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LETTER

A New Upper Bound for Finding Defective Samples in Group
Testing∗

Jin-Taek SEONG†a), Member

SUMMARY The aim of this paper is to show an upper bound for find-
ing defective samples in a group testing framework. To this end, we exploit
minimization of Hamming weights in coding theory and define probability
of error for our decoding scheme. We derive a new upper bound on the
probability of error. We show that both upper and lower bounds coincide
with each other at an optimal density ratio of a group matrix. We conclude
that as defective rate increases, a group matrix should be sparser to find
defective samples with only a small number of tests.
key words: defective samples, group testing, probability of error, upper
bound

1. Introduction

Group testing was introduced by Dorfman [1]. Its use has
been extended to various applications for half a century. A
main example is Compressed Sensing [2] introduced in the
field of information theory. Group testing gives us a chance
to reconsider its broad applications in DNA screening [3],
security networks [4], blood screening [5], and quality test-
ing [6]. Recently, there has been a move to study the per-
formance of group testing more precisely. Furthermore, for
noiseless and noisy cases, nearly optimal performance has
been presented [7]–[9].

Group testing began with a project to find all men with
syphilis in the US Public Health Service during World War
II. At that time, syphilis test was performed using blood
samples from individual soldiers to diagnose syphilis infec-
tion. However, because a large number of soldiers needed
the syphilis test, the cost of testing was enormous. To this
end, a group test was first proposed by Dorfman [1]. The ini-
tial group testing was performed by the following method.
First, blood samples from several soldiers were mixed to see
if they responded to syphilis. When the result was positive,
at least one soldier in the group was infected with syphilis.
Conversely, if negative, it meant that none of blood sam-
ples used in the syphilis group was infected with syphilis.
Such syphilis tests were possible because most soldiers were
not infected with syphilis while only a few soldiers were in-
fected with syphilis. The problem of group testing is mainly
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focused on two issues: 1) how to choose samples to be in-
cluded in one group; and 2) which detection method should
be used to find defective samples among a plurality of sam-
ples.

Most of the bounds presented in group testing problems
have shown meaningful results [8]–[14]. For example, in
[8], the authors proposed the combination basis pursuit and
the combination orthogonal matching pursuit algorithms for
the noise and noise group testing frameworks. In addition,
they derived the lower and upper bounds of performance for
the proposed algorithms. However, previous works lacked a
study of how the relationship between the density of a group
matrix and the defective rates of signals is affected. This
is the motivation for this paper. Therefore, the aim of this
paper is to clarify the relationship between the density of
the group matrix and the defect rate of the signal. This is the
part that has not been studied in other existing papers and
contributes to this paper.

In this paper, we consider a group testing framework.
We derive an upper bound for finding defective samples out
of input samples. In order to define our decoding, we use
minimization of Hamming weights known in coding the-
ory. We also define probability of error for our decoding
scheme. We obtain a new upper bound on the probability
of error which well-matches a lower bound obtained from
information-theoretic approach. We show that both upper
and lower bounds coincide with each other at optimal den-
sity ratio of a group matrix. In addition, we conclude that as
defective rate increases, a group matrix should be sparser to
find defective samples with only a small number of tests.

2. Group Testing Framework

2.1 Problem Statement

In this section, group testing problem is defined in detail.
First, an input signal x = (x1, x2, · · · , xN) is a binary vector
of size N, where x ∈ {0, 1}N . Each element of the input
signal is represented by 0 or 1. Note that the input signal
has at most K defective samples where its size is actually
very small compared to the size of the input signal x, that
is, K << N. The group testing problem is to accurately
find defective samples for the input signal x. We now define
signal x. Let Lk1 be the set of signals with the number of k1

ones in x, then ||x||0 = k1 and
(

N
k1

)
= |Lk1 |, where || · ||0 is the

Hamming weight and | · | is the cardinality of the set. We can
define the set L of input signals as L = ∪K

k1=1Lk1 . Its size

Copyright c⃝ 2020 The Institute of Electronics, Information and Communication Engineers



LETTER
1165

is |L| = ∑K
k1=1

(
N
k1

)
. In this paper, an input signal x is chosen

randomly and uniformly from the set L.
Let A be a group matrix with M rows and N columns

where each row of its matrix refers to a set of elements of
signal x. These elements are then subjected to one group
testing. In other words, if the ith element xi of the input
signal is included in the jth group and the group testing is
performed, the corresponding element of the group matrix
is represented as A ji = 1. Otherwise, if the ith element of
the signal x is excluded in the jth group testing, the element
of the group matrix is expressed as A ji = 0. In this paper,
we assume that each element of group matrix A has the fol-
lowing probability distribution with identically independent
distribution (i.i.d.),

Pr
(
A ji = α

)
=

{
1 − γ if α = 0,
γ if α = 1,

(1)

where γ is the density ratio of the group matrix. If the den-
sity ratio is large, it means that the probability that the ele-
ment of the group matrix has 1 is high. That is, most ele-
ments of vector x is pooled in each test. Note that collecting
many elements from signal x is undesired and costly. In
order to perform efficient group testing, density of a group
matrix may need to be small.

