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Parameter Identification and State-of-Charge Estimation for Li-Ion
Batteries Using an Improved Tree Seed Algorithm

Weijie CHEN†, Ming CAI†, Xiaojun TAN†a), Nonmembers, and Bo WEI††, Student Member

SUMMARY Accurate estimation of the state-of-charge is a crucial
need for the battery, which is the most important power source in electric
vehicles. To achieve better estimation result, an accurate battery model with
optimum parameters is required. In this paper, a gradient-free optimization
technique, namely tree seed algorithm (TSA), is utilized to identify specific
parameters of the battery model. In order to strengthen the search ability
of TSA and obtain more quality results, the original algorithm is improved.
On one hand, the DE/rand/2/bin mechanism is employed to maintain the
colony diversity, by generating mutant individuals in each time step. On
the other hand, the control parameter in the algorithm is adaptively updated
during the searching process, to achieve a better balance between the ex-
ploitation and exploration capabilities. The battery state-of-charge can be
estimated simultaneously by regarding it as one of the parameters. Experi-
ments under different dynamic profiles show that the proposed method can
provide reliable and accurate estimation results. The performance of con-
ventional algorithms, such as genetic algorithm and extended Kalman filter,
are also compared to demonstrate the superiority of the proposed method
in terms of accuracy and robustness.
key words: parameter identification, optimizing algorithm, tree seed algo-
rithm, differential evolution, swarm intelligence

1. Introduction

Interest in electric vehicles (EVs) has considerably in-
creased in recent years due to their lower greenhouse gas
emission and less energy consumption. Compared with
other existing rechargeable batteries, Li-ion batteries are the
most promising candidate to meet the range and lifetime de-
mands of the vehicles. In practical applications, the single
battery cells should be integrated to form a battery pack or
system and be controlled by the battery management system
(BMS) to ensure safe and efficient operation [1].

One of the most important functions of BMS is to esti-
mate the state-of-charge (SOC) of the battery [2]. As a cru-
cial indicator reflecting the remaining capacity of the bat-
tery, the SOC should be accurately provided to achieve opti-
mal performance, predict a reliable operating time and avoid
over-charging or over-discharging. However, it is unfeasible
to measure the SOC directly, and thus a proper estimation
method is needed.

Great effort has been exercised to provide accurate

Manuscript received January 13, 2019.
Manuscript revised April 2, 2019.
Manuscript publicized May 17, 2019.
†The authors are with the School of Intelligent Systems Engi-

neering, Sun Yat-sen University, China.
††The author is with the Graduate School of Fundamental

Science and Engineering, Waseda University, Tokyo, 169–8555
Japan.

a) E-mail: tanxj@mail.sysu.edu.cn (Corresponding author)
DOI: 10.1587/transinf.2019EDP7015

SOC estimation in the literature. Among all the methods,
the most intuitive way is to completely discharge the battery
and obtain the amount of charge in the battery by record-
ing discharged ampere-hours [3], [4]. A major problem with
such method is that it may interrupt the normal operation
of the battery, and meanwhile the discharging time is rela-
tively long. The Coulomb counting method calculates the
remaining charge by integrating the current flow over time,
and it is widely used due to its conceptual simplicity and
applicability. However, the accuracy of Coulomb counting
is vulnerable to the initial SOC value, the Coulomb effi-
ciency, as well as the accumulated error due to inaccurate
sensors or low sampling rate [5]–[7]. The open circuit volt-
age (OCV) method determines the SOC by searching the
predetermined OCV-SOC table [8]–[10]. The main prob-
lem with this method is that the OCV-SOC relationship may
change with temperature and state-of-health (SOH) of the
battery, and thus large uncertainty could be generated.

