IEICE TRANS. INFE. & SYST., VOL.E102-D, NO.12 DECEMBER 2019

2451

[PAPER

Copy-on-Write with Adaptive Differential Logging for Persistent

Memory

Taeho HWANG'®, Member and Youjip WON'™, Nonmember

SUMMARY File systems based on persistent memory deploy Copy-
on-Write (COW) or logging to guarantee data consistency. However, COW
has a write amplification problem and logging has a double write problem.
Both COW and logging increase write traffic on persistent memory. In this
work, we present adaptive differential logging and zero-copy logging for
persistent memory. Adaptive differential logging applies COW or logging
selectively to each block. If the updated size of a block is smaller than
or equal to half of the block size, we apply logging to the block. If the
updated size of a block is larger than half of the block size, we apply COW
to the block. Zero-copy logging treats an user buffer on persistent memory
as a redo log. Zero-copy logging does not incur any additional data copy.
We implement adaptive differential logging and zero-copy logging on both
NOVA and PMFS file systems. Our measurement on real workloads shows
that adaptive differential logging and zero-copy logging get 150.6% and
149.2% performance improvement over COW, respectively.

key words: file system, persistent memory, consistency, COW, logging

1. Introduction

Traditional file systems like Ext4, XFS, Btrfs and F2FS
for hard disk drive (HDD) or solid-state drive (SSD) deploy
Copy-on-Write (COW) or journaling (logging) to guaran-
tee consistency of data and metadata. Since block devices
like HDD and SSD are accessible at block-granularity, tradi-
tional file systems update metadata at block-granularity. For
example, although COW needs to update 8byte metadata at
an internal node to point a new leaf node, block-based COW
updates an internal node at block-granularity. In addition,
block-based journaling exploits journal log entry at block-
granularity to update 128byte or 256byte inode.

As the persistent memory (PM) technology such as
STT-MRAM [1], 3D XPoint [2] and NVDIMM [3] emerges,
several groups have designed the file systems for hybrid
DRAM/PM [4]-[12]. These file systems support several
techniques optimized for PM to guarantee consistency of
metadata like short-circuit shadow paging[6] and fine-
grained logging [5]. These schemes eliminates additional
I/O and data copy by updating the metadata at byte granu-
larity rather than at block granularity. Meanwhile, the PM-
based file systems pay little attention to consistency of data
and deploy the existing techniques to guarantee consistency
of data like COW [4], [9] or logging [9]. However, COW

Manuscript received January 3, 2019.

Manuscript revised July 26, 2019.

Manuscript publicized September 25, 2019.

"The author is with Hanyang University, Seoul, Korea.

""The author is with KAIST, Daejeon, Korea.
a) E-mail: htaeh@hanyang.ac.kr
b) E-mail: ywon@kaist.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2019EDP7002

has a write amplification problem, and logging has double
write and read-tracking problems.

When a write system call is issued, COW allocates a
new block and performs the write to the allocated block. For
partial writes where the write is applied to part of a block
rather than an entire block, the remaining area in the block
where the write is not performed is filled with the original
data. If the write size is smaller than the block size, COW
has to copy the original data to a new block. Dulloor et
al. [5] pointed out that COW causes a very huge write am-
plification if the block size is 1GB and the write size is a
few hundred megabytes. Also, if a partial write is applied to
two blocks instead of one block, COW has to copy the orig-
inal data to each new block. When analyzing a write trace
of some users, a write that is smaller than the block size or
an unaligned partial write workload occupies about 63.12%
of the total write [13]. In this workload, COW causes a per-
formance degradation due to the write amplification. On
the other hand, when a write system call is issued, log-
ging copies the original data or new data to the log area. In
the case of undo logging, the write is performed twice. For
example, data journaling mode of Ext3 guarantees consis-
tency of file data, but it causes a performance degradation
due to the double write [14].

The problems of write amplification and double write
occur because the original data is copied to the newly al-
located block or log area. In this paper, we propose two
novel schemes optimized for PM to guarantee consistency
of user data. The proposed schemes alleviate write amplifi-
cation and double write problems. First, we propose adap-
tive differential logging (ADL) to minimize copying of the
original data. We compared the size of data copy caused by
COW or logging according to write request size (Table 1).
COW generates smaller data copy than logging for a write
of multiple blocks. Logging generates smaller data copy
than COW for a small write like 1KB. In order to minimize
data copy, ADL deploys both COW and logging selectively.
When a write request is applied to multiple blocks, ADL se-
lectively deploys COW or logging depending on the write
size for each block. Second, we propose zero-copy logging
(ZCL) to skip copying of original data. Persistent heaps for
PM enable user to allocate buuffer from PM. Data on the
buffer persists. In order to eliminate copying original data
to log area, ZCL treats the user buffer as a redo log when
the user buffer is allocated from PM and performs logging
without any additional copy.

We evaluated adaptive differential logging and zero-

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers

2452

copy logging with microbenchmark and macrobenchmark
compared to COW. With sequential write workload and
5KB write size, adaptive differential logging and ZCL show
performance improvement by 88.4% and 173.8%, respec-
tively. When we run fillseq and overwrite workloads that are
generated by key-value library, adaptive differential logging
shows performance improvement by 170.5% and 87.2%, re-
spectively. With the trace-based real workload, adaptive dif-
ferential logging and ZCL show performance improvement
by 150.6% and 149.2%, respectively.

2. Background
2.1 Copy-on-Write and Logging

Logging The file systems such as Ext4 [15], XFS[16] de-
ploy logging (or journaling) when updating metadata. Log-
ging is divided into redo and undo logging depending on
how it works. Redo logging stores new data to log area
first. If a certain time elapses or the log area is insufficient, a
check-pointing process is performed to reflect the new data
to the file system area. On the other hand, undo logging
stores the original data to the log area, and then reflects the
new data to the file system area. Undo logging has a dou-
ble write overhead because it performs additional writes to
the log area. In the case of redo logging, since the latest
data is in the log area, it has a read tracking overhead. In
addition, block-based file systems have to perform I/O and
logging (or journaling) at block granularity although the up-
dated data size is a few bytes.