Next, we explain how results of group testing are re-
lated to a group matrix and an input signal. First, to help
readers understand clearly and definitely, we can express the
relation between them in formulas as follows,

y = A ⊙ x, (2)

where y ∈ {0, 1}M is a vector of the testing result with size
M and symbol ⊙ denotes element-wise logical operation.
Equation (2) is explained by showing the following simple

example. Let the input signal x be
[

1 0 0
]T

and the

group matrix A be

[
0 1 1
1 1 0

]
. Given x and A, we can

obtain the vector y as
[

0 1
]T

. The reason why the first
element of y becomes 0 is as follows. Both the first row of
A and x are performed by element-wise logical operation,

[
0 1 1

]
⊙

 1
0
0

= (0 ∧ 1)∨ (1 ∧ 0)∨ (1 ∧ 0)=0, (3)

where two symbols ∧ and ∨ denote AND and OR logi-
cal operations, respectively. By applying the same man-
ner, the second element of y becomes 1 from the fact that:
(1 ∧ 1) ∨ (1 ∧ 0) ∨ (0 ∧ 0) = 1. The result for group testing
with one or more defective samples participating as shown
in the example above is positive, i.e., y2 = 1. Conversely, if
all elements participating in the group testing are negative,
the corresponding result is negative.

The aim of group testing is to find an unknown signal x
from a group matrix A and the corresponding result vector
y. So far in past works, the main research direction of group

testing problems is how many tests M can be done to suc-
cessfully find defective samples of the input signal x. Next,
we define the probability of error on successful decoding to
derive an upper bound of the performance.

2.2 Definition for Probability of Error

In this section, we define probability of error for finding de-
fective samples of x in a group testing framework for given
parameters, i.e., N, K, and M. Before defining the probabil-
ity of error, we classify the input signal x as a set of signals
according to the number of ones in x.

We assume that decoding in our framework is to find a
feasible solution ẑ using minimization of Hamming weights
as follows:

ẑ = arg min ||z||0 subject to A ⊙ z = y, (4)

where z ∈ L is a feasible signal. Let k2 be the number of
ones in z as k2 = ||z||0, so that k2 ≤ k1. We define the error
as occurring when a feasible solution ẑ found by (4) is not
equal to the input signal x which is desired, y = A ⊙ ẑ but
x , ẑ. Let E0 (x) ≜ {A : x , ẑ} be the exact error event of
this decoder as a function of the group matrix A. This error
event E0 is a subset of the following feasible error event E
since a feasible signal z is a potential candidate of decoded
signals. We define the feasible error event E as follows,

E (x, z) ≜ {A : x , z, y = A ⊙ z}. (5)

Note that E0 (x) ⊆ E (x, z). Let Pr (E0) and Pr (E) be
the probability of error for both events E0 (x) and E (x, z),
respectively. The following inequality is then satisfied as
Pr (E0) ≤ Pr (E). The probability of error Pr (E0) is upper
bounded by

Pr (E0) ≤ Pr (E)

=
1
|L|

∑
x∈L

∑
z∈L,z,x

Pr (A⊙x=A⊙z | (x, z)) . (6)

It is noteworthy that Eq. (6) is almost intractable to evaluate
since |L| is typically very large. This brute-force approach
can be avoided with what will be described next.

3. Upper Bound on Performance

Let us recall the upper bound on probability of error we de-
fined in (6). Now we aim to drive (6) more concisely. The
basic idea can be thought of as follows. We first think of the
same error pattern. The next step is to find the probability
for that error pattern. Finally, we can obtain total probabil-
ity by adding all individual probabilities with the same error
pattern.

To find the same error pattern, consider that two
probabilities are the same, i.e., Pr

(
A j ⊙ x = A j ⊙ z1

)
=

Pr
(
A j ⊙ x = A j ⊙ z2

)
, such that z1 , z2 ∈ L and ||z1||0 =

||z2||0 = k2 where A j is the jth row of A. In other words,
two probabilities for z1 and z2 having the same Hamming
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weights are the same (further detail will be shown later).
Then we can collect individual probabilities with the same
Hamming weights with respect to two vectors x and z. We
can count the number of vectors with the same probability.
Now the conditional probability in (6) with given condition
of k1 and k2 Hamming weights for x and z, can be rewritten
in an independent row as follows,

Pr (A ⊙ x = A ⊙ z) =
M∏
j=1

Pr
(
A j ⊙ x = A j ⊙ z

)
. (7)

We therefore take probability of the first row of (7) into ac-
count and look at the probability in more detail,

Pr
(
A j ⊙ x=A j⊙z

)
=Pr

 N∪
i=1

(
A ji∧xi

)
=

N∪
i=1

(
A ji∧zi

) .
(8)

Since our group testing problem uses logical operation
defined in Sect. 2, we can consider an exclusive (XOR) oper-
ation on left and right sides in the equality of A j⊙x = A j⊙z,
i.e., 0 = 0 and 1 = 1. Thus, Eq. (8) can be rewritten as fol-
lows,

Pr
(
A j ⊙ x=A j⊙z

)
= Pr

((
A j ⊙ x

) ⊕ (
A j⊙z

)
=0

)
= Pr

((
A j ⊙ x

)
= 0

)
Pr

((
A j ⊙ z

)
=0

)
+ Pr

((
A j ⊙ x

)
= 1

)
Pr

((
A j ⊙ z

)
=1

)
.