Many advanced methods have been proposed in the
literature to improve SOC estimation performance, which
can be generally classified into two categories: the black-
box model based methods and the state-space model based
methods [4], [11], [12]. The black-box models, such as neu-
ral networks [13]–[15], fuzzy logic [16]–[19] and support-
ing vector regression [20]–[22], are able to establish the im-
plicit inherent relation between system input and output, and
are widely used for different tasks, such as pattern classi-
fication, data verification and system modeling with con-
tradictory inputs. Such methods are also proved to be ef-
fective for battery SOC estimation. However, it is difficult
to obtain sufficient data for all different situations and the
estimation result could be highly imprecise in the region
where training data is not enough. On the other hand, es-
timation approaches combining the state-space model with
Kalman filter or other observers [23]–[25] have been far in-
vestigated in recent years. The extended Kalman filter is
proposed for SOC estimation in [26] and is improved in
[27]. However, such algorithms are strongly dependent on
the accuracy of battery model. An improper model structure
or parameter may result in remarkable estimation errors. In
practical applications, the model structure is probably un-
changed, and thus the parameter identification plays a crit-
ical role in maintenance of model accuracy. Furthermore,
since the model parameters may change with different oper-
ating environments and aging conditions, an online identifi-
cation technique is needed to estimate the parameters in real
time.
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The pulse discharging [28] and electrochemical
impedance spectroscopy [29], [30] are the most pervasive
methods for parameter identification, which are only suit-
able for offline use. For online estimation, recursive least
squares (RLS) [31], [32] and EKF [26], [33] have received
considerable attention due to their ability to update parame-
ters adaptively. Such methods are easy to implement and the
parameters can be deduced in real time. Moreover, model
parameters and state variables, such as SOC or SOH, can be
estimated simultaneously by comprising two filters running
in parallel [8], [26]. However, uncertainty may be accumu-
lated during the estimation process. If any inaccuracies exist
in the parameters, those errors may be transferred to the state
estimation, and vice versa. The propagation of the error may
lead to system instability or even divergence. Furthermore,
the recursive methods will take relatively long time to con-
verge, which reduces the robustness of the methods. Dif-
ferent from the methods above, the parameter identification
of battery is regarded as an optimization problem in this pa-
per. An optimization problem is to find the best solution un-
der certain conditions, and may be encountered in many ap-
plications, such as traffic signal timing, route decision, and
congestion pricing strategy [34]–[36]. In order to solve the
optimization problem, some general global optimizing al-
gorithms, such as genetic algorithm (GA) [37], [38] particle
swarm optimization (PSO) [39], [40] and ant colony opti-
mization [41], [42] can be introduced to parameter identifi-
cation. However, such methods are often used for offline
applications. In contrary, we use a modified algorithm for
online identification. Besides, the battery SOC is also incor-
porated into the parameters to be identified to achieve joint
estimation.

In this paper, the parameter identification method based
on an improved tree seed algorithm (TSA) is proposed and
used for joint estimation with system states. The battery pa-
rameters and the SOC can be estimated simultaneously with
improved accuracy and efficiency. The remainder of this pa-
per is organized as follows. In Sect. 2, the equivalent circuit
model used for parameter identification and SOC estimation
is described. The corresponding state-space functions of the
model are also deduced. In Sect. 3, the principle of tree seed
algorithm is presented and its update rules are improved to
enhance the exploitation and exploration capabilities. The
experimental configurations for acquiring testing data are
introduced in Sect. 4. Then, the TSA-based parameter iden-
tification results are illustrated and are compared with GA
in Sect. 5. The SOC estimation results and the comparison
with fixed parameter EKF is also presented. Finally, the con-
clusion is drawn in Sect. 6.

2. Battery Modeling and Parameter Identification

2.1 Description of Equivalent Circuit Model

The battery models have been studied especially for the
purpose of vehicle power control and battery states estima-
tion. Comparing with other kinds of models, the equivalent

Fig. 1 Schematic diagram of the second-order RC model.

circuit models are widely accepted for practical applications
due to their less parameters and lower computation burdens.
Considering the balance of accuracy and complexity of the
model, the second-order RC model is selected in this paper
and is shown in Fig. 1, which includes a controlled voltage
source, an ohmic resistance and two pairs of RC networks
in series.

As depicted in Fig. 1, the battery dynamic and static
characteristics can be simulated by the combination of sev-
eral components. The controlled voltage source represents
the open circuit voltage of the battery at different SOC lev-
els. The two RC networks denote the time-dependent po-
larization and diffusion effects. And the ohmic resistance is
used to describe the instant voltage drop after an excitation
current in the battery.

2.2 Parameter Identification

Based on the battery model above, the parameters to be iden-
tified include: the ohmic resistance Rohm, the polarization
resistances Rs and Rl, and the polarization capacitances Cs

and Cl. To achieve joint estimation of parameters and the
state, the battery SOC is also integrated into the parameter
vector.