Copy-on-Write The file systems such as ZFS [17] and
Btrfs[18] deploy Copy-on-Write (COW) when updating
tree-based metadata. When a write system call is issued,
COW performs updates out-of-place. In block-based file
systems, updating a single leaf node incurs updating other
nodes from a leaf node to a root node. In COW, updating
the tree has a cascading overhead. When a few data in the
leaf node is updated, COW also has a huge write amplifica-
tion.

2.2 Persistent Memory

Since block devices such as hard disks are accessible at
block granularity, legacy file systems manage metadata and
data at block granularity. Persistent memory (PM) such
as STT-MRAM [1], 3D XPoint [2] and NVDIMM [3] is ac-
cessible at byte granularity and guarantees persistence of
data. Several researchers designed file systems on PM that
manage metadata at byte granularity [4]-[12]. PM is con-
nected to the memory bus like DRAM, and processors ac-
cess PM directly. Modern processors support 8byte atomic
writes. The order of store instructions applied to the PM
may change due to a cache in the processor. PM-based file
systems flush a particular cacheline through some instruc-
tions such as c1flush or clwb to ensure ordering between
store instructions.

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.12 DECEMBER 2019

2.3 File Systems for Persistent Memory

NOVA is a log-structured file system[4]. Legacy log-
structured file systems keep log area linear and suffer log
cleaning overhead. In order to resolve the overhead of keep-
ing the log area linear, NOVA manages the log area as singly
linked list per inode. NOVA adds a log entry to the log
area. After adding the log entry, NOVA updates a tail pointer
pointing to the end of the log area and uses the last log en-
try as the latest version. By atomically updating the 8byte
tail pointer, NOVA guarantees the consistency of file system
operations, including write. In addition, NOVA guarantees
data consistency through COW.

BPFS is a file system that provides shadow paging to
ensure consistency of metadata and data[6]. In order to
solve the cascading update in legacy shadow paging, BPFS
proposed short-circuit shadow paging. When a write sys-
tem call is issued to a file, BPFS updates a pointer in the low-
est node where only one pointer is updated. Updating the
pointer is performed atomically by deploying 8byte atomic
write.

PMFS is a file system that provides logging to ensure
consistency of metadata [5]. In order to solve the overhead
caused by legacy block-level logging, PMFS provides fine-
grained logging by utilizing the accessibility of PM at byte
granularity. In the fine-grained logging, a transaction con-
sists of START, DATA and CHECKPOINT log entries. The size
of the log entries is a cacheline. The transaction with the
CHECKPOINT log entry is considered to be completed with-
out system failure. The layout of both PMFS and BPFS is
b-tree.

2.4 The Size of Data Copy

We compared the size of data copy that occurs in the PM-
based file systems according to a write size requested by
an user and consistency schemes. We assumed that COW
generates minimal write to the internal node with the short-
circuit shadow paging [6]. If the fine-grained journaling [5]
is deployed for COW, the writes to the internal node can be
reduced. In this comparison, we did not consider a write
to the internal node. Table 1 shows the comparison result.
If the write size is smaller than half of the block size, such
as 1KB, logging generates a smaller data copy than COW.
In the case of an aligned write, COW generates a smaller
data copy than logging when the write size is larger than
half of the block size, such as 3KB. In addition, if a write
size is much larger than the block size, such as 64KB, COW

Table1 The size of data copy according to consistency scheme and write
size (block size = 4KB)

Write size (KB)
1[2]3]4] 64
COW (Aligned) 414 14|4| o4
COW (Unaligned) 8|88 8 68
Logging 2146|8128

HWANG and WON: COPY-ON-WRITE WITH ADAPTIVE DIFFERENTIAL LOGGING FOR PERSISTENT MEMORY

generates a very small data copy than logging. However, in
the case of an unaligned write that a 3KB partial write that is
applied to the multiple blocks, COW generates a 8KB data
copy. This is larger than logging, which generates a 6KB
data copy.

Although the size of updated data is less than block
size, block-based file systems execute write at block-
granularity. However, since PM is accessible at byte granu-
larity, PM-based file systems are able to execute write at the
size of updated data at byte granularity. Byte accessibility of
PM enables fine-grained logging. For example, in order to
process 1KB write, block-based logging generates 8KB 10
for original data and new data. PM-based logging generates
2KB data copy. In case of COW, both block-based COW
and PM-based COW generate 4KB IO or data copy for 1KB
write. In this case, we only focus on user data at a leaf node.

3. Proposal

We propose Adaptive Differential Logging (ADL) and Zero-
copy Logging (ZCL). ADL applies fine-grained logging and
COW selectively to each block. ZCL exploits an user buffer
on persistent memory as log area. ADL reduces data copy
and ZCL eliminates data copy. When write request is issued,
we check the persistence of the user buffer. If the user buffer
is on volatile memory, we apply ADL for the write. If the
user buffer is on persistent memory, we apply ZCL for the
write.

3.1 Adaptive Differential Logging

Usually, if the write size is larger than half of the block size,
COW generates a small data copy. However, in the case
of small partial writes that are not aligned and applied to
multiple blocks, COW may generate more data copies than
logging. Thus, we propose adaptive differential logging
(ADL) that selectively applies different consistency schemes
to each block according to the write size to the block, rather
than the write request size. When the write size to the block
is smaller than or equal to half of the block size, logging is
applied to the block. And, when the write size to the block
is larger than half of the block size, COW is applied to the
block. If the write request size is larger than the block size
and the write is applied to several blocks, COW or logging
is selectively applied to each block. When write is applied
to three or more blocks, the write of block size is applied to
all the middle blocks except the start and end blocks. There-
fore, we apply COW to all the middle blocks and check the
write size of the start and end blocks. If the write size of
the start and end blocks is smaller than or equal to half of
block size, we perform logging on that block. In ADL, we
adopted undo logging.