(9)

where symbol ⊕ deontes XOR operation, the first equality is
from the property of XOR operation, and the second equal-
ity is due to the independent of A, x, and z.

Note that two vectors x and z have k1 and k2 Hamming
weights, respectively. The probability Pk1 that the sum of k1

logical OR is 0 for x can be obtained as follows,

Pk1 ≜ Pr
((

A j ⊙ x
)
= 0

)
= Pr

 k1∪
i=1

A ji = 0

 . (10)

In the same manner, we obtain the probability Pk2 that the
sum of k2 logical OR is 0 for z

Pk2 ≜ Pr
((

A j ⊙ z
)
= 0

)
= Pr

 k2∪
i=1

A ji = 0

 . (11)

We finally obtain the conditional probability (7) as fol-
lows,

Pr (A ⊙ x = A ⊙ z) =
M∏
j=1

Pr
(
A j ⊙ x = A j ⊙ z

)
=

(
Pk1 Pk2 +

(
1−Pk1

) (
1−Pk2

))M
,

(12)

where the probability Pk1(k2) with k1 (k2) Hamming weights
is

Pk1(k2) =
(
1 − γ

)k1(k2)
. (13)

In summary, Eq. (6) is expressed as follows,

Pr
(
E0

)
≤ 1
|L|

K∑
k1=1

k1∑
k2=1

(
N
k1

)(
N
k2

)
Pr

(
A⊙x=A⊙z

)
. (14)

For a special case with k1 = k2 = K, we know exactly K
defective samples in advance,

Pr
(E0

) ≤ (
N
K

)
Pr

(
A ⊙ x = A ⊙ z

)
=

(
N
K

)(
P2

K +
(
1 − PK

)2
)M

≤ 2NHb( K
N )+M log2 P,

(15)

where Hb (·) denotes binary entropy and P := P2
K+

(
1−PK

)2.
Note that since the probability P is a convex function, its
minimum value can be found by the first derivative at PK =

0.5. And then, P has a value from 0.5 to 1, i.e., 0.5 ≤ P ≤ 1.
In order for the probability of error in the left side of (15) to
vanish, the following condition as N → ∞ holds:

M >
NHb

(
K
N

)
log2 P−1

≥ NHb

(K
N

)
. (16)

The minimum number of tests M required is obtained when
the probability P is 0.5. This result is exactly the same as
the necessary condition in [15].

4. Numerical Results and Discussion

Figure 1 shows a plot of different density ratios γ of group
matrices versus the number of tests M with length N =

1000. This plot is drawn from the expression given in (14)
such that for K = 50, 70, and 100, the number of tests M
is obtained based on the fact that the probability of error is
less than 10−5, i.e, Pr

(E0
) ≤ 10−5. One interesting point of

this result is that there is an optimal density ratio of group
matrices to obtain the minimum number of tests. In addi-
tion, our proposed upper bounds are well matched in com-
parison with lower bounds from the information-theoretic
theory. One more fact from Fig. 1 is that as defective rate
(K/N) increases, group matrix should be the sparser to suc-
cessfully find defective samples with only a small number
of tests. This is an important meaning. For example, if the
defective rate is very low, we should design more denser
group matrices. Otherwise, performance of group testing
framework will fail. As shown in Fig. 1, the permissible
range of density ratio depends on defective rate. In other
words, when defective rate is small, a wide range of density
ratio can be used. However, when defective rate is not, a
narrow density ratio should be used. This feature should be
considered when designing group testing frameworks.

Figure 2 compares lower bounds [15] and upper bounds
(14) with N = 1000 evaluated at probability of error of 10−5.
Marks for upper bounds shown in Fig. 2 are obtained by ap-
plying optimal density ratios. As shown in Fig. 2, our pro-
posed upper bounds coincide with lower bounds obtained
from the information theory.
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Fig. 1 Comparisons of upper (14) and lower bounds [15] (evaluated at
10−5) for N = 1000. Solid lines indicate lower bounds and dashed lines
indicate upper bounds.

Fig. 2 Comparisons of upper (14) and lower bounds [15] (evaluated at
10−5) with different defective rates for N = 1000.

5. Conclusion

In this paper, we considered a framework of group testing.
We derived the upper bound for finding defective samples
out of many samples. In order to define our decoding, we
used minimization of Hamming weights known in coding
theory. We defined the probability of error for our decoding
scheme. We found that new upper bound on the probabil-
ity of error well matched lower bounds obtained from the

information-theoretic approach. We showed that upper and
lower bounds coincided with each other at optimal density
ratio of the group matrix. In addition, we concluded that as
defective rate increased, the group matrix should be sparser
to find defective samples with only a small number of tests.
Our main results provide answer to an important question
regarding how many tests are needed for finding defective
samples in group testing frameworks.
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