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PAPER

Progressive Forwarding Disaster Backup among Cloud Datacenters

Xiaole LI†, Hua WANG††a), Shanwen YI†††, Nonmembers, and Linbo ZHAI††††, Member

SUMMARY The periodic disaster backup activity among geographi-
cally distributed multiple datacenters consumes huge network resources
and therefore imposes a heavy burden on datacenters and transmission
links. Previous work aims at least completion time, maximum utility or
minimal cost, without consideration of load balance for limited network re-
sources, likely to result in unfair distribution of backup load or significant
impact on daily network services. In this paper, we propose a new progres-
sive forwarding disaster backup strategy in the Software Defined Network
scenarios to mitigate forwarding burdens on source datacenters and balance
backup loads on backup datacenters and transmission links. We construct a
new redundancy-aware time-expanded network model to divide time slots
according to redundancy requirement, and propose role-switching method
over time to utilize forwarding capability of backup datacenters. In every
time slot, we leverage two-step optimization algorithm to realize capacity-
constrained backup datacenter selection and fair backup load distribution.
Simulations results prove that our strategy achieves good performance in
load balance under the condition of guaranteeing transmission completion
and backup redundancy.
key words: progressive forwarding disaster backup, load balance, progres-
sive forwarding, redundancy-aware time-expanded network, role-switching

1. Introduction

Cloud datacenters are geographically distributed (geo-
distributed) datacenters deployed around the world. Con-
sisting of huge amount of data, they are widely leveraged
by large enterprises such as Amazon, Google, Microsoft, to
provide various services for millions of users all over the
global [1], [2]. Unfortunately, cloud datacenters are facing
various natural or man-made disasters [3]. Take American
companies for example, the failure of cloud datacenters re-
sults in huge economic loss, costing as much as $700 bil-
lion every year by unplanned datacenter outages [4]. There-
fore, to improve disaster tolerance, it is necessary to lever-
age periodic disaster backup among cloud datacenters. Dis-
aster backup activity aims to distribute multiple replicas
of the data newly generated over a past time period to
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geo-distributed datacenters. It is worth noting that disas-
ter backup activity is not real-time but always happens in
a continuous time period (e.g., from 3 a.m. to 6 a.m. ev-
ery day) [5]. Compared to disaster evacuation [3], disaster
backup activity has a relatively loose deadline constraint.
On the other hand, due to the existence of thousands of
servers in each datacenter with backup requirement (source
datacenters) in large enterprises [6], disaster backup requires
bulk transfers consisting of terabytes or even petabytes of
data to three or more remote sites (backup datacenters) [7].
Previous work aims at least completion time, maximum util-
ity or minimal cost, without consideration of load balance
for limited network resources (e.g., forwarding capability of
source datacenters, receiving capacity of backup datacen-
ters, transmission capability of network links, etc.). The un-
fair distribution of backup load may result in heavy burden
or severe congestion on source datacenters and some criti-
cal transmission links. Especially because the source dat-
acenters always play dual roles as backup data sender and
daily application server, this unbalanced load distribution
not only impacts the normal operation of daily network ap-
plications, but also impedes the satisfaction of temporary
traffic requirements [7]. Therefore, in disaster backup activ-
ity, it is of great significance to mitigate forwarding pressure
of source datacenters and maintain balanced distribution of
backup load.

In existing research works, the disaster backup problem
among cloud datacenters mainly involves transfer schedul-
ing, backup datacenter selection, routing searching, etc. Y.
Wang et al. construct elastic time-expanded network (TEN)
model to represent the time-varying network status, and ap-
ply store-and-forward mode to reduce the peak traffic load
on transmission links [7]. They aim to lexicographically
reduce maximum link utilization caused by multiple bulk
data transfers. However, their strategy only considers flow
distribution on links without optimization of backup dat-
acenter selection and routing searching, and therefore is
not suitable for disaster backup activity in practice. Some
researchers leverage multicast to reduce flow completion
time and bandwidth usage for inter-datacenter data replica-
tion [6], [8], [9]. Y. Wang et al. try to maximize overall util-
ity gain for dynamically-arriving bulk transfers with differ-
ent deadlines across geo-distributed datacenters [10]. They
leverage store-and-forward intermediate datacenters to sup-
port fast sending from source datacenter, and propose algo-
rithms aiming to fully utilize the available link bandwidth
during every time slot. However, the works [6], [8]–[10]
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have not considered load balance problem on backup dat-
acenters and transmission links.

There are some recent researches specially for dis-
aster backup scenarios. Some works focus on the goal
of minimizing backup completion time in mutual disaster
backup model [11], [12]. J. Yao et al. select backup dat-
acenter with least hops and compute maximum flow rout-
ing for every application datacenter to realize rapid backup
transmission among geo-distributed datacenters [11]. P. Lu
et al. select backup datacenter with largest available capac-
ity and leverage shortest routing to construct transmission
path [12]. However, the one-to-one backup model cannot
provide sufficient redundancy while up to three or more
replicas are required in practice [7], [8]. In our earlier work,
we jointly consider receiving capacity and redundancy re-
quirement, specify bandwidth allocation proportion accord-
ing to backup requirement, and improve network transmis-
sion capability with adjustment rules [13], [14]. However,
none of the researches above has considered mitigating bur-
den on source datacenters and load balance on transmission
links during flow scheduling process.

Unlike the works aforementioned, some works focus
on emergency backup [15]–[17]. L. Ma et al. propose an In-
teger Linear Program-based theoretical framework to select
backup datacenters and determine transmission paths for
minimal cost of backup transmission and data storage [15].
P. Lu et al. prioritize the data that will be destroyed by disas-
ters and leverage time-constrained data migration to obtain
maximum utility [16]. X. Xie et al. evaluate endangered data
value and network resource cost, and employ the improved
alternation direction method of multipliers to get emergency
backup solution with maximum profit [17]. Especially, they
leverage TEN model in favor of dynamic flow scheduling
over time [16], [17]. However, emergency backup is actu-
ally pre-disaster evacuation, which aims to evacuate endan-
gered data as much as possible in a limited period of time.
Therefore, these strategies above are not suitable for regular
disaster backup activity considering load balance.

As shown above, in the time-varying network, previous
studies have not jointly considered mitigating data forward-
ing burden on source datacenters and fair load distribution
in backup activity. The huge network resource consumption
is likely to cause congestion on some datacenters or criti-
cal transmission links, whereas the forwarding capability of
backup datacenters is not fully utilized.