3.2 Zero-Copy Logging

In addition to file systems for hybrid DRAM/PM, persistent
heaps [19]-[22] are being proposed. Schemes for persistent

2453
Write size = 6K
File | K 4K TIK |
Consistency | gt piock | Middle block | End block | D2t SoPY
method size
cow [k I i[ax] ife] sk] 19K
cow COow cow
Logging 12K
Logging Logging Logging
Adaptive
Differential 8K
Logging Logging cow Logging
Zero-copy 6K
Logging Zero-copy cow Zero-copy
I:, New data D Old data

Fig.1 Comparison of consistency scheme (unit = byte)

heap suggest a new programming model for PM, such as
pmalloc[21] and 1ibvmmalloc [23]. Since data in persis-
tent heap is stored in PM, the data persists in the case of
system failure. We propose zero-copy logging (ZCL) that
exploits the user buffer as a redo log. If the user buffer is al-
located from the persistent heap, we perform ZCL. Because
the user buffer is used as a redo log, ZCL writes the user
data to the file in-place without any additional logging. In
the case of normal redo logging, the user data is first written
to the log area. On the other hand, ZCL only records in-
formation about the persistent user buffer to the log area. A
write system call of block-based file system is returned to
user after storing user data to a buffer cache. User data in the
buffer cache is flushed to block device periodically or by a
sync system call. On the other hand, PM-based file systems
store user data to PM directly. After a write system call is
returned, file block contains the latest data. Thus, ZCL does
not require read-tracking, unlike normal redo logging. Also,
unlike undo logging, it does not have double write problems.

3.3 Amount of Transaction

Figure 1 illustrates the size of data copy according to each
consistency method when 6KB write is applied to several
blocks. In the case of COW, a data copy is generated as
much as the block size for each block. In the case of logging,
twice as many data copies are generated for each block. In
the case of ADL, logging is applied to the start block and the
end block, and COW is applied to the middle block. ZCL
also performs logging to the start block and the end block.
However, since the user buffer is located on PM and used
as a redo log, we do not perform additional data copy for
logging in the case of ZCL.

4. Design
In this section, we describe adaptive differential log-

ging with an example of a log-structured file system like
NOVA [4] and zero-copy logging with an example of a file

2454
(® Update tail pointer
H
File Mo 2] @ Mark COMMIT
1 2 1 &
log | | @ Mark CHECKPOINT
| |_ Porform COW (7 Mark FREE
1 1
File 2 +
block | || | | I| | | |MetaIT| [Tl Data log
1
(D Copy old partial data to log area
User buffer

@ Copy new partial data to file block

Fig.2 Process of COW with adaptive differential logging in the case of
a log-structured file system

system with b-tree layout like PMFS [5].
4.1 Adaptive Differential Logging

In a log-structured file system, such as NOVA [4], one trans-
action for write is completed by atomically updating the
tail pointer that points the end of the log area. In a file sys-
tem with b-tree layout, such as BPFS [6], one transaction
for write is completed by atomically updating a pointer of
the lowest node where only one pointer is updated. Unlike
NOVA and BPFS, which guarantee data consistency through
COW, PMFS [5] propose a method to guarantee data consis-
tency through COW in design. In the case of PMFS, if mul-
tiple node pointers are updated, we can log node pointers in
the internal node with fine-grained logging and complete a
transaction for write by adding a CHECKPOINT log entry to
the log area. If only one node pointer is updated, we can
deploy a 8byte atomic write like BPFS.

In the case of PMFS, we can complete both fine-
grained logging for COW and ADL simultaneously by
adding one COMMIT log entry to the log area. In the case of
NOVA and BPFS, we make a log entry COW-aware to oper-
ate ADL with COW that updates 8byte pointer value atom-
ically. The log entry for ADL contains the pointer value
for COW and its address before COW is performed. We
can identify whether COW is completed or not through the
pointer value. If the pointer value in the log entry is differ-
ent with current pointer value that is updated by COW, we
assume that COW is completed. We can acquire the current
pointer value that is updated by COW through the address
field in the log entry. On the other hand, we can identify
whether ADL is completed or not through the CHECKPOINT
log entry. If the CHECKPOINT log entry exists in the log area,
we assume that ADL is completed. We perform recovery if
either COW or ADL is not completed.

Figure 2 illustrates the process of ADL in the case of
NOVA. The state field of a log entry has one of the following
values: FREE, COMMIT and CHECKPOINT. The FREE mark in-
dicates that the log entry is not in use. The COMMIT mark in-
dicates that old file data is stored in log area before perform-
ing partial write. This mark also indicates that we are ca-
pable of performing undo recovery. The CHECKPOINT mark
indicates that the partial write has been performed. When

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.12 DECEMBER 2019

servicing write request, we first store old file data to log
area (D) and then write the COMMIT mark to the log entry
atomically (®). At this point, the log entry contains the old
pointer value before COW is performed. After writing new
file data in user buffer to the start or end blocks partially
(®), we write the CHECKPOINT mark to the log entry atom-
ically (@). We now perform COW (®), and then write new
pointer value atomically (®).

The following shows whether recovery is performed or
not according to the process in Fig. 2 for ADL. (i) If system
failure occurs between @ and @), the state field of the log
entry is COMMIT. In this case, we assume that system failure
occurs during partial overwriting. Blocks for ADL can have
old data or can have new data. Blocks for COW have old
data. Thus, we perform undo recovery. (ii) If system fail-
ure occurs between @ and ®, the state field of the log entry
is CHECKPOINT. However, the pointer value of the log en-
try is the same as the current pointer value for COW. In this
case, we assume that system failure occurs after completing
logging and before completing COW. Blocks for ADL have
new data, but blocks for COW have old data. Thus, we per-
form undo recovery. (iii) If system failure occurs between ®
and @, the state field of the log entry is CHECKPOINT. And,
the old pointer value of the log entry is not the same as the
current pointer value. In this case, we assume that system
failure occurs after completing logging and COW, but the
log entry is not retrieved. Blocks for ADL and COW have
new data. Thus, we do not perform undo recovery. (iv) If
system failure occurs before @ or after @), the state field of
the log entry is FREE. In this case, we assume that system
failure occurs before partial overwriting or after completing
write. Blocks for ADL and COW have old data before write
or new data after write. Thus, we do nothing.

4.2 Zero-Copy Logging

Data in the user buffer may remain in the CPU cache before
reaching PM. Therefore, before using the user buffer as a
redo log, the user buffer must be flushed to PM via c1flush
or clwb. ZCL generates a data copy as much as the write
size, and flushes twice as much as the write size. In our
experiments, we confirmed that ZCL had lower performance
than COW when the write size is larger than or equal to the
block size. This is because the larger the write size, the
greater the overhead of flushing the user buffer. Therefore,
when the write size to the block is larger than or equal to the
block size, ZCL is applied to the block like ADL.

