
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019
2441

PAPER

CAWBT: NVM-Based B+Tree Index Structure Using Cache Line
Sized Atomic Write

Dokeun LEE†a), Member, Seongjin LEE††b), and Youjip WON†††c), Nonmembers

SUMMARY Indexing is one of the fields where the non-volatile mem-
ory (NVM) has the advantages of byte-addressable characteristics and fast
read/write speed. The existing index structures for NVM have been devel-
oped based on the fact that the size of cache line and the atomicity guar-
antee unit of NVM are different and they tried to overcome the weakness
of consistency from the difference. To overcome the weakness, an expen-
sive flush operation is required which results in a lower performance than
a basic B+tree index. Recent studies have shown that the I/O units of the
NVM can be matched with the atomicity guarantee units under limited cir-
cumstances. In this paper, we propose a Cache line sized Atomic Write
B+tree (CAWBT), which is a minimal B+tree structure that shows higher
performance than a basic b+ tree and designed for NVM. CAWBT has
almost same performance compared to basic B+tree without consistency
guarantee and shows remarkable performance improvement compared to
other B+tree indexes for NVM.
key words: non-volatile memory, key-value store, index structure, B+tree

1. Introduction

The introduction of NVM [1]–[4], that provide persistency
and have comparable access speed of DRAM, have initiated
novel approaches in NVM file systems [5]–[8] and persis-
tent heaps [9]–[12]. There are substantial gains in exploit-
ing NVM in both of the research fields because file system
metadata, database logs, and indexes which are small in size
are not only accessed frequently but also have to maintain
its persistency.

Since index plays significant role in improving perfor-
mance in file systems, key-value stores, and databases, the
research community have proposed various B+tree based in-
dex structures for NVM [13]. However, there is a critical is-
sue in ensuring consistency while storing index structure in
NVM. Since CPU cache is volatile the issue is inevitable. In
order to make the index structure consistent with the orig-
inal data in the system, cache lines in the CPU must be
flushed with clflush or mfence commands. Typical la-
tency of clflush is known to be 25ns and it is reported that
theses commands greatly degrades the I/O performance of

Manuscript received February 4, 2019.
Manuscript revised July 17, 2019.
Manuscript publicized September 12, 2019.
†The author is with the Department of Computer Software,

Hanyang University, Seoul, Korea.
††The author is with the Department of Aerospace and Software

Engineering, Gyeongsang National University, Jinju, Korea.
†††The author is with the School of Electrical Engineering,

KAIST, Daejeon, Korea.
a) E-mail: matureelf@hanyang.ac.kr
b) E-mail: insight@gnu.ac.kr (Corresponding author)
c) E-mail: ywon@kaist.ac.kr (Corresponding author)

DOI: 10.1587/transinf.2019EDP7034

Fig. 1 The percentage of total insertion time in basic B+tree (BS: Bi-
nary search(), Ins: Insert(), Clf: clflush(), Insw: Insert Wrapper(), Spl:
Split(), Isf: Is Full())

NVM [14].
Figure 1 shows the average percent of the time taken

by each function while inserting 500k key value pairs to a
B+tree with clflush. The performance is measured with
gprof [15] on a DRAM based system. The result shows that
binary search() and clflush() spends about 38% and
15% of the total time, respectively. The result clearly shows
that it is important to optimize read operations in NVM and
reduce the number of clflush.

To provide consistency for B+tree based index while
maximizing the performance of NVM, we need to exploit
atomic write and decide the size of a node such that it does
not call additional operations. The use of atomic write is
a quite common practice in providing consistency. Along
with WB+tree [16] many works are based on the fact that
the size of atomic write is 8 bytes [6], [7], [17]–[20]; how-
ever, evidently 8 byte is too small in size to store all the
important information of a node. To address the issue of
the size of atomic write, some works divide a node into two
where only the essential part of the node is stored in NVM
for the consistency. In the case of sorting in WB+tree, it ex-
ploits 8 byte atomic write to decrease the number of writes
to NVM; however, it has adversary effect of increasing the
number of reads to fetch the rest of data of a node. To decide
the size of a node, we need to make sure the issued size of
read and write operation is aligned to cache line, the size is
not too small to invoke split operation, and also not too large
to increase the time of binary search operation.