In this paper, we propose a new progressive forward-
ing disaster backup strategy. We obtain bandwidth require-
ment for every backup request, construct a new redundancy-
aware time-expanded network (RA-TEN) model to divide
time slots according to redundancy requirement. Based
on RA-TEN, backup datacenters act as backup-and-forward
center one by one until redundancy requirement is satis-
fied, to utilize their forwarding capability and therefore miti-
gate forwarding burdens on source backup datacenters. Fur-
thermore, we formulate the disaster backup activity as a
new two-step problem consisting of facility location and
fraction multi-commodity flows over time. To obtain ideal

load balance distribution on backup datacenters and trans-
mission links during every time slot, we design a two-step
Progressive Forwarding Disaster Backup (PFDB) algorithm
including backup datacenter selection and link load distribu-
tion for multiple backup transfers. To flexibly and centrally
manage data transmission and routing according to transfer
properties and network status, we leverage the Software De-
fined Network (SDN) [18] as running network environment.
In the SDN scenarios, we use central controller to collect
network information, and distribute flow scheduling rules in
every time slot.

The following chapters are organized as follows. In
Sect. 2, we describe network model and construct RA-TEN
to illustrate the main idea of progressive forwarding disas-
ter backup. In Sect. 3, we propose and analyze PFDB algo-
rithm in detail. In Sect. 4, we compare our algorithm with
the state-of-the-art algorithms. At last, we summarize the
paper and look forward to further research.

2. Network Formulation and RA-TEN Model

2.1 Network Formulation

We leverage a connected and directed graph G = (V, E) to
represent the cloud datacenter network, where V is the set of
nodes, and E is the set of physical links between nodes. We
use DC = {dc1, dc2, . . . } to denote the set of original source
datacenters. We use BD = {bd1, bd2, . . . } to represent the
set of candidate backup datacenters. Backup datacenters re-
ceive and store replicas to guarantee redundancy of r for the
data in DC. We use euv to denote the directed link orig-
inating from node u ∈ V and ending with node v ∈ V . To
obtain high data availability and disaster tolerance, we lever-
age many-to-many relationship between source datacenters
and their backup datacenters as in our earlier work [14].

We leverage BK = {BK1, BK2, . . . } to denote the to-
tal backup transfers from all source datacenters, and use the
BKi = {bki1, bki2, . . . } to denote the tens of or even hundreds
of backup transfers originating from dci. Each backup trans-
fer bki j which means the transmission of a replica is spec-
ified as a 5-tuple (num, dti j, ami j, bbi j, ti j). Here num rep-
resents the unique number for the data block and its repli-
cas, dti j represents its backup destination, ami j represents
its data amount, bbi j represents the least bandwidth required
to finish bki j on time (bottom bandwidth), and ti j represents
its time slot for backup data transmission. Because disas-
ter backup activity always happens in a continuous time pe-
riod, we can leverage dl to denote the unified deadline for
all backup transfers. Then we can use bbi j = (r · ami j)/dl to
compute the bottom bandwidth for bki j.

For the division problem of time slots, we mainly fo-
cus backup transfers which always consume huge band-
width and therefore impact network status significantly. We
define a time slot t ∈ {t1, t2, . . . , tr} as the time period of
transferring a replica. We obtain bottom bandwidth for
every backup transfer via multiple paths. We define the
transmission path set for all backup transfers by path(t) =
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{path1(t), path2(t), . . . } in the time slot t. We use pathi(t) =
{pi1(t), pi2(t), . . . } to denote the path set for BKi and pi j(t)
to denote the set of multiple paths for bki j in the time slot t.
We use c(euv)(t) to denote the available bandwidth on euv in
the time slot t. We use bw(pi j(t)) to denote the bandwidth
allocated to pi j(t) via multiple paths. We use bw(pathi(t)) to
denote the total bandwidth allocated to BKi in the time slot
t as follows:

bw(pathi(t)) =
∑

pi j(t)∈pathi(t)

bw(pi j(t)) (1)

In the network G with time-varying network link ca-
pacity and backup datacenter storage space, the problem
aims to mitigate source datacenter burden and balance
backup loads. In our earlier work [13], [14], we have not
considered mitigating data forwarding burden on source dat-
acenters and fair load distribution on transmission links in
disaster backup activity. To overcome these shortcomings,
we analyze time-varying network for different stages of dis-
aster backup activity and solve the progressive forwarding
disaster backup.

2.2 RA-TEN Model

The TEN [19] can be used to convert dynamic flow over
time problem to static flow problem in multiple time slots.
Some researchers have improved TEN to divide time slots
according to transmission deadline, describe network sta-
tus over time, and design dynamic scheduling algorithms
for multiple bulk data transfers among geo-distributed data-
centers [7], [17]. However, their strategies have not consid-
ered backup datacenter selection and routing searching [7],
or mitigating heavy burden on datacenters and transmission
links [17]. In this paper, we propose RA-TEN model suit-
able for load balance in regular disaster backup activity.

To mitigate data forwarding burden concentrated
in source datacenters, we newly propose role-switching
method over time for backup datacenters. Given the unified
deadline as total backup time period, we divide it equally
into r time slots according to the redundancy requirement.
Due to the huge network resource consumption in disaster
backup activity, we mainly focus on the impact by backup
transfers, rather than other daily network applications. In
the first time slot, we transfer backup data from the origi-
nal source datacenters, select backup datacenters and sched-
ule flows. Then we leverage progressive forwarding disaster
backup to guarantee redundancy. At the beginning of every
following time slot, we check the backup datacenters in the
previous time slot. For those ones with backup data whose
replica number is less than the required redundancy, we de-
fine them as new source datacenters in the new time slot, and
leverage forwarding disaster backup to the nearest available
backup datacenters without the same backup data replicas
by multipath routing. In this way, multiple different backup
datacenters undertake the forwarding task in turn, thereby
greatly reducing the burden on the original source datacen-
ters.

In Fig. 1 and Fig. 2, we give a simple example to com-
pare the traditional method with the role-switching method
in RA-TEN model. The node dci covered by gray shade
represents source datacenter with backup requirement. The
nodes bd1, bd2, and bd3 covered by blue shade represent
candidate backup datacenters to store replicas. v1 and v2 are
intermediate nodes.