Figure 3 illustrates the process of ZCL in the case of
BPFS and PMFS [5]. In the Fig.3, we considered the sit-
uation that only one of node pointers in the lowest inter-
nal node is updated. If several node pointers are updated,
node pointer in higher node or root node pointer are updated
atomically and the pointer value is stored in the log entry.
The state field of a log entry has one of the following val-
ues: FREE and COMMIT. The FREE mark indicates that the log
entry is not in use. The COMMIT mark indicates that the in-
formation of a persistent user buffer is recorded to log area.

HWANG and WON: COPY-ON-WRITE WITH ADAPTIVE DIFFERENTIAL LOGGING FOR PERSISTENT MEMORY

(6 Update node pointer

Internal
node

!

. 3 Mark COMMIT
(@) Perform COW @ Mark FREE

I H
H
v v v

2
|1 | | Data log

(® Copy new|partial data to file block

Leaf Y | |
node

User buffer
(mmap file)

(M Record information of user buffer
(@ Flush user buffer from cache to PM

Fig.3 Process of COW with zero-copy logging in the case of a file sys-
tem with b-tree layout

This mark also indicates that we are capable of perform-
ing redo recovery. When servicing write request, we first
store the information of user buffer that contains the latest
user data to log area (D). As the data in the user buffer has
not been applied to PM and can reside in CPU cache, we
flush the user buffer (®). We write the COMMIT mark to the
log entry atomically (®). At this point, the log entry con-
tains the old pointer value before COW is performed. After
performing COW (®), we write new point value atomically
(®). Finally, after writing new file data in user buffer to the
start or end blocks partially (®), we write the FREE mark to
the log entry atomically (@).

The following shows whether recovery is performed or
not according to the process in Fig. 3 for ZCL. (i) If system
failure occurs between @ and ®), the state field of the log
entry is COMMIT. However, the pointer value of the log en-
try is the same as the current pointer value. In this case, we
assume that system failure occurs before completing COW.
Blocks for COW and ZCL have old data. Thus, we do not
perform redo recovery although we have the redo log. (ii)
If system failure occurs between ® and @), the state field of
the log entry is COMMIT. And, the old pointer value of the
log entry is not the same as the current pointer value. In this
case, we assume that system failure occurs after complet-
ing COW. Blocks for COW have new data, but blocks for
ZCL can have old data. Although blocks for ZCL have new
data, we do not know. Thus, we perform redo recovery. (iii)
If system failure occurs before @ or after @, the state field
of the log entry is FREE. In this case, we assume that sys-
tem failure occurs before logging or after completing write.
Blocks for COW and ZCL have old data before write or new
data after write. Thus, we do nothing.

5. Implementation

We implemented ADL and ZCL on a log-structured NOVA
file system [4] and a PMFS file system [5] with b-tree lay-
out. In the case of PMFS, we implemented COW by using
a 8byte atomic write and fine-grained logging. We imple-
mented logging that operates in conjunction with COW. In
this paper, we assumed the 8byte write is the minimum unit
of atomic write for PM.

Usually, persistent heaps [19], [20] deploy a mmap sys-

2455

tem call to allocate the user buffer from PM. When servicing
the mmap system call in the file system, we managed which
process requested the mapping and the mapping informa-
tion in a list (zcl_mmap_list). When servicing a write sys-
tem call, we checked if the user buffer is inside file-mapped
address space via the zcl_mmap_list.

ZCL exploits the user buffer as log area. In order to ap-
ply ZCL to file system, the file system should be capable of
identifying whether the user buffer is on PM or not. In cur-
rent implementation, ZCL has a limitation. In some case, we
cannot identify the persistence of the user buffer. Currently,
the file system checks if the user buffer is mmapped-file or
not. If the user buffer is mmaped-file, we can ensure the
persistence of the user buffer. The user buffer can be allo-
cated from PM through native persistent heap [22] that does
not depend on file system. If the user buffer is on native
persistent heap, we cannot ensure the persistence of the user
buffer. Although ZCL can work for the user bufter, we apply
ADL for the write.

5.1 Logging

We reserved part of file system for ADL and ZCL for log-
ging. We assigned a separate log area for each core to mini-
mize synchronization overhead. This is the same as NOVA’s
per-core journaling. The size of log entry containing the in-
formation of logged data is cacheline size. The number of
log entries in the per-core log area is 64 by default. There-
fore, one core can simultaneously perform ADL and ZCL
for 64 writes. We allocate and deallocate log entries into
circular queues. Updating head and tail pointers of the cir-
cular queue with allocation information at PM requires con-
sistency method and generates frequent flushes. Thus, we
keep head and tail pointers in DRAM, not PM. When file
system attempts to recover the system after system failure,
we check the status of all log entries in the log area and re-
construct the circular queue.

When the write is applied to three or more blocks, we
perform logging on start and end block. Even if logging is
applied to both blocks, the size of logging data is smaller
than or equal to one block. Therefore, we use one log block
for one write. Half of log block is used as log area for start
block and the other half is used as log area for end block. In
logging of some file systems such as PMFS [5], START log
entry is added at the beginning of log area that is reserved
for the transaction, and then log entries with old data are
added, and finally COMMIT log entry is added. On the other
hand, ADL uses only one log entry in order to reduce log tail
contention that occurs when a lot of log entries are added
simultaneously. We do not add the separate START/COMMIT
log entry. Instead, we mark state field in log entry as COMMIT
according to the state of transaction. As a result, we use one
log entry and one log block for one write. In addition, we
manage log entries in cacheline size and log blocks sepa-
rately.

Usually, block-based file systems store data in a buffer
before writing data to a block device. Due to I/O scheduling,

2456

reordering may occur in the process of flushing buffered data
to a block device. On the other hand, PM-based file systems
usually copy user data directly to a file block without using a
buffer when processing write system call. So, file block has
the latest data after write. This process is a CHECKPOINT
from a logging point of view. Before write system call is
returned, we change the state of a log entry to FREE. We
do not have a separate garbage collector to retrieve free log
entries. We try to retrieve log entries when assigning log
entries. We check the state of a log entry that a log head is
pointing to and increase the log head pointer until finding a
non-free log entry.