In this paper, we introduce CAWBT to address the is-
sues. In order to maximize the input/output performance of

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers



2442
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

B+tree, we optimized insert and search operation by tailor-
ing the size of the operation to the size of cache line. Es-
sential portion of a node in index to maintain consistency is
stored in NVM and the rest of the node is kept in DRAM.
We employ cache line sized atomic write to make a portion
of a node in NVM is consistent as well as to increase the
size of data of a node in NVM. We further employ minimal
logging and recovery mechanism to ensure all the data is
consistent even in a split operation where it requires more
than a cache line sized atomic writes.

2. Background and Related Work

This section describes basic techniques for consistency
guarantee in NVM and their problems and discusses ap-
proaches to existing techniques for solving problems.

2.1 Consistency Guarantee in NVM

The clflush and mfence commands are required to ensure
consistency between the volatile CPU cache and the NVM.
clflush is used to force the value stored in the dirty cache
line into memory, and mfence is an instruction that prevents
the order of memory access instructions from being changed
due to CPU reordering. clflush and mfence must be used
at the same time to ensure complete consistency, and these
two commands are generally known as expensive. B+tree
based index structure invokes many additional NVM writes
during the split operation and during sorting intra nodes.
A single atomic write is not sufficient to keep consistency
because the size of the NVM write can be larger than the
failure-atomicity unit.

Traditional methods for solving this problem are log-
ging and copy-on-write (CoW). Logging ensures consis-
tency by recording changes in the node and redo or undo
the transaction, and CoW guarantees consistency by creat-
ing a copy and updating only the pointer that accesses the
copy. However, these techniques also require additional
NVM writes, which degrade the overall I/O performance
of the index structure. The slow NVM write performance
is coupled with clflush which is used for maintaining
the consistency, resulting in more substantial performance
degradation.

2.2 Data Structures for NVM

2.2.1 CDDS B-Tree

The CDDS b-tree [14] is a b-tree that records a node’s up-
dated version when keys are inserted to the nodes. When the
key update, the node is not overwritten. Instead, CDDS b-
tree makes a new copy of the node with a new version num-
ber. The old node becomes garbage, and it is maintained for
consistency and recovery. When a crash occurs during the
update, it is possible to recover using the previous version
of the data. Providing consistency through version control

is the most significant advantage of this data structure; how-
ever, there is garbage collection overhead and it also does
not offer clflush-related optimizations. For those reasons,
the performance of CDDS b-tree is lower than other data
structures for NVM in terms of insert and search operations.

2.2.2 NV-Tree

NV-Tree [21] maintains all non-leaf nodes in DRAM space.
These nodes are created consecutively in memory space,
and NV-Tree does not consider the consistency for non-leaf
nodes for performance. Instead of that, NV-Tree maintains
leaf nodes in NVM for the consistency and uses the append-
only update for performance of insert operation. NV-Tree
uses clflush only for leaf nodes, and there is no sorting of
leaf nodes; consequently, the insertion performance is im-
proved. However, because NV-Tree maintains pre-allocated
index, it is possible to overflow when the number of inserted
key exceeds the allocated size. When overflow occurs, all
non-leaf nodes are deleted, and a new index is reconstructed;
thus, whole index performance is degraded.