In RA-TEN model, we divide the total time period into
three parts according to the redundancy requirement of 3
replicas for dci. Then we search backup routing by two
different strategies. In Fig. 1 (a)–(c), we construct backup
routing for every replica with the same source datacenter
by least hop number. In the three searching rounds, we
choose backup routing as dci → bd1, dci → v1 → bd2

and dci → v1 → v2 → bd3. In Fig. 1 (d), we obtain the
whole backup routing with total hop number as 6. dci acts
as backup data sender throughout the whole process.

In Fig. 2 (a)–(c), we construct backup routing for every
replica by our newly proposed role-switching method. The
searching process of backup routing with role-switching
method is as follows:

• In the first time slot, dci acts as source datacenter, with
bd1, bd2, and bd3 as candidate backup datacenters. We
select bd1 with the least hop number to be the backup
datacenter and obtain the backup routing dci → bd1

which is the same as Fig. 1 (a). In the residual time
slots, instead of acting as source datacenter, dci will
act as an ordinary intermediate node.
• In the second time slot, we check bd1 (the backup data-

Fig. 1 Backup routing with the same source datacenter dci in RA-TEN
model (r = 3).
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Fig. 2 Backup routing with role-switching method in RA-TEN model
(r = 3).

center in the previous time slot) and find that the num-
ber of dc′i s replica is 1 which is less than the required
redundancy. So we make bd1 as source datacenter, with
bd2, and bd3 as candidate backup datacenters in this
time slot. We select bd3 with the least hop number to
be the backup datacenter, and obtain the backup routing
bd1 → v2 → bd3 with hop number as 2. In the resid-
ual time slots, bd1 will act as an ordinary intermediate
node or candidate backup datacenter.
• In the third time slot, similarly, we make bd3 as source

datacenter. Although bd1 and bd2 are reachable can-
didate backup datacenters with the same hop number,
we finally choose bd2 as backup datacenter because the
same replicas already exists in bd1. And therefore we
choose backup routing as bd3 → bd2 with the hop num-
ber as 1.
• As a summary in Fig. 2 (d), the backup datacenter in

the current time slot will act as new source datacenter
to send the replica in the next time slot until we obtain
sufficient redundancy. The role-switching method not
only mitigates heavy forwarding burden concentrated
in the same source datacenter dci as in Fig. 1 (d), but
also shares forwarding burden among multiple backup
datacenters in different time slots. Furthermore, we fi-
nally obtains smaller hop number as 4 which means
less network resource consumption in Fig. 2 (d).

By the role-switching method, after receiving a replica
in the previous time slot, the backup datacenter will act as
source datacenter for this replica in the current time slot.
The role-switching process continues until we obtain suffi-

cient replicas in geo-distributed backup datacenters. This
method shifts the forwarding task for the same backup data
from original source datacenters to multiple backup dat-
acenters over time with higher forwarding capability and
more storage space than ordinary datacenters. Therefore we
can effectively alleviate the forwarding pressure on the same
source datacenter.

We should add that we mainly focus on mitigat-
ing heavy burden on the source datacenter during disaster
backup process. For easy display, we assume that bottom
bandwidth can be satisfied by single path and therefore have
not considered multipath routing. However, this is an ideal
assumption and is not suitable for the practical applications.
In the next section for specific algorithm design, we will
further consider load balance on transmission links, and sat-
isfaction of bottom bandwidth requirement in practice. We
distribute replicas on backup datacenters with receiving ca-
pacity, and allow backup transmission through multipath
routing to obtain sufficient bandwidth for backup transfers
under deadline constraint. We will give detailed introduc-
tion in Sect. 3.

3. Algorithm Design

Ant Colony Optimization (ACO) [20] is a highly innovative
meta-heuristic algorithm inspired by the ant foraging behav-
ior in the real world. In the foraging process, the single
behavior of an ant is relatively simple, but the whole be-
havior of ant colony reflects intelligence. Ant colony can
find the shortest path to food source in different environ-
ments, because they can transmit information through cer-
tain information mechanism, which is called pheromone.
Ants release pheromones on the path that they have passed.
They will follow the path of higher pheromone concentra-
tion in probabilistic, and each passing ant will leave its new
pheromone on the path. As time progresses, the concentra-
tion of pheromone accumulated on the shorter path gradu-
ally increases, and therefore more ants will select the path.
After a period of time, the entire ant colony will follow the
shortest path to food source by this positive feedback mech-
anism. ACO is a heuristic global optimization algorithm in
evolutionary computing fields. It is widely used to find paths
for bulk data transmission in large-scale network [14], [21].

In this paper, we use Pv(q+1) to describe the possibility
of a certain node v being chosen in the (q + 1)th iteration.
We define it with pheromone intensity τv(q+1) and heuristic
information ηv(q+1) occupying different importance factors
φ = 0.8 and ϕ = 0.4 respectively. We denote CN(v) as the
candidate set of v. The definition is as follows:

Pv(q + 1) =
(τv(q + 1))φ · (ηv(q + 1))ϕ∑

w∈CN(v)
(τw(q + 1))φ · (ηw(q + 1))ϕ

(2)

3.1 PFDB Algorithm

As shown in Sect. 2, we leverage role-switching method
over time to mitigate data forwarding burden concentrated
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in original source datacenters. Furthermore, we aim to dis-
tribute backup load fairly on backup datacenters. Based
on the newly proposed RA-TEN model and existing ACO
metaheuristic, we design a two-step PFDB algorithm in-
cluding capacity-constrained backup datacenter selection
(CC-BDS) and fair link load distribution (FLLD), to select
backup datacenter and determine transmission paths to re-
alize progressive forwarding disaster backup among cloud
datacenters.