NOVA performs write on a file after acquiring a lock of
the file. Since the file data is protected by the lock, one or
more writes to the same file cannot be performed at the same
time. When ADL is performed, the corresponding lock pre-
vents COW or logging by different write system calls from
being simultaneously applied to the same block. Therefore,
we do not use a separate lock to prevent simultaneous COW
or logging to the same block. But, in the case of PMFS,
application should use file lock to protect file block that is
being accessed by multiple process.

We reserved part of file system for ADL and ZCL for
logging. If we find a log entry that is not in free state during
recovery, we copy the old data from source kernel address in
the log area to destination kernel address in the file. During
ADL and ZCL, we record destination kernel address and
the size of the log data. In the case of ADL, we managed
the log block to the corresponding the log entry in a fixed
location. Thus, we know destination kernel address in the
fixed log block. On the other hand, in the case of ZCL,

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.12 DECEMBER 2019

the file-mapped user buffer is used as the redo log and the
file block is used as the log block. Thus, we record inode
number of the mapped file and file offset from which we can
extract destination kernel address because the log block to
the corresponding log entry is not in the fixed location.

6. Evaluation

In this section we evaluated the performance of ADL and
ZCL. We used iozone, db_bench and ycsb as microbench-
mark and mobibench (with mobigen) as macrobenchmark.
We compared ADL and ZCL against COW. We selected
NOVA [4] and PMFS [5] file system that deploys COW for
data consistency. In the case of PMFS, we also implemented
COW. We configured 4KB as the block size. The experi-
mental testbed consists of Intel (R) Core (TM) i7-6700 CPU
@ 3.40GHz (8 processor, 8MB) CPU and 32GB RAM. We
configure 24GB of 32GB RAM as the PMEM [24] to emu-
late PM.

The benchmarks allocate the user buffer from volatile
memory by issuing malloc(). For the evaluation of ADL, we
did not modify the benchmark. For the evaluation of ZCL,
we modified benchmark so that it uses the mmap-based user
buffer like 1ibvmmalloc [23] which is based on the C pro-
gramming language, but we did not apply ZCL for some
benchmark that uses the Java programming language.

In this section, we described the figures of NOVA.
PMES has similar trend and figures of NOVA. In Fig. 4 and
Fig. 5, the figures above the bar mean the measured through-
put.

=] COW —— 4
E— 4 - ADL 1 =1 523 CAOIXX Sy =]
Qo o
=) ZCL = <
5 3 %”’a 2 272 g’,.\ 3y
oo = [e M)
£ £4 N\ £8
& 2 35 37 88 32
© SRV T S N\ R N\ EE - - NS
£ 2 § RN
2 5 5
12 3456 7 8 9101112 : '
L Fillseq Overwrite Load Run Facebook Twitter
Write size (KB) RocksDB Redis
(a) I10zone (b) Key-value library/store (c) Mobibench with mobigen
Fig.4 Normalized throughput of NOVA
5
5 CoOW —— 3 Cow —= 4
s, ADL 5 435 ADL =9 5
] Q. o
=) ZCL < <
3 [E =) 3t
° =) 257 S
£ 3 28 2 <)
= £¢ 28
g > z8 35 a2 20 183
< IS T SN\ N\ - - N
E 1 E 5
2 @ @ 5 5
AN d z z
12 3 45 6 7 8 9101112
L Fillseq Overwrite Load Run Facebook Twitter
Write size (KB) RocksDB Redis

(a) IOzone
Fig.5

(b) Key-value library/store

(c) Mobibench with mobigen

Normalized throughput of PMFS

HWANG and WON: COPY-ON-WRITE WITH ADAPTIVE DIFFERENTIAL LOGGING FOR PERSISTENT MEMORY

6.1 Microbenchmark for Filesystem

We used sequential writes with a variety of write sizes from
1KB to 12KB for a pre-generated 1GB file and ran I0zone
benchmark [25]. Figure 4 (a) shows the normalized through-
put to COW. With the 1KB write size, ADL and ZCL show
performance improvement by 149.7% and 318.5%, respec-
tively, compared to COW. COW copies 3KB original data
and 1KB new data. It generates a total data copy of 4KB.
ADL copies 1KB original data and 1KB new data. It gen-
erates a total data copy of 2KB. ZCL copies 1 KB new data.
It generates a total data copy of 1KB. With the 2KB write
size, COW, ADL and ZCL generate 4KB, 4KB and 2KB
data copy, respectively. COW copies 2KB original data and
2KB new data. It generates a total data copy of 4KB. ADL
copies 2KB original data and 2KB new data. It generates
a total data copy of 4KB. ZCL copies 2KB new data. It
generates a total data copy of 2KB. With the 3KB write
size, COW generates between 4KB and 8KB data copy al-
ternately. When 3KB write is applied to one block, ADL
and ZCL apply COW to the block. When a 3KB write is
applied to two blocks, ADL and ZCL apply logging to each
block. Therefore, ADL and ZCL generate 6KB and 3KB
data copy, respectively. If the write size is a multiple of
4KB, ADL and ZCL apply COW to every block. With the
SKB write size, the write is applied to two blocks. In this
case, COW always generates a 8KB data copy. On the other
hand, ADL and ZCL apply COW and logging to each block
selectively. ADL generates between 6KB and 8KB data
copy alternately. ZCL generates between SKB and 6KB data
copy alternately. With the SKB write size, ADL and ZCL
show performance improvement by 88.4% and 173.8%, re-
spectively.

6.2 Microbenchmark for Key-Value Library/Store

RocksDB [26] is a key-value library for fast storage such
as flash or RAM. RocksDB provides its own benchmark
called db_bench for performance test. We configured the
key size, the value size and the number of entries as the de-
fault values. The key size is 16B, the value size is 100B,
and the number of entries is 1,000,000. We ran fillseq
and overwrite workload. First, we ran the fillseq work-
load to insert the key into the database. The workload in-
serts the key into the database file in sequential order. Sec-
ond, we ran the overwrite workload to update the value of
the inserted key. The workload updates the value for the
randomly selected key. In Fig.4 (b), the graph on the left
shows the normalized throughput to COW with RocksDB.
For fillseq and overwrite workloads, ADL shows perfor-
mance improvement by 170.5% and 87.2%, respectively.
The percentage of writes whose write sizes are smaller than
half of the block size during the entire write is 99.6% for
both fillseq and overwrite workloads. Also, the correspond-
ing write size is mostly 138B. Unlike fillseq workload, over-
write workload performs 2KB read 41K times, resulting in

2457

smaller performance improvement than fillseq workload.

