_32
http://dx.doi.org/10.1109/jproc.2017.2761740

710

(8]

[9]

Y. Umuroglu, N.J. Fraser, G. Gambardella, M. Blott, P. Leong, M.
Jahre, and K. Vissers, “FINN: A framework for fast, scalable bi-
narized neural network inference,” Proc. International Symp. Field-
Programmable Gate Arrays, pp.65-74, ACM, 2017.

R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “YodaNN: An ar-
chitecture for ultralow power binary-weight cnn acceleration,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol.37, no.1,
pp-48-60, Jan. 2017.

IEICE TRANS. INF. & SYST., VOL.E103-D, NO.3 MARCH 2020

[10] Y. Wang, J. Lin, and Z. Wang, “An energy-efficient architecture for
binary weight convolutional neural networks,” IEEE Trans. VLSI
Syst., vol.26, no.2, pp.280-293, Feb. 2018.

[11] “TensorFlow Lite,” 2018. Software available from tensorflow.org.

http://dx.doi.org/10.1145/3020078.3021744
http://dx.doi.org/10.1109/tcad.2017.2682138
http://dx.doi.org/10.1109/tvlsi.2017.2767624