We define DC(t) and BD(t) as the set of source datacen-
ters and the set of candidate backup datacenters in the time
slot t. The pseudo code of PFDB algorithm is as follows:

Algorithm 1: PFDB algorithm
Data: G = (V, E), DC, BD, BK
Result: progressive forwarding disaster backup solution

1 Divide dl into dl = {t1, t2, · · · , tr} according to redundancy
requirement, and initialize RA-TEN;

2 for every time slot t ∈ {t1, t2, · · · , tr} do
3 if t is the first time slot then
4 Set DC as the original set of source datacenters DC(t)

and sort the elements in ascending order of backup
data amount, set BK = {BK1, BK2, · · · } according to
DC(t), and set BD as the original set of candidate
backup datacenters BD(t);

5 else
6 Update DC(t) and BD(t) with role-switching method

according to the previous time slot;

7 Select backup datacenter for every BKi ∈ BK with CC-BDS
algorithm;

8 Optimize link load distribution for every bki j ∈ BK with
FLLD algorithm;

9 Return progressive forwarding disaster backup solution;

3.2 CC-BDS Algorithm

In CC-BDS algorithm, we aim to implement backup dat-
acenter selection for every BKi in the time slot t ∈
{t1, t2, · · · , tr}. We consider fair load distribution on
capacity-constrained backup datacenters and minimize the
total hop number from every BKi to the selected backup
datacenters. Obviously, this is the facility location prob-
lem which is NP-hard [22]. We use s(bdk(t)) to represent
the storage capacity of bdk in the time slot t. We define βk(t)
as the ratio of the storage capacity in the backup datacenter
bdk to the total storage capacity of BD(t) as follows:

βk(t) =
s(bdk(t))∑

bdk∈BD(t)
s(bdk(t))

,∀bdk ∈ BD(t) (3)

We define hopBKi (t) as the hop number for BKi in the
time slot t, from the source datacenter holding BKi to the
selected backup datacenter. And we formulate the objective
function as follows:

minimize
( ∑

BKi∈BK

hopBKi (t)
)

(4)

To obtain feasible solution, the following constraints
should be satisfied:

yik(t) ·
∣∣∣∣∣∣

∑
bki j∈BKi

ami j∑
BKi∈BK

∑
bki j∈BKi

ami j
− βk(t)

∣∣∣∣∣∣ ≤ ω1, (5)

∀bdk ∈ BD(t),∀BKi ∈ BK∑
dci∈DC(t)

(
yik(t) · (ami j)

)
≤ s(bdk(t)),∀bdk ∈ BD(t) (6)

∑
bdk∈BD(t)

znum
ik (t) ≥ 1,∀BKi ∈ BK (7)

∑
t∈{t1,t2,··· ,tr}

znum
ik (t) ≤ 1,∀bdk ∈ BD(t),∀BKi ∈ BK (8)

yik(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

i f bdk is BK′i s backup

datacenter in time slot t
0 otherwise

(9)

znum
ik (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

i f the data num has replica

in bdk in time slot t
0 otherwise

(10)

The ω1 in (5) is a very small nonnegative decimal. The
backup load distribution constraint in (5) ensures close ap-
proximation of backup load ratio to storage capacity ratio
for every bdk, to achieve fair load distribution on backup
datacenters. The storage capacity constraint in (6) ensures
that the overall backup load stored in every backup data-
center cannot exceed its maximum storage capacity. The
backup redundancy constraint in (7) ensures that at least
one replica for the backup data should be placed in some
backup datacenter in the time slot t. The remote distribution
constraint in (8) ensures that in a backup datacenter, there
should be not more than one replica for the same backup
data. The variable value constraints in (9) and (10) define
the values of yik(t) and znum

ik (t) in different situations.
In the following subsections, we define the pheromone,

heuristic information, fitness evaluation, and then propose
the pseudo code of CC-BDS algorithm.

3.2.1 Pheromone and Heuristic Information

We give the related definitions in every time slot t. For every
BKi, we set unique pheromone and heuristic information to
avoid mutual interference in the selection process. We de-
fine hopcur as the total hop number for the current solution
cur in the qth iteration, and hopgb as the total hop number
for the global best solution gb. After the qth iteration, we
choose the used backup datacenters in cur and gb for BKi,
and enhance pheromone intensity by pheromone updating
as follows:

τi
k(q + 1) = (1 − ρ1(τi

k(q))) + Δτi
k(q) (11)

Δτi
k(q) = λ1χi(q) + λ2σi(q) (12)

χi(q) =
ycur,i

k

hopcur · (1 + εcur
i (q))

(13)



2140
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.11 NOVEMBER 2019

σi(q) =
y
gb,i
k

hopgb · (1 + εgbi (q))
(14)

ycur,i
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

i f bdk is BK′i s backup

datacenter f or cur
0 otherwise

(15)

y
gb,i
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

i f bdk is BK′i s backup

datacenter f or gb
0 otherwise

(16)

εcur
i (q) = ycur,i

k · 1
|BD(t)| ·

∑
bdk∈BD(t)

∣∣∣∣∣∣
∑

bki j∈BKi

ami j

∑
BKi∈BK

∑
bki j∈BKi

ami j
− βk(t)

∣∣∣∣∣∣ (17)

ε
gb
i (q) = ygb,ik · 1

|BD(t)| ·
∑

bdk∈BD(t)

∣∣∣∣∣∣
∑

bki j∈BKi

ami j

∑
BKi∈BK

∑
bki j∈BKi

ami j
− βk(t)

∣∣∣∣∣∣ (18)

We use ρ1 as evaporating parameter controlling the
evaporating speed of pheromone after every iteration. We
use λ1 and λ2 to express the influences of cur and gb on the
increment of pheromone intensity in the (q + 1)th iteration.
We use |BD(t)| to denote the number of backup datacenters
in BD(t). It is worth noting that the value of |BD(t)| might

be different in cur and gb. We use

∑
bki j∈BKi

ami j∑
BKi∈BK

∑
bki j∈BKi

ami j
to express

the ratio of backup load in the backup datacenter bdk to the
total backup load of BK. We define εcur

i (q) and εgbi (q) as

the average bias of

∑
bki j∈BKi

ami j∑
BKi∈BK

∑
bki j∈BKi

ami j
to βk(t) in cur and gb,

respectively. Obviously, the smaller value of average bias
means more uniform backup load distribution on backup
datacenters.

Heuristic information ηi
k(q + 1) reflects the prior and

deterministic factors on bdk in the (q + 1)th routing search
process for BKi. We define it with the length of shortest path
from dci to bdk, and the residual storage capacity in bdk. The
heuristic information in the (q + 1)th iteration is as follows:

ηi
k(q + 1) = 
1 · s(bdk)

1 + dis(dci, bdk)
(19)

We use 
1 to adjust the value of ηi
k(q + 1), use

dis(dci, bdk) to denote the length of the shortest path from
dci to bdk, and use s(bdk) to denote the residual storage ca-
pacity in bdk.