Redis [27] is an in-memory key-value store. Redis pro-
vides snapshot and AOF (Append-Only-File) options for
persistence. Snapshot saves the dataset to a file for each in-
terval. On the other hand, AOF logs all write operations to
a file. We set Redis to the AOF option to check the effect of
the file system on Redis persistence for each write operation.
We ran YCSB benchmark [28] to measure the performance of
Redis. YCSB provides a core workload for a cloud system.
We used workload A consisting of 50/50 reads and writes.
Atikoglu et al.[29] collected traces of Facebook’s Mem-
cached and confirmed that the value of 90% in the trace is
smaller than 500B. Therefore, we set the value size to 250B,
because the small size value is a common value in the key-
value store. The number of entries is 5,000,000. After we
loaded the database, we ran the workload. In Fig.4 (b), the
graph on the right shows the normalized throughput to COW
with Redis. For load and ran workloads, ADL shows perfor-
mance improvement by 26.6% and 16.1%, respectively. The
percentage of writes whose write size is smaller than half of
the block size during the entire write is 95.2% and 99.9%
for load and ran workloads, respectively. Also, the corre-
sponding write size is mostly 315B.

6.3 Macrobenchmark

Campello et al. [13] collected the user’s write traces and an-
alyzed that 63.12% of write is smaller than 4KB write. We
conducted experiments on two IO traces that can be acquired
among those traces. The IO traces [30] were extracted while
the user approached facebook and twitter. We replayed the
trace through mobibench [31]. Figure 4 (c) shows the nor-
malized throughput to COW. For facebook trace, ADL and
ZCL show performance improvement by 136.9% and 136%,
respectively. For twitter trace, ADL and ZCL show perfor-
mance improvement by 150.6% and 149.2%, respectively.
The percentage of writes whose write sizes are smaller than
half of the block size in the IO trace is 8§1.4% and 77% for
facebook and twitter traces, respectively. In addition, the ra-
tio of write with size 1B or 4B in the IO trace are 66.5% and
99.1% for facebook and twitter traces, respectively. With 1B
or 4B write size, ADL and ZCL perform almost the same
size memory copy and flush. Therefore, the performance
improvements of the two methods are similar for the trace.

6.4 Amount of Transaction

ADL and ZCL enhance write performance by reducing and
eliminating the data copy of user data for write transaction.
Table 2 illustrates the total amount of write transaction ac-
cording to each workload.

We measured the amount of transaction in three work-
load of microbenchmark; I0zone, RocksDB and Redis. In
the case of 10zone, it performs write requests to 1GB file
with 1KB write size. In IOzone, the size of total write is
1GB. As COW performs 4KB data copy for each write re-
quest, the size of total transaction is 4GB. In ADL, the size

2458
Table2 The amount of transaction for user data (unit: byte)
| [[Total Write [COW | ADL [ZCL |
10zone (1KB) 1G 4G 2G 1G
RocksDB (Fillseq) 131M 3.9G 263M -
Redis (Run) 750M 9.8G 1.5G -
Mobibench (Facebook) 11.9M 575M | 12.7M | 11.9M
Mobibench (Twitter) 4.8M 21.7M 4.8M 4.8M

of total transaction is 2GB because the amount of data copy
is twice the write request. As ZCL does not perform ad-
ditional data copy, the size of total transaction is 1GB. In
the case of RocksDB, it performs write requests 1,003,476
times and the size of total write is 131MB. The size of most
write requests is 138Byte. As COW performs 4Kb data copy
for 138Byte, the size of total transaction is 3.9GB. As ADL
performs twice data copy, it generates 263MB data copy in
total transactions. In the case of Redis, it performs write re-
quests 2,501,170 times and the size of total write is 750MB.
The size of most write requests is 315Byte. COW performs
4KB data copy for 315Byte and ADL performs 630Byte
data copy for 315Byte.

We measured the amount of transaction in two work-
load of macrobenchmark; facebook and twitter. In the real
workload of both facebook and twitter, some of write is
smaller than half of page and some of write is as large as
4KB page. For write that is smaller than half of page, COW
performs amplified data copy. For 4KB write, COW per-
forms as much as write request. In the case of facebook
workload, COW amplifies some of write from 825KB to
46.5MB in total. The total size of 4KB write is 11MB.
So, COW generates 57.5MB (46.5+11) transaction in to-
tal. ADL amplifies some of write from 825KB to 1.7Mb
in total and generates 12.7MB (1.7+11) transaction in total.
As ZCL does not amplify write request, it generates about
11.9MB transaction that is the same size of write request in
total.

6.5 Sensitivity to Write Latency of Persistent Memory

The read and write latency of persistent memory are ex-
pected to be asymmetric and the write latency is expected
to be longer than the read latency. We simulated the write
latency of persistent memory and measured the write perfor-
mance according to each consistency scheme. We inserted
delays after each clflush instruction for emulation of the
write latency. For 10zone, we issued 1KB write requests
to 1GB file. Figure 6 illustrates the write performance ac-
cording to the write latency (delay). For 1KB write request,
COW performs 4KB data copy and 4KB flush. ADL per-
forms 2KB data copy and 2KB flush. Although ZCL does
not generate additional data copy, it performs 1 KB data copy
and 2KB flush because it flushes the user buffer from CPU
cache to persistent memory to ensure the persistence of the
user data. As the write latency increases, the flush over-
head of ZCL also increases and thus the performance of
ZCL decreases. When there is no penalty of write latency,
the performance of each consistency scheme depends on the

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.12 DECEMBER 2019

1,500
3 Fol—
2 1200
2 900
5
£ 600
(=2}
>
S 300
£
0

0 200 400 600 800
Delay (nsec)

Fig.6 Performance according to latency

amount of data copy. As the write latency increases, the
performance of each consistency scheme depends on the
amount of flush, not data copy.

