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A Semantic Similarity Supervised Autoencoder for Zero-Shot
Learning

Fengli SHEN†, Nonmember and Zhe-Ming LU†a), Member

SUMMARY This Letter proposes a autoencoder model supervised by
semantic similarity for zero-shot learning. With the help of semantic simi-
larity vectors of seen and unseen classes and the classification branch, our
experimental results on two datasets are 7.3% and 4% better than the state-
of-the-art on conventional zero-shot learning in terms of the averaged top-1
accuracy.
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1. Introduction

With a large number of labelled training data, supervised
classification accuracy has rapidly increased by utilizing
deep neural network in recent years. However, the down-
side of deep learning technology is that it can only classify
classes appearing in training data. Therefore, the concept
of Zero-Shot Learning (ZSL) was proposed in the scenario
where test classes are not provided during the training stage.
In order to transfer the knowledge learned from seen classes
to unseen classes, we need auxiliary information, such as
manually annotated attributes and word2vec learned from
text, to link between seen classes and unseen ones in the
semantic space.

According to how to establish the mapping function be-
tween the visual space and the semantic space, ZSL meth-
ods can be divided into four categories. In the first cat-
egory, models learn a projection function from the visual
feature space to the semantic space [1]. In order to allevi-
ate the hubness problem in the semantic space, the second
category chooses the reverse mapping direction [2]. Meth-
ods in the third category find some intermediate spaces for
both visual feature vectors and semantic embeddings to be
mapped to [3]. The last category is the combination of the
first category and the second category, which learns map-
ping functions between the visual space and the semantic
space simultaneously, represented by generative adversar-
ial networks (GAN) and autoencoder based models [4]–[8].
We use an autoencoder as our main architecture. Thus our
model belongs to the last category.

In this work, we present a semantic similarity super-
vised model to zero learning based on the autoencoder
paradigm. Specifically, semantic similarities of all classes
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are calculated and serve as supervision to guide the clas-
sification branch in our autoencoder model. We decom-
pose the relations of the semantic space to semantic simi-
larities among classes. Our aim is to preserve these similar-
ities in the visual feature space so as to appropriately inherit
the structure of the semantic space. Unlike other methods
just using indirect semantic relations between seen classes
and unseen classes, our model can directly and indirectly
utilize these semantic relations. The relations are directly
used by calculating the semantic similarities between seen
classes and unseen classes and indirectly used by obtaining
the similarities between images features and projected se-
mantic embeddings of all classes.

Our contributions are:

• We propose an autoencoder model with a classification
branch which is trained by semantic similarity for ZSL.
• Our model can directly and indirectly utilize semantic

relations between seen classes and unseen classes.
• Our experimental results on two ZSL datasets show a

significant improvement.

2. Related Work

The fourth method mentioned in Sect. 1 is widely used in
today’s ZSL. The CLSWGAN [5] model uses a pretrained
classifier to guide their generation of visual features of seen
classes. The Cycle-CLSWGAN [6] model, which is based
on the CLSWGAN model, adds a reconstruction constrain
on semantic embeddings to preserve semantic compabil-
ity between visual features and semantic embeddings. The
CADA-VAE [7] model tries to preserve semantic relations
in a low-dimensional immediate space for both visual fea-
ture vectors and semantic embeddings through reconstruc-
tion and cross-reconstruction criterion. The f-VAEGAN-D2
[8] model is a conditional generative model that combines
the strength of VAE and GANs.

Our model differs from DCN [9] model in three as-
pects. First, the embedding space is different. they project
images and attributes to an intermediate space while we
project images and attributes to the visual feature space in
order to alleviate the hubness problem. Second, our recon-
struction model can ensure that our projected embeddings
preserve all the semantic information contained in origi-
nal semantic embeddings while DCN model cannot. Third,
They use one-hot labels to supervise classification of seen
classes which is different from our model wherein semantic
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similarities serve as supervision of all classes in classifica-
tion.