2.2.3 wB+Tree

wB+tree [16] uses append-only update to prevent the sort-
ing of intra node key, which is the operation that generates
flushes the most in B+tree structure and proposed new meta-
data called slot array to store the order key. The consis-
tency is guaranteed by using the 8-byte atomic update and
indicating updated slot by exploiting the bitmap. wB+tree
uses append-only updates, but because the slot array knows
the order of keys for nodes, it is possible to handle a range
query. wB+tree reduced the number of flushes compared to
previous NVM data structures; however, it still requires at
least four flushes to update a node. wB-Tree did not pro-
pose a particular technique for split operations, and it has
overheads to access the slot array and bitmap.

2.2.4 FPTree

FP-Tree [19] is data structure that maintains non-leaf nodes
in DRAM while leaf nodes are kept in NVM like the NV-
Tree. FP-Tree maintains the concurrency while accessing a
non-leaf node using hardware transactional memory by al-
locating non-leaf nodes to DRAM. This data structure sug-
gests a way to reduce cache miss ratio through fingerprint-
ing. Although FP-Tree performs better than NV-Tree, there
is still overhead of reconstruction like NV-Tree in case of a
system crash.

2.2.5 HiKV

HiKV [13] is a KV-store consisting of a hybrid structure of
hash and B+tree. The KV operations like put, get, and up-
date has excellent performance in hash. However, the scan
(range query) operation cannot be performed in hash; there-
fore, hash cannot be used for various DB and KV index-
ing structures. The B+tree has a good structure for scan,



LEE et al.: CAWBT: NVM-BASED B+TREE INDEX STRUCTURE USING CACHE LINE SIZED ATOMIC WRITE
2443

but it has poor performance in NVM because of key sort-
ing. HiKV places the B+tree in the DRAM and arranges
hash in the NVM so that operations that have a favorable
hash such as put and get are processed directly by the NVM,
and the scan is processed by b+ tree. The goal of HiKV is
to increase the performance of processing single instruction
to handle many concurrent transactions of hybrid indexes,
and to minimize the overhead of maintaining consistency
between two structures. To solve this problem, HiKV de-
signed dual structures of serving thread and backend thread.
The serving thread handles the put or get operation in hash
and handles scan operation in B+tree. The backend threads
move data inserted in hash into B+tree. HiKV has proposed
a dynamic thread adaption scheme that dynamically adjusts
the number of threads for many concurrency processes, and
introduces key-based hash partitioning. To ensure the con-
sistency, B+tree in HiKV exploits using hardware transac-
tional memory (HTM), and lock per partition for hashing.

2.2.6 Fast-Fair Tree

Fast-fair tree [22] is a B+tree that acts as a mechanism to
allow node inconsistency temporarily. They mandate that
duplicate keys are not allowed, and if duplicate keys are de-
tected during insert or search operation, they are regarded as
inconsistent state. The inconsistent node can be recovered
back to the consistent state through shift operation without
a forced flush, but detecting duplicate keys for every search
operation can adversely affect index performance.

2.2.7 Multi-Word Atomic Update

Wang et al. designed a lock-free index using the PMw-
CAS [23], which can atomically update multi-words. PMw-
CAS is similar to a software transaction. This technique
manages the collision of multiple threads by tracking the
status of the memory addresses (operation, old value, new
value, dirty bit, and so on) and then atomically applying
compare-and-swap. PMwCAS provides APIs to developers
to manage the NVM layer easily; however, this technology
still has problems with software transactions. The memory
read/write overhead for managing the descriptors is obvious
and this weakness is more noticeable in NVMs, which have
relatively slow performance compared to DRAM.

2.3 64 Byte (Cache Line) Atomicity

Most of the existing NVM index structures have been devel-
oped based on the fact that memory I/O unit (cache line, 64
bytes) and failure-atomicity guarantee unit (8 bytes) are dif-
ferent. However, in the part of recent studies, it is claimed
that the failure atomicity unit may be larger than the 8 bytes.
In particular, PMFS [7] mentioned that cache line sized
atomic writes are possible by using Restricted Transactional
Memory (RTM). In Strata [24], the metadata consistency
guarantee unit is designed to be 64 bytes, which implicitly
indicate that the consistency guarantee unit is 64 bytes.