3.2.2 Fitness Evaluation

In every iteration, we need to evaluate the fitness of the so-
lution. To realize backup datacenter selection, we focus on
the following metrics: minimum total hop number and fair
load distribution on backup datacenters. So the fitness eval-
uation for a backup datacenter selection solution bds is a
compound function of the two factors above:

f itness1(bds) =
⎧⎪⎪⎨⎪⎪⎩

0 i f
∑

bdk∈BD(t)
znum

ik (t) < 1,∀BKi ∈ BK

α1 · e−hopbds + α2 · e−(1+εbds) otherwise
(20)

εbds =

√
1

|BD(t) − 1|
∑

bdk∈BD(t)

(
loadk − avgload(bds)

)2

(21)

loadk =
∑

dci∈DC(t)

( ∑
bki j∈BKi

(
ami j · yik(t)

))
(22)

avgload(bds) =
1

|BD(t)|
∑

bdk∈BD(t)

(
loadk

)
(23)

To ensure redundancy r, CC-BDS should find at least
one available backup datacenter in every time slot to store
one replica for BKi. We use hopbds to denote the total hop
number in bds. We use εbds to denote the value of backup
load distribution variation in bds. We use loadk to denote the
total backup load on bdk, and use avgload(bds) to denote the
average backup load on backup datacenters. α1 and α2 are
the weighted functions to represent the importance of corre-
sponding factors. We define α1, α2 ≥ 0, and α1 + α2 = 1.
In the real algorithms, different values can be set according
to the requirements of the user. In the simulation, we set α1,
α2 to be 0.6, and 0.4 respectively by experience.

3.2.3 Pseudo Code of CC-BDS

The CC-BDS algorithm is described as follows:
Step 1: Initialize the current solution and the global

best solution. In the current time slot, we choose the backup
datacenter to place replicas for every backup transfer in BKi.
The selection process leverages greedy method to give prior-
ity to the nearest backup datacenter. If the residual storage
capacity of the nearest backup datacenter is insufficient to
store the backup load generated by the backup transfers in
BKi, we will continue to consider the next nearest backup
datacenter until find available backup datacenter. The above
selection result is taken as the initial current solution and the
initial global optimal solution.

Step 2: Initialize the pheromones, etc.
Step 3: Set the number of iterations.
Step 4: In every iteration, we set a group of ants to

search for CC-BDS solutions. Every ant constructs backup
datacenter selection solution for every BKi: we calculate the
selection probability according to (2), use the roulette wheel
selection procedure to select the backup datacenter for ev-
ery BKi, and update the network status. After every itera-
tion, we evaluate the solutions of each ant according to the
fitness function, choose the best one as the current solution,
and update the global optimal solution according to fitness
if necessary. Then we update the value of pheromone.

Step 5: Inspect the terminal condition. If the number
of iterations reaches the given maximum value or the best
solution has not changed for some time, then go to Step 6.
Otherwise, go to Step 4.

Step 6: Return the optimal solution.
The pseudo code of CC-BDS algorithm is as follows:
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Algorithm 2: CC-BDS algorithm
Data: G = (V, E), DC(t), BD(t), BK
Result: backup datacenter selection for every BKi

1 for every BKi do
2 Compute the shortest path to every backup datacenter;
3 Assign it to the nearest backup datacenter bdk;
4 Compute backup load of bdk;
5 if bdk exceeds its backup load capacity then
6 Assign BKi to the next nearest backup datacenter;

7 Set the above selection solution as cur and gb;
8 Initialize pheromone values, etc.;
9 while termination condition not met do

10 for every ant do
11 for every BKi do
12 Calculate heuristic information according to (19);
13 Select the backup datacenter according to (2);
14 Update network G = (V, E);

15 Update the solution set;

16 Evaluate the solutions with fitness function and choose cur;
17 if find a better solution than gb according to fitness function

then
18 Update gb;

19 Apply updating rule (11);

20 Return backup datacenter selection solution;

CC-BDS is terminated when it converges or reaches
maximum iteration number. In every iteration, multiple ants
participate in the candidate set construction process for BKi.
We set m as the number of ants. At most m candidate backup
datacenters are found for BKi, so the time complexity is ap-
proximately O(m · |DC(t)| · |V |).

3.3 FLLD Algorithm

After backup datacenter selection, we allocation bandwidth
to every backup transfer bki j by multipath routing in the time
slot t ∈ {t1, t2, · · · , tr}, to complete data transmission before
the backup deadline.

We define u(euv(t)) as the link utilization on euv in the
time slot t as follows:

u(euv(t)) =

∑
pathi(t)∈path(t)

∑
pi j∈pathi(t)

(
bw(pi j(t)) · xi j

uv(t)
)

c(euv(t))
(24)

In order to reduce the impact on other daily network
services, we aim to minimize the maximum utilization on
all transmission links. Therefore, we formulate the objective
function as:

minimize

(
maximum

(
u(euv(t))

))
(25)

We minimize the maximum link utilization for disaster
backup activity by fair load distribution on links. We use en
to represent the total number of backup transmission links
in the time slot t, and compute the average utilization value

avgu of these links as follows:

avgu =
1
en

∑
euv∈path(t)

u(euv(t)) (26)

To obtain feasible solution, the following constraints
should be satisfied for all bulk backup transfers:( ∑

pathi(t)∈path(t)

∑
pi j∈pathi(t)

(
bw(pi j(t)) · xi j

uv(t)
))

≤ c(euv(t)),∀bki j ∈ BK (27)

bw(pi j(t)) ≥ bbi j(t),∀bki j ∈ BK (28)

∑
v∈V

f i j
uv −

∑
v∈V

f i j
vu =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−bw(pi j(t)) u = bd j

0 otherwise
bw(pi j(t)) u = dci

,

∀bd j ∈ BD(t),∀dci ∈ DC(t) (29)

xi j
uv(t) =

{
1 i f euv is in the path pi j(t)
0 otherwise

,

∀pi j(t) ∈ path(t) (30)√
1

en − 1

∑
euv∈path(t)

(
u(euv(t)) − avgu

)2 ≤ ω2 (31)

The link capacity constraint in (27) ensures that the
overall traffic through every link cannot exceed its maxi-
mum link capacity. The bottom bandwidth constraint in (28)
ensures that the total bandwidth allocated for every backup
transfer should be greater than or equal to its bottom band-
width. We define f i j

uv in (29) as the flow from dci to bd j

through euv. The flow conservation constraint in (29) en-
sures that for every backup transfer, the input traffic equals
to the output traffic at any intermediate node in the trans-
mission paths. The variable value constraint in (30) defines
the value of xi j

uv(t) in different situations. The ω2 in (31) is
a very small nonnegative decimal. The utilization bias con-
straint in (31) limits the gap between the utilization of every
backup transmission link and the average link utilization.