3. Proposed Method

First, the definition of ZSL is as follows. Given an visual
feature set X = Xtr ∪ Xte, where Xtr is the training visual
feature set and Xte is the testing visual feature set. In coven-
tional ZSL setting, visual features in Xte only come from
unseen classes, while they may come from seen classes or
unseen classes in generalized ZSL(GZSL) setting. Semantic
embeddings for all classes is A = {ai}Ni=1 = As ∪ Au, where
As = {ai}Ns

i=1 is the semantic embedding set of seen classes
and Au = {ai}Nu

i=1 is for unseen classes, Ns is the number of
seen classes, Nu is the number of unseen classes, and N is
the number of all classes, which equals to Ns+Nu. The label
set of Xtr is Ytr and the label set of Xte is Yte.

The architecture of our proposed model is shown in
Fig. 1. It consists of an encoder F(a) and a decoder G(p),
where a is a semantic embedding and p is a class prototype
in visual space, which is equal to F(a).

Our learning objective has two parts. One is the recon-
struction objective to ensure that a semantic embedding ai

belonging to i-th class can be mapped to i-th class prototype
pi and this class prototype is similar to a visual feature xi of
i-th class. Specifically,

L1 =
∥∥∥xi − pi

∥∥∥2
2

(1)

where pi = F(ai). In order to make sure that pi contains
semantic information of its class, it should be able to be re-
stored to its original semantic embedding ai. Specifically:

L2 = ∥ai − ãi∥22 (2)

where ãi = G(F(ai)). Our second objective needs pi to be
unlike visual feature vectors of other classes. To boost the
discriminative power of class prototypes, we add a classifi-
cation branch to the autoencoder and use semantic similarity
vectors to supervise its training. Let si j be a semantic simi-
larity measure between different class embeddings. In order
to calculate the softmax probability stably, we subtract the

Fig. 1 Architecture of our model.

the mean value from semantic similarities. Specificially,

ti j = ai · a j −
1
N

N∑
j=1

ai · a j (3)

si j =
exp(τti j)

N∑
j=1

exp(τti j)
(4)

where τ is the temperature, when τ → 0, si j → 1/(N),
which leads to a uniform distribution of si j with same i. As
τ → ∞, only sii is 1 and other si j is 0. Then, we define qi

= (si1, si2, . . . , siN) as the semantic similarity vector of i-th
class. We consider the softmax of dot products between xi

and p j as the predicted category probability of xi. Finally,
the cross-entropy loss between qi and the predicted prob-
ability is considered as our classificiation loss to trian the
classification branch:

P( j|xi, A) =
exp(xi · F(a j))

N∑
k=1

exp(xi · F(ak))
(5)

L3 =
∑

j

−si j log P( j|xi, A) (6)

To sum up, our model minimizes the following objec-
tive function during training:

Lall = min
F,G

1
|B|
∑

B

(L1 + L2 + L3) (7)

Here |B| refers to the size of a mini-batch B.
In the testing stage, given a test sample xi, we infer its

class as follows:

y∗ = arg max
j

xi · F(a j) (8)

4. Experimental Settings and Datasets

Our encoder and decoder are both implemented as 2
fully connected layers with 1800 hidden units. We use
LeakyReLU as the nonlinear activation function. As for
the optimization, we adopt Adam optimizer with a constant
learning rate 0.0001 and our training mini-batch is 64.The
temperature parameter is fine-tuned with a cross-validation
procedure in the split of train and validation provided by
[10]. Specifically, we have found that the proposed model
works well when the temperature is set as 125.

We test our proposed model in two ZSL datasets, CUB-
200-2011 [11] and FLO [12]. For both CUB and FLO, split

Table 1 Information about datasets CUB and FLO.

Dataset Ns Nu |Xtr |
∣∣∣Xu

te

∣∣∣+∣∣∣Xs
te

∣∣∣
CUB [11] 150 50 7057 1764+2967
FLO [12] 82 20 1640 1155+5394
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Table 2 Results on conventional ZSL and generalized ZSL (bold indicates best results).

FLO CUB
Model name T1(%) u(%) s(%) H(%) T1(%) u(%) s(%) H(%)
CLSWGAN [5] 67.2 59.0 73.8 65.6 57.3 43.7 57.7 49.7
Cycle-CLSWGAN [6] 70.3 61.6 69.2 65.2 58.6 47.9 59.3 53
CADA-VAE [7] - - - - - 51.6 53.5 52.4
f-VAEGAN-D2 [8] 67.7 56.8 74.9 64.6 61 48.4 60.1 53.6
Ours (AE) 38.7 13.7 13.6 13.6 35.8 14.1 17.2 15.5
Ours (SSAE) 77.6 68.0 80.7 73.8 65 50.8 62.8 56.2

methods in [6] are used. For fair comparison, we use visual
features and semantic embeddings provided by [6] to evalu-
ate our model as well. Visual features are 2048-dimensional
vectors extracted by ResNet-101 for both datasets. Seman-
tic embeddings have 1024 dimensions produced by CNN-
RNN. More information about datasets in terms of the num-
ber of seen classes, unseen classes, the number of training
and testing images can be found in Table 1. |Xtr| is the num-
ber of training images.