3. Design

Operations such as clflush and mfence are expensive but
inevitably used for consistency of NVM. Therefore, to im-
prove the performance of B+tree index in NVM, it is essen-
tial to reduce the frequency of flush regarding writing. It is
also important to optimize the read because the reads are the
most significant part of the overall operation. In this study,
the primary purpose is to achieve both of the optimizations
at the same time and to use the hardware performance of
NVM as much as possible. In this paper, we focus on the
B+tree structure optimization using cache line sized atomic
write. If the failure-atomicity unit is a unit of a node of
B+tree, the number of flushes can be reduced to a minimum
because there is no need for multiple flushes in sorting the
keys in a node. In this case, search performance (read) is al-
most close to the basic B+tree’s search performance, since
mfence is not needed and no additional metadata is needed
to ensure consistency. As discussed in Sect. 2.3, recent stud-
ies have shown that cache line sized atomic writes are feasi-
ble.

In this study, we optimized the size of one node of
B+tree to 64 bytes based on recent studies. 64 byte (size of
the cache line) is a small size for representing the necessary
information of one node of B+tree, but the minimum infor-
mation can be expressed. 64 byte is a size that can barely
represent information of B+tree of degree 3. When the de-
gree is 3, the split operation occurs at least once every two
key inserted in the B+tree. Since the split operation is the
most expensive in the B+tree where write occurs on at least
three nodes, performance degradation due to the increase in
split operation’s count may be larger than gain obtained by
minimizing the consistency guarantee cost for the low de-
gree. In this study, CAWBT reduces the size of information
which is written to one node to prevent this problem. For
this purpose, we designed specific techniques such as flag
embedding and the ID table.

Another problem with split operation is that the amount
of information that needs to be written to NVM is larger than
the cache line size of atomic writes. This means that the con-
sistency guarantees for split operation cannot be done with
one atomic write; therefore, another consistency guarantee
technique is needed. Previous research have not provided a
specific solution for ensuring consistency during split oper-
ation. In this study, we focused on the fact that the infor-
mation required for redo recovery can be contained in one
64byte atomic write. We have developed a minimal logging
technique to minimize the overhead in logging base on that
fact. The design goals in this paper are summarized as fol-
lows. First, minimization the use of clflush and mfence
by exploiting cache line sized atomic write. Second, node
structure optimization for minimizing the occurrence of log-
ging due to the increase of split operation. Third, the op-
timization of logging structure to obtain fast performance.
Fourth, the recovery method for maintaining the consistency
of the entire data structure. Fifth, the optimization of an in-



2444
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

Fig. 2 Index structure

tra node key sorting for fast insertion/search. Sixth, the opti-
mization of the B+tree search algorithm for reducing mem-
ory access.

3.1 Consistency Model

The consistency of NVM index structure is as important as
the performance, so it must meet the ACID property like in
a database. However, this study does not support durabil-
ity because we are dealing with index structure rather than
standalone KV store. The operation which changes data in
B+tree index mostly is update at a node and split operation
involving at least three nodes. The cache line size atomic
write guarantees both atomicity and consistency in the intra
node update. Split operations cannot guarantee atomicity
and consistency with a single atomic write because multi-
ple nodes are updated during the operation. In this case, we
guarantee the atomicity in each updates of node using cache
line sized atomic write, and the whole split operation main-
tains consistency using redo logging.

3.2 Index Structure

3.2.1 Overall Structure

The overall structure of the index is shown in Fig. 2. There
is a B+tree structure in NVM, which is main index structure
and in DRAM, there is a mapping table linking ID and KV
pair. ID is registered in ID table and is used in nodes instead
of a large-sized key. The ID is required to reduce the num-
ber of the split operation. The key can be found through
the ID table, and all operations which are referring to the
key will access the ID table. If the ID table is placed in
the NVM, it affects I/O performance of index because it in-
curs the consistency guarantee cost (clflush and mfence).
Therefore, this table is placed in DRAM and is designed to
be reconstructed when the system crash occurred. Through
this, CAWBT can eliminate the consistency guarantee cost
while reducing the number of split operations.