In the following subsections, we define the pheromone,
heuristic information, fitness evaluation, and then propose
the pseudo code of FLLD algorithm.

3.3.1 Pheromone and Heuristic Information

In FLLD algorithm, we realize sufficient bandwidth alloca-
tion for every bki j by multipath routing. We consider fair
load distribution on network links and minimize the maxi-
mum link utilization.

We give the related definitions in every time slot t. For
every bki j, we set unique pheromone and heuristic informa-
tion to avoid mutual interference in the path searching pro-
cess. We define mlucur as the maximum link utilization for
the current solution cur in the qth iteration, and mlugb as the
maximum link utilization for the global best solution gb. Af-
ter the qth iteration, we choose the used links in cur and gb
for bki j, and enhance the pheromone intensity by pheromone
updating as follows:
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τ
i j
uv(q + 1) = (1 − ρ2)(τi j

uv(q)) + Δτi j
uv(q) (32)

Δτ
i j
uv(q) = (μ1χi j(q) + μ2σi j(q)) (33)

χi j(q) =
y

cur,i j
uv

(1 + mlucur)(1 + alucur)(1 + ε
i j
cur(q))

(34)

δi j(q) =
y
gb,i j
uv

(1 + mlugb)(1 + alugb)(1 + ε i j
gb(q))

(35)

y
cur,i j
uv =

{
1 i f euv is in pi j(t) f or cur
0 otherwise

(36)

y
gb,i j
uv =

{
1 i f euv is in pi j(t) f or gb
0 otherwise

(37)

alucur =
1

encur

∑
euv∈path(t)

u(euv(t)) (38)

alugb =
1

engb

∑
euv∈path(t)

u(euv(t)) (39)

ε
i j
cur(q) =

√
1

encur−1

∑
euv∈path(t)

(
u(euv(t)) − alucur

)2
(40)

ε
i j
gb(q) =

√
1

engb−1

∑
euv∈path(t)

(
u(euv(t)) − alugb

)2
(41)

We use ρ2 as evaporating parameter controlling the
evaporating speed of pheromone after every iteration. We
use μ1 and μ2 to express the influences of cur and gb on the
increment of pheromone intensity in the (q + 1)th iteration.
We define alucur and alugb as the average link utilization for
the transmission links in cur and gb, respectively. We use
encur and engb to denote the total number of transmission
links in cur and gb respectively. We leverage ε i j

cur(q) and
ε

i j
gb(q) as the utilization bias between the utilization of every

backup transmission link and the average link utilization in
the qth iteration in cur and gb respectively. It is worth not-
ing that the value of u(euv(t)) might be different in cur and
gb.

Heuristic information ηi j
uv(q + 1) reflects the prior and

deterministic factors on euv in the (q + 1)th routing search
process for bki j. We define it with the residual bandwidth
capacity c(euv) and the link utilization on euv. We use 
2 to
adjust the value of ηi j

uv(q + 1). The heuristic information in
the (q + 1)th iteration is as follows:

η
i j
uv(q + 1) = 
2 · c(euv)

1 + u(euv(t))
(42)

3.3.2 Fitness Evaluation

In every iteration, we need to evaluate the fitness of the so-
lution. To realize load balance on disaster backup transmis-
sion links, we focus on the following metrics: maximum
link utilization and link utilization variation. So the fitness
evaluation for a link load distribution solution lld is a com-
pound function of the two above:

Algorithm 3: FLLD algorithm
Data: G = (V, E), DC(t), BD(t), BK
Result: backup routing for every bki j

1 Set parameters values, initialize pheromone values, etc.;
2 while termination condition not met do
3 for every ant do
4 for every bki j do
5 if its total bandwidth satisfies bottom bandwidth

constraint in (28) then
6 Continue;

7 while not reach bk′i j s backup datacenter do
8 Calculate heuristic information according to

(42);
9 Select the next node according to (2);

10 Compute bandwidth allocaton according to
(27) and (29);

11 if reach bk′i j s backup datacenter then
12 Add the datacenter to pathi(t);
13 Update network G = (V, E);

14 if the next node not exist then
15 Break;

16 Update the solution set;

17 if not satisfy bottom bandwidth constraint in (28) then
18 Goto 3;

19 Obtain cur and evaluate it with fitness function;
20 if find a better solution than gb according to fitness function

then
21 Update gb;

22 Apply updating rule (32);

23 Return link load distribution solution;

f itness2(lld)=
{

0 i f bw(pi j(t)) ≤ bbi j(t),∀pi j(t) ∈ path(t)
α3 · e−(1+mlulld ) + α4 · e−(1+varlld ) otherwise

(43)

varlld =

√
1

enlld − 1

∑
euv∈path(t)

(
u(euv(t)) − avgu

)2
(44)

We use mlulld to denote the maximum link utilization
in lld. We use varlld to denote link utilization variation in
lld. We use enlld to denote the total number of transmission
links in lld. Similarly, we set α3 and α4 to be 0.7 and 0.3
respectively by experience.

3.3.3 Pseudo Code of FLLD

The FLLD algorithm is described as follows:
Step 1: Initialize the pheromones, etc.
Step 2: Set the number of iterations.
Step 3: In every iteration, we set a group of ants to

search for a solution in the current time slot. Every ant
constructs a transmission path for every bki j. First, we
check whether the total bandwidth obtained has met bk′i j s
bottom bandwidth constraint. If so, we stop transmission
path searching for bki j; otherwise, we calculate the selection
probability according to (2), use the roulette wheel selection
procedure to select the next node for every bki j. If the ant
reaches the backup data center designated by CC-BDS algo-
rithm, we record the transmission path, updates the network
status, and successfully ends the search run for transmission
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path; if there is no next available node, the transmission path
search fails and is terminated. For every bki j, if the total allo-
cated bandwidth by multipath routing is less than its bottom
bandwidth bbi j, the search process will continue until the
convergence condition is satisfied, for example that the total
bandwidth satisfies rate requirement or the iteration number
reaches a specified value. We obtain the current solution
with the path set, and update the global optimal solution ac-
cording to fitness if necessary. Then we update the value of
pheromone.