The dynamic equations that describe the voltages
across different parts of the model are given as:

Uohm = IRohm (1)

Cs
dUs

dt
+

Us

Rs
= I (2)

Cl
dUl

dt
+

Ul

Rl
= I (3)

U = Uocv − Uohm − Us − Ul (4)

where U denotes the battery terminal voltage, I denotes the
battery current, and Uocv is the open circuit voltage. Rohm,
Rs, Rl, Cs, Cl are the battery parameters which reflect the
battery dynamic responses and are needed to be identified.
Uohm is the voltage drop on Rohm and Us, Ul are the voltages
across the two RC networks.

For further analysis, the discretization is applied to the
system and one can acquire:

Uohm
k = IkRohm (5)

Us
k = Ik

Rs

1 + RsCs
+

RsCs

1 + RsCs
Us

k−1 (6)

Ul
k = Ik

Rl

1 + RlCl
+

RlCl

1 + RlCl
Ul

k−1 (7)
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Uk = Uocv
k − Uohm

k − Us
k − Ul

k (8)

where the subscript k denotes the time step. For computa-
tional efficiency, the nonlinear OCV-SOC function within a
relatively short period of time can be linearized as:

Uocv
k = akSOCk + bk (9)

where a and b are the linear coefficients.
According to the definition of SOC:

SOCk = SOCk−1 − Ik
ηk

CN
(10)

where CN refers to the nominal capacity of the battery. To be
simplified, the time interval is chosen as 1s and the Coulomb
efficiency ηk is selected as 1 in this paper.

Define:

xk =
[
Uohm

k Us
k Ul

k SOCk

]T
(11)

yk = Uk (12)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0
RsCs

1 + RsCs
0 0

0 0
RlCl

1 + RlCl
0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

B =
[
Rohm

Rs

1 + RsCs

Rl

1 + RlCl
− 1

CN

]T
(14)

C = [−1 −1 −1 ak] (15)

D = [0 0 0 bk] (16)

Then Eq. (5)–Eq. (8) can be rewritten in a state-space
form:

xk = Axk−1 + BIk (17)

yk = Cxk + D (18)

In the state-space model, the current I is assumed as the
input of the system and the terminal voltage y is the output.
The parameters in the system may intensively influence the
input-output relationship and thus should be carefully iden-
tified. The optimum parameters can be determined by min-
imizing the root mean squared error between the predicted
and the measured output. Then the objective function can
be defined as:

Z =

√
1
N

∑N

k=1
(yk − vk)2 (19)

where yk is the predicted voltage of the model at time step
k and vk is the measured voltage. N denotes the number
of samples. Then the heuristic methods, such as tree seed
algorithm, can be used to minimize the function output and
obtain the optimum model parameters.

3. Tree Seed Algorithm

To reduce the probability of being trapped into local min-
imum and acquire more accurate results, a method with
global searching capability is required in the present work.
Compared with the commonly used genetic algorithm, the

suggested tree seed algorithm has fewer parameters and
stronger searching ability, and thus it is more suitable for
parameter identification. The algorithm is proposed based
on the natural phenomena of trees and their seeds [43]. The
locations of trees and seeds are regarded as possible solu-
tions of the problem and will be updated in every generation,
based on certain rules. The exploration and exploitation ca-
pabilities of the method can be well balanced by properly
setting the control parameter. After a certain number of it-
erations, those possible solutions will gradually converge to
the optimum for the problem.

In tree seed algorithm, the solution update rules are
given as:

Si, j,s = Ti, j + αi, j × (Bj − Tr, j) (20)

Si, j,s = Ti, j + αi, j × (Ti, j − Tr, j) (21)

where Si, j,s is the jth dimension of the sth seed that gener-
ated by the ith tree. Ti, j is the jth dimension of ith tree. Bj

is the jth dimension of the best-so-far tree location. Tr, j is
the jth dimension of the rth tree, which is randomly picked
from the whole colony. α is the scaling factor arbitrarily
produced in range of [−1, 1] and i, j, s, r are the different
indices.