Figure 3 shows the linking between the leaf nodes and
the ID table. All non-leaf nodes always references the ID
table to access the key. However, unlike a non-leaf node, a
leaf node stores a pointer to an actual key in the space which
stores a child node pointer. Since the table is in DRAM, we

Fig. 3 The relation between the leaf node and the ID table

use this design to recover the ID table when data is lost. For
the recovery of ID table, the leaf node is designed as a dual
structure that can access the KV pairs through the ID and
the pointer stored in the node.

3.2.2 Node Structure and the ID

The main feature of CAWBT is use of cache line size atomic
write for intra node updates. If the size of a node of
the B+tree matches the size of the cache line, consistency
can be guaranteed with single clflush without additional
clflush that is inevitably used to ensure consistency in the
key sorting of intra node. This case is theoretically the best
update speed for a node except for the case where there is
no clflush, because it guarantees consistency at the same
time as the update of the node.

The challenge here is that split operation frequently oc-
curs due to small size of nodes. Split operations require ad-
ditional consistency guarantees costs because they exceed
the size of writes that can be guaranteed with atomic writes
of a single cache line. They cause additional NVM writes
and clflush/mfence, so frequent split operations degrade
the overall performance of index.

The number of split operations is proportional to the
degree of tree. The maximum degree of tree is 3 (parent
pointer 1, key 3, child pointer 4) because 8 bytes are needed
to represent one address based on the 64-bit computing en-
vironment, and generally, 8 to 16 bytes size is used. The
five pieces of information representing the address make it
difficult to reduce the size, and there is no significant benefit
even if the address bit is reduced because the redirection is
expensive.

In this study, the number of bits that represent key is
reduced to increase the degree of tree by one. For this pur-
pose, the number of nodes is increased by one by using the 4
byte ID instead of the 8byte Key. Because one child pointer
and one ID are needed to increase the degree by one, the
degree that can be increased by 4-byte ID is maximum 4.
Since the number of bits expressing the address is always
fixed, it is difficult to increase the degree. Since the size of
the ID is closely related to the range of the expressible key,
if the ID is small, there is a problem with the expandability
of the index structure. 2 byte ID can represent 65536 keys,
and 3-byte ID can represent about 16.78 million keys, which
is too low to cover the scope of large databases used in the
industry. Increasing the degree to 4 can improve the index’s



LEE et al.: CAWBT: NVM-BASED B+TREE INDEX STRUCTURE USING CACHE LINE SIZED ATOMIC WRITE
2445

Fig. 4 The structure of non-leaf node

Fig. 5 The structure of leaf node

insert/search capabilities, and it can provide enough range.
The experiment shows that the number of splits decreased
by about 167% when the number of nodes was increased
from 3 to 4 in 0.5M nodes insertion.

The structure of the non-leaf node and leaf node de-
signed based on this is shown in Fig. 4 and Fig. 5. One non-
leaf node is 64 bytes, and it includes six pointers and four
IDs. In a 64-bit computing environment, a pointer occupies
8 bytes, and an ID occupies 4 bytes. P Pointer& Metadata
is the area where the pointer to the parent node coexists with
the leaf bit, and the ID is recorded in the ID table and acts
as an intermediary of the key. Sub P is a pointer to a child
node. The basic structure of a leaf node is the same as for
a non-leaf node, and the location of the actual KV pairs is
recorded instead of the child pointer.