Step 4: Inspect the terminal condition. If the number
of iterations reaches the given maximum value or the best
solution has not changed for some time, then go to Step 5.
Otherwise, go to Step 3.

Step 5: Return the optimal solution.
The pseudo code of FLLD algorithm is as shown in the

previous page.
Similarly, we set m as the number of ants, and set |bk|

as the number of backup transfers. For every bki j, at most m
paths are generated, so the time complexity is approximately
O(m · |bk| · |V |).

4. Performance Evaluation

4.1 Environment and Configuration

We compare PFDB algorithm with three representative al-
gorithms. First, we implement the basic one-to-many dis-
aster backup transmission algorithm which minimizes the
maximum link utilization (Basic-MinMax). Second, we
choose the Fair-Rotating and Ratio-Aware Ant Colony Op-
timization (FRRA-ACO) algorithm in our earlier work [14].
FRRA-ACO specifies flow allocation ratio among backup
datacenters with limited receiving capacity, and leverages
rotary routing search and ratio adjustment rules to realize
fair bandwidth allocation for multiple concurrent transfers.
Third, we choose the bulk transfer scheduling algorithm
among multiple datacenters (SnF-LexMin-eTEG) [7]. SnF-
LexMin-eTEG lexicographically minimizes the network
congestion vector with store-and-forward assisted transfer
mode, to reduce link congestion and balance the entire net-
work traffic.

We implement above algorithms on a DELL
OPTIPLEX 9020 server equipped with eight Intel(R)
Core(TM) i7-4790 3.60 GHz CPUs and 8 GB RAM. We
perform experiments on the Waxman model [23], which is
very close to the real network and is used to generate ran-
dom network topologies. In our proposed algorithms (i.e.,
FRRA-ACO [14], and PFDB), we set the maximum itera-
tion number as 50 and the ant number as 50 at the beginning.
If there is no evolution in four consecutive circulations, the
circulation would stop.

In evaluation experiments, we set available bandwidth
uniformly distributed on each link within [1000, 2000]
(Gbps). To guarantee sufficient data redundancy, we set the
required replica number r = 3, and divide 3 time slots ac-
cordingly. We set backup transmission deadline as 120 min-

Fig. 3 30-node network topology.

utes according to previous research [5]. We consider two
situations. In the first case, we generate a 30-node net-
work topology as shown in Fig. 3. We use the numbers to
denote available bandwidth on the links. We select node
1, 11, 14, 18, 22 and 26 as backup datacenters, observe
performance comparison with the increase of total backup
data amount. Large enterprises such as Google can pro-
cess about 100 PB data daily in geo-distributed applica-
tion DCs [11]. Normally, not exceeding five percent of the
daily data requires backup [24]. Therefore, we set the total
backup data amount ranging from 0.5 PB to 5 PB. In the
second case, we fix the total backup data amount as 3 PB,
and observe performance comparison with the increase of
node number ranging from 10 to 60.

4.2 Simulation Results

We compare PFDB with other algorithms from the aspects
of maximum utilization and average utilization on transmis-
sion links, and backup load distribution on backup datacen-
ters. At last, we observe the performance changes of PFDB
with different values of φ and ϕ in Pv(q + 1).

4.2.1 Maximum Link Utilization

In Fig. 4 and Fig. 5, we illustrate the comparison of maxi-
mum link utilization with the increase of data amount and
number of nodes (including intermediate nodes, source dat-
acenters and backup datacenters), respectively. Especially
for performance evaluation of PFDB based on RA-TEN
model, we observe its maximum link utilization in different
time slots.

FRRA-ACO has not considered load balance on trans-
mission links. It leverages rotary routing search to utilize
network transmission capability on different links in itera-
tive runs and prune flows by ratio adjustment rules. How-
ever, in order to realize proportional bandwidth allocation,
congestion on some links is still unavoidable. Obviously,
FRRA-ACO always fully utilizes some links in every time
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Fig. 4 Comparison of maximum link utilization with increase of data
amount.

Fig. 5 Comparison of maximum link utilization with increase of node
number.

slot to achieve its optimization objective. Therefore, we
have not added it into the comparison of maximum link
utilization. Basic-MinMax and SnF-LexMin-eTEG have
not considered choosing different backup routing to miti-
gate congestion for multiple replicas of the same backup
data in each time slot. In other words, their transmission
paths will remain unchanged in different time slot. In that
case, we choose the maximum link utilization value among
all time slots for comparison. SnF-LexMin-eTEG outper-
forms Basic-MinMax because it provides better balance on
the traffic by lexicographically minimizing the network con-
gestion with store-and-forward transmission mode.

PFDB guides ants to search for backup transmission
paths jointly considering maximum link utilization of ex-
isting solutions, and residual bandwidth capacity and uti-
lization on the candidate links. Although its performance is
inferior to that of SnF-LexMin-eTEG in the first time slot
(t = t1), PFDB improves its performance significantly in the
subsequent time slots (t = t2 and t = t3). The possible rea-
sons are: (1) PFDB releases some link capacity occupied by
backup transfers in the first time slot. This measure helps
to reduce utilization on these busy links. (2) PFDB changes
the role of original source datacenter to normal node and
chooses new source datacenter in every new time slot. This
measure not only mitigates forwarding burden on source
node, but also utilizes idle capacity on some links among

Fig. 6 Comparison of average link utilization with increase of data
amount.

Fig. 7 Comparison of average link utilization with increase of node num-
ber.

datacenters. (3) PFDB leverages role-switching method in
every time slot. We can construct new path set for backup
transfer to adjust backup load distribution on critical links.
Most of the time, PFDB outperforms Basic-MinMax and
SnF-LexMin-eTEG in reducing maximum link utilization.