At each time step, the seeds are generated either by
Eq. (20) or Eq. (21), according to the result of comparing a
random number and a control parameter named search ten-
dency (ST). If the randomly produced number is less than
ST , then Eq. (20) is used, otherwise Eq. (21) is adopted.

In the beginning of operation with TSA, the tree lo-
cations, which represent the possible solutions for the opti-
mization problem, are initialized by Eq. (22):

Ti, j = Lj,min + ri, j × (Hj,max − Lj,min) (22)

where Lj,min is the lower bound of the search space of the
jth dimension and Hj,max is the upper bound. ri, j is a ran-
dom number produced for every dimension and location, in
range of [0, 1]. In each generation, the number of seeds is
randomly chosen between 10% and 25% of the colony size.

Fig. 2 Flow chart of the improved tree seed algorithm for parameter
identification.
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In the original TSA, the balance of exploitation and ex-
ploration capabilities of the algorithm is controlled by the
hyper parameter ST . The higher value of ST offers a power-
ful local search and speed convergence while the lower value
of ST renders slow convergence but strong global search.
However, the value of ST is assumed to be fixed in the orig-
inal algorithm and the controlling capability is not fully ad-
dressed. To enhance the estimation accuracy of the problem,
the original TSA should be improved. Inspired by artificial
bee colony algorithm [44], two adjustments are introduced
to the origin TSA in this paper.

Firstly, the DE/rand/2/bin mechanism, which is proven
to have better capability to maintain colony diversity, is ap-
plied to the algorithm to mutate every dimension of the seed.
Then Eq. (21) in the original algorithm can be replaced by:

Si, j,s = Ti1, j + F1(Ti2, j − Ti3, j) + F2(Ti4, j − Ti5, j) (23)

where Ti1, Ti2, Ti3, Ti4 and Ti5 represent five randomly se-
lected trees from the colony, j denotes an arbitrary dimen-
sion of the possible solution, and F1, F2 are the scanning
factors, which both equal to 0.5.

Secondly, the control parameter ST is vital for the
whole searching process, but it is just a simple random num-
ber in the original algorithm. During the early iterations, the
diversity of the algorithm should be emphasized while in the
later cycles, the local search capability is demanded. Thus
the ST can be defined as:

ST = 0.1 + 0.9 ∗ (cycle/Maxcycle)2 (24)

where cycle denotes the current iteration step and Maxcycle
represents the maximum cycle number. The general frame-
work of parameter identification using improved TSA is
shown in Fig. 2. The proposed method combines the ex-
ploration of differential evolution with the exploitation of
the original TSA, and thus it is more effective for parameter
identification.

4. Experimental Configuration

In order to verify and evaluate the applicability of the pro-
posed parameter identification and SOC estimation algo-
rithm, a test bench is built and several experiments are
conducted, as shown in Fig. 3. The test bench consists of
an Arbin battery testing system BT2000 for voltammetry

Table 1 Offline parameters obtained from HPPC test.

measurement, a programmable thermal chamber for tem-
perature control and a host computer for experimental con-
trol and data record. The cylindrical Li-ion cell from
LG (LGDBMG11865) with nominal capacity of 2.9Ah and
nominal voltage of 3.7V is used for the tests.

In the experiment schedule, the available capacity test,
the hybrid pulse power characterization (HPPC) test, the
dynamic stress test (DST) and the federal urban dynamic
schedule (FUDS) are consecutively conducted to the cell.
The capacity test is used to measure the maximum capac-
ity according to the method described in [4], [45]. The
HPPC [11], [46] is used to obtain the OCV-SOC curve and
the offline parameter table for some SOC estimation algo-
rithms, such as EKF. The DST and FUDS are used to evalu-
ate the accuracy of model parameters and SOC estimation
results. The tests are conducted in the thermal chamber
with constant temperature at 25◦C and the data is recorded
at 10Hz.

During the capacity test, the cell is firstly fully charged
with constant current constant voltage mode, where the
constant current is at C/3 rate, the constant voltage is the

Fig. 3 The configuration of the battery test bench.

Fig. 4 Current and voltage profiles of HPPC test: (a) the current profile;
(b) the voltage profile.
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upper limit voltage of the cell and the cut off current is
C/20. After charge, the cell is stabilized for 1h and then
be discharged with C/3 current until the lower limit voltage
is reached. The capacity test shows that the actual maximum
capacity of the cell is 2.906Ah, which is slightly larger than
its nominal capacity.