6.6 Recovery Overhead

In order to recover the system from power failure quickly,
the recovery overhead of consistency scheme should be low.
We measured an additional recovery overhead of proposed
consistency scheme. We selected NOVA as a target file sys-
tem and fileserver workload of filebench [32]. In the file-
server workload, the user data and metadata for file system
are generated and updated. We set the number of files to
5,000, the file size to 1IMB and the IO size to 64KB. For
simulation of power failure, we rebooted the system com-
pulsorily while fileserver workload is being executed. Af-
ter rebooting, we measured the mount time of the inconsis-
tent file system. After recovery, legacy NOVA consumes
12,024usec for mounting and NOVA with ADL consumes
12,057usec for mounting. The recovery of ADL does not
affect the recovery process of the file system. ADL creates
log entry before it begins write request and then it frees log
entry after it completes write request. So, there are as many
valid log entries as the number of core. Compared to the
number of write transactions, there are a few valid log en-
tries for ADL and the recovery overhead of ADL is trivial.

7. Related Work

DiftTx [33] supports WAL and shadow paging differentially
to reduce write traffic on flash-based SSD like ADL. DiffTx
applies logging to pages to which partial update occurs and
applies shadow paging to pages to which full update occurs.
However, since DiffTx does not target PM, ZCL cannot be
applied. In addition, DiffTx does not apply different consis-
tency method to each block which is covered by a write. It
applies to different consistency method according to a write.

OSP [34] proposes shadow paging with fine-grained
persistence to resolve both double copy overhead of log-
ging and write amplification of shadow paging. Although
decreasing the size of a page can reduce the overhead of
write amplification, it incurs increase in virtual-to-physical
mapping information and lookup time of page table. So,
OSP supports shadow paging with fine-grained persistence
by exploiting cache line-level mapping. But, since OSP re-
quires an additional 2bit per cacheline, it needs to modify

HWANG and WON: COPY-ON-WRITE WITH ADAPTIVE DIFFERENTIAL LOGGING FOR PERSISTENT MEMORY

hardware.

Strata[11] is a cross-media file system that utilizes the
advantages of PM, SSD and HDD. Strata logs data in PM
for fast write. Strata directly accesses if data to be read is
on PM, and caches file data in file data cache on DRAM for
fast read if it is in SSD. Even if a small write smaller than
block size is issued, strata stores only the latest data in the
log and does not generate 4KB block having only the latest
data in order to avoid write amplification overload caused
by COW. However, if read is issued in the same block and
there is no data to be read in the log, strata creates a block
with the latest data in file data cache and returns it to an user.
Therefore, strata sacrifices read performance for small write
performance when read is issued on the same block where
write was issued. On the other hand, ADL keeps blocks
with the latest data after write. Therefore, in ADL, small
write does not affect read performance. In addition, strata
converts the data stored in the log into a read-optimized tree
for fast read and stores it in PM. At this time, when data
smaller than block size is stored in log due to a small write,
strata performs digest by COW method.

NOVA-fortis [35] is file system based on NOVA file
system. NOVA-fortis provides snapshot and reliability func-
tions. NOVA-fortis maintains log entry with valid snapshot
id and provides snapshot by using the corresponding log en-
try rather than the latest log entry. In addition, NOVA-fortis
guarantees the reliability of the file system through check-
sum and parity. Ext4-DAX [36] provides the ability for users
to directly access file data without going through the page
cache. Ext4-DAX ensures consistency of metadata through
journaling. However, since the user directly accesses the
file data, it does not ensure data consistency. Aerie [7] is file
system that allows PM access at the user level. Since PM
is accessed without going through the kernel, Aerie ensures
fast I/O performance. SCMFS [8] is file system that contains
the file address space in the process virtual address space.
SCMEFS removes mapping information in file address space
and file system address space because files are managed in
virtual address space continuously. SCMFS also manages
file system blocks by reusing memory management mod-
ules. SoupFS[37] is file system that is based on soft up-
dates. PM-based file systems can suffer performance degra-
dation due to cacheline flush. SoupFS maintains pointer-
based dual views to improve performance by delaying syn-
chronous flushes.

8. Conclusion

PM-based file systems provides PM-optimized consistency
scheme, but they focus on metadata consistency. We fo-
cus on data consistency to resolve the write amplification
overhead of COW and the double write overhead of logging.
According to the write size to each block, the performance
of COW and logging is different. In this work, we present
adaptive differential logging (ADL) to minimize a data copy
and zero-copy logging (ZCL) to eliminate a data copy. Our
measurements show that COW with ADL and ZCL resolves

2459

the write amplification overhead of COW. Instead of apply-
ing one consistency method, adopting two different consis-
tency methods adaptively shows better performance.

Acknowledgments

This work is funded by NRF (No.2017R1A4A1015498,
Scalable I/O Stack for Future High Performance Stor-
age), IITP (No.2018-0-00549, Extremely Scalable Order-
preserving Operating System for Manycore and Non-
volatile Memory) and IITP (No.2019-0-00118, Research
and Development on Memory-Centric OS Technologies of
Unified Data Model for Next-Generation Shared/Hybrid
Memory).

References

[1] A.V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R.S.
Beach, A. Ong, X. Tang, A. Driskill-Smith, W.H. Butler, P.B.
Visscher, D. Lottis, E. Chen, V. Nikitin, and M. Krounbi, “Basic
principles of stt-mram cell operation in memory arrays,” Journal of
Physics D: Applied Physics, vol.46, no.7, p.074001, 2013.

[2] Intel, “Intel and Micron produce breakthrough memory technology,”
2015. https://newsroom.intel.com/news-releases/
intel-and-micron-produce-breakthrough-memory-technology/

[3] Micron, “Nvdimm,” 2017. https://www.micron.com/products/
dram-modules/nvdimm#

[4] J. Xu and S. Swanson, “Nova: A log-structured file system for hy-
brid volatile/non-volatile main memories,” Proc. USENIX FAST,
2016.

[5] S.R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R.
Sankaran, and J. Jackson, “System software for persistent memory,”
Proc. ACM EuroSys, 2014.

[6] J.Condit, E.B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent mem-
ory,” Proc. ACM SOSP, 2009.

[7]1 H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, and
M.M. Swift, “Aerie: Flexible file-system interfaces to storage-class
memory,” Proc. ACM EuroSys, 2014.

[8] X. Wu and A.L.N. Reddy, “Scmfs: a file system for storage class
memory,” Proc. ACM/IEEE SC, 2011.

[9] J. Ou and J. Shu, “Fast and failure-consistent updates of application
data in non-volatile main memory file system,” Proc. MSST, 2016.