∣∣∣Xu
te

∣∣∣ and
∣∣∣Xs

te

∣∣∣ represent the number of
testing images belonging to unseen classes and seen classes
respectively.

We follow the evaluation protocol proposed by [10] to
evaluate our model. For the conventional ZSL setting, the
averaged top-1 accuracy for each unseen class is computed,
denoted as T1. For the GZSL setting, the averaged accuracy
of seen classes is denoted by s and the averaged accuracy
of unseen classes is denoted by u, and their harmonic mean
defined as H = 2su/(s+u).

5. Results and Analysis

We compare our model with four state-of-the-art (SOTA)
methods, i.e., CLSWGAN [5], Cycle-CLSWGAN [6],
CADA-VAE [7] and f-VAEGAN-D2 [8] in Table 2, because
we use the same semantic embeddings as they do. We also
conduct experiments for ablation analysis. First, we remove
the classification branch to show the its importance to the
performance of our model. Then, we set different temper-
atures to show the influence of semantic relations provided
by semantic similarity vectors. Model without our classi-
fication branch is called AE in Table 2. Our whole model
containing the classification branch is referred as SSAE in
Table 2.

In Table 2, our model apparently establishes new SOTA
results on both datasets in the ZSL setting. Our model
achieves 77.6% on FLO, and 65.0% on CUB in terms of T1,
which is 7.3% and 4% higher than previous SOTA, 70.3%
and 61%. In the more challenging GZSL setting, our model
gets better results than others on both datasets in terms of H
as well. On FLO, the performance of our model is 73.8% in
terms of H, which achieves significantly higher result than
the previous best 61%. On CUB, our result 56.2% is 2.6%
higher than SOTA result 53.6% in terms of H.

Our model outperforms other models in Table 2, be-
cause we use semantic similarity vectors to guide the train-
ing of our autoencoder and our model can utilize seman-
tic embeddings of unseen classes during training. The
CLSWGAN model uses a pretrained classification module

Fig. 2 H on CUB and FLO with increasing temperature.

to guide their generation module, which can not use seman-
tic embeddings of unseen classes. The Cycle-CLSWGAN
model is based on the CLSWGAN model, so it has
CLSWGAN model’s shortcoming as well. The f-VAEGAN-
D2 model combines the benefits of the variational autoen-
coder and GAN, but their model does not contain a classi-
fication module to guide their generation model to generate
different visual features. It can be seen that CADA-VAE
model performs best in the terms of u, because their model
can learn a encoding that retains the information contained
in all modalities they used.

In ablation study, as we expected our AE model does
not perform well, which is 38.7% and 35.8% in terms of T1
in the ZSL setting on FLO and CUB in Table 2. In the GZSL
setting, its H is well below the average, confirming that it
is important to add a classification branch to our model. In
Fig. 2 we show the performance of our model under different
temperaures. As shown in Fig. 2 both for CUB and FLO, our
model has a significant edge when the temperature is small,
for example, 25 and 50. This shows that with the increasing
of the temperature, semantic similarity vectors provide our
model with more information about semantic relations. Go-
ing towards the large tempearture, the performance keeps
stable and reaches the maximum at 125 for both datasets.
This is expected since semantic similarity vectors can pro-
vide more information about semantic relations than one-hot
labels.
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6. Conclusion

In this work, we focus on utilizing semantic similarity to as-
sist the autoencoder to map from the semantic space to the
visual space correctly. We add a classification branch to our
main autoencoder model and calculate semantic similarity
vectors to guide its training. Evaluations on different set-
tings of the proposed model are carried out and results out-
performing state-of-the-art methods are achieved. Our re-
sults show the importance of our classificaiton branch and
semantic information provided by our semantic similarity
vectors.
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