During the HPPC test, the cell is firstly charged and
rested in the same way as with the capacity test. Then the
cell goes through ten hybrid pulse power cycles. Each cy-
cle includes: a 10s-discharge, a 40s-rest, a 10s-charge, a
20min-discharge at C/3 to decrease the cell SOC by 10%,
and finally a 1h-rest.

The voltage measured at the end of the rest is assumed
to be the OCV of that SOC point. The current and voltage
profiles of the HPPC test are shown in Fig. 4. The offline
parameters can be obtained from the test and are shown in
Table 1. As stated previously, the offline parameters are un-
able to track the characteristic changes of the battery, and
thus should be optimized in real time.

5. Verification and Comparison

This section presents the verification results of the proposed
method of battery parameter identification and SOC estima-
tion. With regard to parameter identification, the model ac-

Fig. 5 Voltage estimation results in the DST test: (a) current and voltage profiles of DST test; (b) volt-
age estimations of different algorithms; (c) estimation errors of different algorithms; (d) frequency dis-
tribution of estimation error with the proposed method.

curacy is evaluated by analyzing the discrepancy between
the measured voltage and the predicted voltage, where the
predicted voltage can be generated according to Eq. (11)–
Eq. (18). For comparison, three groups of voltage prediction
data are generated by the improved TSA, GA and classical
offline approach, respectively.

For SOC estimation, the performances of different al-
gorithms are indicated by the estimation errors. The results
of GA and EKF are presented for comparison. To verify
the robustness of the algorithm, the input currents are added
by a drift noise. The evaluations are conducted under DST
and FUDS profiles. Moreover, the statistics describing the
voltage discrepancy, such as the maximum absolute error
(MAE) and the root mean squared error (RMSE), are listed
for further analysis.

The current and voltage profiles of DST test are shown
in Fig. 5 (a). Here a 1000s-segment is extracted from the
whole test for detailed comparison. The current is posi-
tive for discharge in the figure and negative for charge. For
the online methods, such as the improved TSA and GA,
the parameters are estimated in real time using the given
1000s data. For the offline approach, the parameters are
obtained by searching the predetermined lookup table (Ta-
ble 1). The estimated and measured voltages are demon-
strated in Fig. 5 (b) and the estimation errors are shown in
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Fig. 5 (c). For more intuitive analysis, the error probability
distribution of the proposed method is calculated and pre-
sented in Fig. 5 (d). The statistic results of different methods
are listed in Table 2.

The current and voltage profiles of FUDS test are
shown in Fig. 6 (a). The estimated voltages and their errors
are demonstrated in Fig. 6 (b) and Fig. 6 (c). The error prob-
ability distribution of the proposed method under FUDS test
is shown in Fig. 6 (d). The statistic results are listed in Ta-
ble 3.

From Fig. 5 (b) and Fig. 5 (c), it can be seen that the
estimation errors of TSA and GA are smaller than that of
the offline approach, indicating that the online identification
has a higher precision than the offline approach.

It should be noted that the estimation error of the offline
approach could be up to 70mV, which shows that inaccurate
parameters may result in unacceptable estimation error. The
inaccuracy of the parameters is mainly from the change of
current rate. The actual current rate could be up to 4C in
the DST test, but meanwhile it is only about C/3 in HPPC

Table 2 Statistics of voltage estimations in the DST test.

Fig. 6 Voltage estimation results in the FUDS test: (a) current and voltage profiles of FUDS test;
(b) voltage estimations of different algorithms; (c) estimation errors of different algorithms; (d) fre-
quency distribution of estimation error with the proposed method.

test. To solve the issue, the offline test can be conducted
for several times to obtain parameter tables at different rates,
but it is time consuming and may lead to significant memory
requirement.

By contrast, the online identification methods are able
to adapt to real time parameters, and to achieve more accu-
rate results. The error distribution in Fig. 5 (d) shows that the
error of the proposed method is mostly located in a region
between −0.010 V and 0.012V, which is accurate enough for
real time applications. From Table 2 it can be seen that the
RMSE and MAE of TSA is 3.28 mV and 12.56mV respec-
tively, which are obviously smaller than those in GA and the
offline method.