3.2.3 ID Table

In the basic B+tree structure, the key is stored in the non-
leaf node and serves as a separator in the search operation.
As discussed above, CAWBT uses the IDs instead of keys to
reduce the split count. In this structure, there is an advantage
to support a variable key size naturally. Since the ID is used
instead of the key as a delimiter of the node, a mapping table
in which the ID corresponds to which key is required. In this
study, we did not think that this mapping table must be in
the NVM space. The reason is that placing additional tables
in NVM is costly; it requires more expensive NVM space,
and if the table is placed in the NVM, the I/O performance
of the entire index is deteriorated because it is necessary to
use a consistency maintaining technique. Since NVM has
lower I/O performance than DRAM, this will also degrade
the performance of the index. This table is a structure that
can be re-built through leaf node traversal, so there is no
reason to be in NVM.

The ID table is designed as a fixed array to improve ac-
cess speed. The ID table is a data structure that is accessed
frequently in all operations of the index; thus it is very im-
portant to make it as concise as possible. For a more efficient
spatial management of the ID table, the number of memory
access (‘*’, reference) per binary search is doubled (1 ID, 1
pointer) when designing with a variable data structure such
as linked-list. It is because the memory reference operator
‘*’ always access memory even if the value is in cache al-
ready. In a fixed array, the ID is the same as the array index,
so it can access the memory only once.

Fig. 6 Log structure

If a new insertion occurs, the ID must be assigned to
the key to be stored. Even if there is an empty slot in the
ID table, it is ignored and assigned to a slot that is larger
than the recently assigned ID (slot number). In other words,
the number of inserts and ID are the same, and the ID is
assigned by the insert number counter. If the number of
inserts exceeds the maximum number of the ID table, ID is
assigned by searching for a list in which previous deleted
IDs are recorded. The reason for this design is that the ID
table can have a large size according to the range of the key,
because the search of the ID table for assigning the ID also
adversely affects the insert performance.

3.3 Fast Search Algorithm

Since CAWBT accesses the key in the ID table, it is possi-
ble to access the key without having to follow pointers to a
leaf node. That is, the IDs existing in the non-leaf nodes can
be found without searching through until leaf nodes. In an
experiment to search 10 million KV pairs, 33,350,913 keys
are quickly accessed through fast search algorithm and the
other 6,649,098 keys are searched at the leaf node. The ex-
periment showes about 12% improvement in performance
compared to a general search.

3.4 Minimum Redo Logging

When split operation occurs, the amount of data to write ex-
ceeds 64 bytes, so it cannot maintain consistency using the
cache line sized atomic write. Therefore, the split opera-
tion has to use CoW or general logging techniques. Among
the logging techniques, undo logging requires at least two
nodes of the source node and the parent node to be logged,
so it writes at least 128 bytes of data to the log. In this case,
the logging data cannot be written with the single clflush,
which degrades logging performance. Also, it is hard to sup-
port atomicity in continuous split operations through undo
logging. In the case of redo logging, the only data needed is
32 bytes of data (two IDs and three-pointers to child nodes)
and 24 byte pointers (pointers to the source, the parent node,
and the new node to be created). These data can be written to
the log with the single clflush; therefore, redo logging can
improve the performance of logging. Based on these facts,
we designed a 64 byte log structure by adjusting the size of
the log header, as shown in Fig. 6. As shown in the figure,
the data copied from the split node are ID 3, 4, child pointer



2446
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

3, 4, 5, and the addresses of the three nodes involved in the
split operation. In the case of a continuous split operation,
it is likely that multiple log records are needed, but since
there is redo logging, only one log record exists in one split
operation. This is an advantage of simplifying the logging
algorithm. If a crash occurs during a sequential split opera-
tion, CAWBT only performs a restore operation on the node
that crashed and continues with the next split.

At the start of logging, CAWBT records the magic
number first and proceed with logging. When the index
restarts due to a crash, CAWBT checks the status number
in the log header. If it is 0, no crash occurs. If the status
number is recorded in the log header, CAWBT considers
the crash happens. In this case, the split operation will be
restarted using the data recorded in the log.