4.2.2 Average Link Utilization

In Fig. 6 and Fig. 7, we compare the average link utilization
among Basic-MinMax, SnF-LexMin-eTEG, FRRA-ACO,
and PFDB with increase of data amount and node number,
respectively. Although FRRA-ACO specifies flow alloca-
tion ratio for backup datacenters, there is no further load
adjustment on transmission links after proportional band-
width allocation, especially for those shared links. SnF-
LexMin-eTEG performs better than Basic-MinMax and
FRRA-ACO, because it leverages store-and-forward to mul-
tiplex idle links in time dimension and iteratively optimizes
the maximum link congestion. With lowest average link uti-
lization, PFDB outperforms others not only because of pos-
itive feedback and heuristic search for load balancing, but
also benefits from the progressive backup procedure with
role-switching method in every time slot to utilize idle links.

4.2.3 Backup Load Distribution

As in our earlier work [14], [25], to obtain greater clarity
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about the comparison of backup load distribution fairness
on backup datacenters among different algorithms, we in-
troduce the metric called fairness ratio. We define it as the
ratio value of fairness between these algorithms. We first
define the fair load distribution factor with γ as follows:

γ = 1 −
√

1
bn − 1

∑
bdk∈BD

(γbdk − γ)2 (45)

γbdk =

∑
dci∈DC

(
yik(tr) · (ami j)

)
s(bdk(tr))

,∀bdk ∈ BD (46)

γ =
1

bn

∑
bdk∈BD

(∑
dci∈DC

(
yik(tr) · (ami j)

)
s(bdk(tr))

)
(47)

Here we use bn to denote the number of backup data-
centers in BD. We use γbdk to denote the ratio of total backup
data amount in a backup datacenter bdk to its own storage
capacity. We use γ to denote the average value of γbdk for
all backup datacenters. We compute γ in the time slot tr to
observe the final load distribution on backup datacenters.

And then, we run algorithms to get their fair load dis-
tribution factor as γBasic, γS nF , γFRRA and γPFDB. We choose
the fair load distribution factor of one algorithm as standard
value (usually the factor with largest value), and evaluate
backup load distribution by the ratio of standard value to the
fair load distribution factor of other algorithms. In this pa-
per, we calculate the fairness ratio of FRRA-ACO to other
three algorithms as follows:

f rFRRA−Basic =
γFRRA

γBasic
(48)

f rFRRA−S nF =
γFRRA

γS nF
(49)

f rFRRA−PFDB =
γFRRA

γPFDB
(50)

Obviously, smaller fairness ratio implies better balance
of backup load distribution among all destination nodes. In
Fig. 8 and Fig. 9, we illustrate the comparison of fairness
ratio with increasing data amount and node number, respec-
tively. FRRA-ACO outperforms others because it constructs
network transmission model which specifies flow ratio to
backup datacenters according to their receiving capacity and
therefore controls backup load distribution to achieve load
balance on backup datacenters. Neither of Basic-MinMax
and SnF-LexMin-eTEG has considered load balance prob-
lem on backup datacenters. But the latter performs better
because it lexicographically and iteratively minimizes the
maximum link congestion, favorable for more balanced load
distribution. PFDB guides backup datacenter selection pro-
cess to ensure the approximation of backup load ratio to
storage capacity ratio for every backup datacenter in CC-
BDS, to achieve uniform backup load distribution. For con-
venience of flow scheduling to balance link load, we do not
limit the flow ratio to backup datacenters as in our earlier
work [14]. But PFDB still achieves uniform distribution of
backup load on backup datacenters and outperforms Basic-
MinMax and SnF-LexMin-eTEG.

Fig. 8 Comparison of fairness ratio with increase of data amount.

Fig. 9 Comparison of fairness ratio with increase of node number.

Fig. 10 Comparison of maximum link utilization with increase of data
amount.

4.2.4 Performance Changes of PFDB

In the previous experiments, we set φ = 0.8 and ϕ = 0.4 in
Pv(q + 1). Here we evaluate link utilization and load distri-
bution while changing values of φ and ϕ. We set φ = 0.4 and
ϕ = 0.8, φ = 0.8 and ϕ = 0.4, φ = 1 and ϕ = 0.2, respec-
tively, and carry out experiments in the first case of Sect. 4.1.
In Fig. 10, Fig. 11 and Fig. 12, we illustrate the comparison
with different values of φ and ϕ. Special to note is that, we
choose the time slot t = t2 to observe maximum link utiliza-
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Fig. 11 Comparison of average link utilization with increase of data
amount.

Fig. 12 Comparison of fairness ratio with increase of data amount.

tion, because the optimization effect is most obvious in this
time slot.

As in Fig. 12, PFDB performs best in load distribu-
tion fairness when φ = 1 and ϕ = 0.2, because the larger
pheromone weight can lead to more emphasis on fair load
distribution in the backup datacenter selection stage. But
at the same time, the influence of heuristic information
is weakened, reduceing the attention to the distance be-
tween source datacenter and backup datacenter. Then in
the link load distribution stage, more transmission links may
be occupied, and the difficulty of link utilization optimiza-
tion increases. As a result, the optimization effect of link
utilization with φ = 1 and ϕ = 0.2 is not the best among
these cases.

In the case of φ = 0.4 and ϕ = 0.8, the influence of
pheromone is weakened in the link load distribution stage,
reducing the attention to maximum link utilization and aver-
age link utilization. Therefore, the performance in reducing
link utilization is not ideal. The same situation also occurs
in the backup datacenter selection phase: weakened influ-
ence of pheromone reduces the attention to the fairness of
backup load distribution and therefore the performance in
backup load distribution is not ideal.

With the setting of φ = 0.8 and ϕ = 0.4, PFDB obtains
relatively good performance in reducing link utilization and
improving load distribution fairness simultaneously. There-

fore, we use this setting in the implementation process of
PFDB.

5. Conclusion

We focus on the load balance problem in disaster backup
transmission among cloud datacenters. We formulate a new
two-step problem consisting of facility location and fraction
multi-commodity flows over time, propose progressive for-
warding strategy to distribute backup loads, and mitigate
burdens on backup datacenters and transmission links in
different time slots with a two-step algorithm in which ev-
ery backup datacenter acts as backup-and-forward center by
the role-switching method over time. Under the condition
of guaranteeing transmission completion and backup redun-
dancy, our strategy achieves good performance with lower
maximum link utilization, lower average link utilization,
and acceptable backup load distribution fairness on backup
datacenters.

For further research, we will aim at reducing disaster
backup cost with multicast jointly considering backup data-
center selection and transmission paths.
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