From Fig. 6 and Table 3, it can also be seen that
the proposed TSA presents an improvement in tracking
performance compared with other methods, suggesting that
the proposed method is effective and is able to provide more
accurate result for parameter identification.

The reference and estimated SOC profiles of DST test
are shown in Fig. 7 (a) and the estimation errors are demon-

Table 3 Statistics of voltage estimations in the FUDS test.
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Fig. 7 SOC estimation results in the DST test: (a) SOC estimations of
different algorithms; (b) estimation errors of different algorithms.

Table 4 Statistics of SOC estimations in the DST test.

strated in Fig. 7 (b). Here the reference real time SOC is
calculated by Coulomb counting method using a high pre-
cision sensor. The statistic results are listed in Table 4. As
to TSA and GA, ten check points are selected for SOC esti-
mation. For each point, the current and voltage data in the
previous 1000s are used for estimation. Here the currents
are added by a 0.1A drift noise to simulate the less accurate
sensor in reality application. For comparison, the EKF is
introduced to estimate the battery SOC as well, where the
parameters are obtained from Table 1. The estimation re-
sults under FUDS test are shown in Fig. 8 (a), Fig. 8 (b) and
Table 5.

From Fig. 7 (a) and Fig. 7 (b), it can be seen that the
proposed method has a better performance than the two
other methods. From Table 4 it can also be seen that the
RMSE of TSA is 0.60%. Meanwhile, the RMSE of GA is
1.01%. Such result indicates that the proposed method can
achieve better estimation accuracy. To compare the com-
putational efficiency of TSA and GA, the running times are
calculated. Here the population sizes of both methods are
set to 20 and the generations are fixed to 50. The running

Fig. 8 SOC estimation results in the FUDS test: (a) SOC estimations of
different algorithms; (b) estimation errors of different algorithms.

Table 5 Statistics of SOC estimations in the FUDS test.

times of TSA and GA in the 1000s DST test are 3.635s and
4.109s, respectively. Such result shows that the proposed
method has higher efficiency than GA.

From Fig. 8 (a), Fig. 8 (b) and Table 5, same conclu-
sions can be drawn. The running time of TSA and GA
in the 1000s FUDS test is 3.806 and 4.224s, respectively.
The results indicate that the estimation accuracy and calcu-
lation speed can be improved by the propose method. Com-
pared with GA, in which the mutation is mainly caused by
small alterations of genes, the proposed method generates
mutant vectors by combining different individuals and thus
can achieve a higher efficiency. It should be also noted
that the estimation error of EKF in both DST and FUDS
increase with time and the RMSE and MAE are obviously
higher than the other two methods. Such result indicates that
the EKF is sensitive to drift noise and the estimation error
will be accumulated over time. For the proposed TSA-based
method, since the SOC is estimated using a short period of
time, the effect of drift noise could be controlled in a limited
scope. The estimation errors remain in an acceptable range
even if the input data is drifted by noise, which demonstrates
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the robustness of the proposed method.

6. Conclusion

In this paper, an enhanced parameter identification method
for Li-ion batteries based on an improved tree seed algo-
rithm is proposed. To maintain the diversity of the search
candidates, a differential evolution based mutation mecha-
nism is incorporated into the original TSA. To balance the
global search and local intensification capabilities of the
method, the control parameter is adaptively adjusted during
the searching process. An improvement of model accuracy
with the proposed method is demonstrated under different
dynamic tests. To achieve joint estimation, the battery SOC
is included as one of the parameters. Experimental results
show that the SOC estimation with improved TSA can yield
better performance in terms of accuracy and speed, com-
paring with GA and EKF. Besides, such method is able to
provide SOC estimation without interrupting system opera-
tions, and is robust to drift noise disturbance. Therefore it
is suitable for online use. Compared with the OCV method,
which is widely used as a supplement for Coulomb count-
ing, the proposed method has no need to wait for the battery
to be stabilized. Thus it can be used for SOC calibration un-
der both working and charging conditions. Compared with
filter based approaches, the model parameters can be up-
dated in real time, and thus the estimation accuracy can be
improved. The algorithm will be implemented and verified
on BMS under practical conditions in the future.
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