[10] J. Ou, J. Shu, and Y. Lu, “A high performance file system for
non-volatile main memory,” Proc. ACM EuroSys, 2016.

[11] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson,
“Strata: A cross media file system,” Proc. ACM SOSP, pp.460-477,
2017.

[12] S. Zheng, L. Huang, H. Liu, L. Wu, and J. Zha, “Hmvfs: A hybrid
memory versioning file system,” Proc. MSST, 2016.

[13] D. Campello, H. Lopez, R. Koller, R. Rangaswami, and L. Useche,
“Non-blocking writes to files,” Proc. USENIX FAST, 2015.

[14] V. Prabhakaran, A.C. Arpaci-Dusseau, and R.H. Arpaci-Dusseau,
“Analysis and evolution of journaling file systems,” Proc. USENIX
ATC, 2005.

[15] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L.
Vivier, “The new ext4 filesystem: current status and future plans,”
Proc. Linux Symposium, 2007.

[16] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and
G. Peck, “Scalability in the xfs file system,” Proc. USENIX ATC,
1996.

[17] J. Bonwick, M. Ahrens, V. Henson, M. Maybee, and M.
Shellenbaum, “The zettabyte file system,” Proc. FAST, work in
progress, 2003.

http://dx.doi.org/10.1088/0022-3727/46/7/074001
http://dx.doi.org/10.1145/2592798.2592814
http://dx.doi.org/10.1145/1629575.1629589
http://dx.doi.org/10.1145/2592798.2592810
http://dx.doi.org/10.1145/2063384.2063436
http://dx.doi.org/10.1109/msst.2016.7897078
http://dx.doi.org/10.1145/2901318.2901324
http://dx.doi.org/10.1145/3132747.3132770
http://dx.doi.org/10.1109/msst.2016.7897079

2460

[18]

[19]
[20]

[21]

[22]

[23]
[24]
[25]
[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

O. Rodeh, J. Bacik, and C. Mason, “Btrfs: The linux b-tree filesys-
tem,” ACM Transactions on Storage (TOS), vol.9, no.3, p.9, 2013.
Intel, “Persistent memory programming.” http://pmem.io/pmdk/

J. Coburn, A.M. Caulfield, A. Akel, L.M. Grupp, R.K. Gupta, R.
Jhala, and S. Swanson, “Nv-heaps: Making persistent objects fast
and safe with next-generation, non-volatile memories,” Proc. ACM
ASPLOS, pp.105-118, 2011.

H. Volos, A.J. Tack, and M. Swift, “Mnemosyne: Lightweight per-
sistent memory,” Proc. ACM ASPLOS, pp.91-104 2011.

T. Hwang, J. Jung, and Y. Won, “Heapo: Heap-based persistent ob-
ject store,” ACM Transactions on Storage (TOS), vol.11, no.1, p.3,
2015.

Intel, “Libvmmalloc.” http://pmem.io/pmdk/manpages/linux/
master/libvmmalloc/libvmmalloc.7 . html

Intel, “Persistent memory block device,” 2016. https://pmem.io/
2016/02/22/pm-emulation.html

Tozone, http://www.iozone.org/

Facebook, “RocksDB.” http://rocksdb.org

J.L. Carlson, Redis in Action, Manning Publications, 2013.

B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R.
Sears, “Benchmarking cloud serving systems with ycsb,” Proc.
ACM SoCC, pp.143-154, 2010.

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” ACM
SIGMETRICS Performance Evaluation Review, pp.53—-64, 2012.
ESOS-Lab, “Mobigen traces,” 2013. https://github.com/
ESOS-Lab/Mobibench/tree/master/MobiGen

S.Jeong, K. Lee, J. Hwang, S. Lee, and Y. Won, “Framework for an-
alyzing android i/o stack behavior: from generating the workload to
analyzing the trace,” Future Internet, vol.5, no.4, pp.591-610, 2013.
V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A flexible frame-
work for file system benchmarking,” login: The USENIX Magazine,
vol.41, no.1, pp.6-12, 2016.

Y. Lu, J. Shu, J. Guo, and P. Zhu, “Supporting system consistency
with differential transactions in flash-based ssds,” IEEE Transactions
on Computers (TOC), vol.65, no.2, pp.627-639, 2016.

Y. Ni, J. Zhao, D. Bittman, and E. Miller, “Reducing nvm writes
with optimized shadow paging,” Proc. USENIX HotStorage, 2018.
J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah, A. Borase,
T.B. Da Silva, S. Swanson, and A. Rudoff, “Nova-fortis: A fault-
tolerant non-volatile main memory file system,” Proc. ACM SOSP,
pp.478-496, 2017.

“Supporting filesystems in persistent memory,” 2014.
https://lwn.net/Articles/610174/

M. Dong and H. Chen, “Soft updates made simple and fast on non-
volatile memory,” Proc. USENIX ATC, 2017.

Taeho Hwang is a Ph.D. student in the
Dept. of Computer Software at Hanyang Univer-
sity. He is working in Operating Systems Labo-
ratory. His research interests are in file systems
and storage systems to fully exploit persistent
memory.

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.12 DECEMBER 2019

Youjip Won is ICT Endowed Chair Profes-
sor at School of Electrical Engineering, KAIST.
He did his BS and MS in Dept. of Computer Sci-
ence, Seoul National University, Seoul, Korea
in 1990 and 1992, respectively. He received his
Ph.D. in Computer Science from University of
Minnesota in 1997. He worked for Intel Corp.
as Server Performance Analyst till 1999. From
19909 till 2019, he was with Dept. of Computer
Science, Hanyang University, Seoul, Korea. He
is known for his work on the Android IO stack

optimization, filesystem and block layer design for SSD and NVRAM. His
research interests include Operating System, Distributed System, Storage
System and Software support for byte-addressable NVRAM.

http://dx.doi.org/10.1145/2501620.2501623
http://dx.doi.org/10.1145/1950365.1950380
http://dx.doi.org/10.1145/1961296.1950379
http://dx.doi.org/10.1145/2629619
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/2318857.2254766
http://dx.doi.org/10.3390/fi5040591
http://dx.doi.org/10.1109/tc.2015.2419664
http://dx.doi.org/10.1145/3132747.3132761