3.5 Concurrency Control

CAWBT controls concurrency with two policy; the policy
for read concurrency and the policy for write concurrency.
The search is a read oriented operation, and insert and delete
are write oriented operations. In the case of read operations,
CAWBT does not have any special control over threads be-
cause it is not necessary to adjust the order of operations of
threads even when multiple threads access the index.

In the case of write operation, however, it needs to op-
erate in a more conservative point of view considering the
persistency of NVM. When multiple threads try to write,
only one thread modifies the index through global lock. In
CAWBT, the fanout of the tree is small because one node
is an extremely small index. If the fanout is small, the
height of the tree grows, which means that a continuous
split operation increases the number of nodes that need to
be accessed and modified. In node-specific locking such as
Masstree [25], CAWBT affects the latency of other threads
because one thread can occupy the node with the maximum
height of the tree, it is inefficient.

3.6 Key Size for Performance

Unlike other data structures, CAWBT structure supports
variable key sizes and has stable performance regardless of
the size distribution of key and value. Because the key is
fetched through the ID table, there is no time difference in
accessing the key other than the time to allocate space for
key storage or to read and write key. In addition, in the user
level memory allocator such as malloc(), since the mem-
ory allocation time according to the request size does not
show a significant difference, the performance of the index
is not different according to the size of the key and the value.

4. Implementation

4.1 Basic Operations

CAWBT implemented based on the bare-bone B+tree, ex-
cept for the additional operations that required due to the

change of the node structure. One of the differece is the bit
operation that hides the flag bit which represents leaf. An
other one is ID table references which occurs in all B+tree
operations. Like the recent researches, the CAWBT main-
tains the consistency inside one node through forced flush-
ing (clflush). In the case of split operations that can not
be covered by a single atomic write, the CAWBT maintains
the consistency through minimum logging.

4.2 Optimization of the CAWBT Node Structure

The basic operations of the B+tree require information like
keys, addresses of child nodes, address of the parent node,
flag which represents the leaf node, address of the sibling
node, and the number of keys inside node. Since 64 byte
node is too small for storing all the information, we removed
the optional fields optimization of node structure. The ad-
dress of the sibling node is used only in the traverse, and the
number of keys in the node is obtained by counting the num-
ber of non-zero keys; therefore, we removed the two fields.
The flag which represents the leaf node requires only 1 bit;
however, at least 1 byte (char) must be allocated for memory
allocation in the C language, thereby wasting space. This
problem is solved by the flag embedding which hides the
flag inside the address of the parent node exploiting bit cod-
ing. The 64-bit address can store the leaf flag bit in this
space because the end of the address is always ending with
0x000. Because flag embedding requires decoding, there
is a small overhead on index performance. However, since
the parent’s address is used only in the split operation, the
performance degradation due to decoding does not have a
significant effect on performance, and 1-bit coding is very
fast.

4.3 Optimization for Searching in a Node

Binary search for intra-node alignment occupies a large part
of the execution time of B+tree operations. In this paper,
we have made several optimizations to reduce the execution
time of an intra-node search. The first is to use the linear
search instead of binary search. In general, linear search
is faster than binary search in small degree of B+tree. The
second is an optimization for fast search. In search algo-
rithm of basic B+tree, there is no need to compare whether
key is the same as one in the non-leaf node because real key
exists in leaf node. However, in the fast search algorithm,
the comparison is required even in non-intermediate nodes.
To reduce the counts of the comparison, CAWBT does not
compare when the key is lower than the one in the non-leaf
node. When the key is not lower than the one in the node,
CAWBT starts the comparison and post-process which is for
fast search.

4.4 ID Table Re-Building

CAWBT guarantees atomicity and durability through the
cache line sized atomic write and the minimal logging when



LEE et al.: CAWBT: NVM-BASED B+TREE INDEX STRUCTURE USING CACHE LINE SIZED ATOMIC WRITE
2447

updating the index structure in NVM. However, since the
ID table exists in the DRAM, it must be restored when the
system power is shut down. Recovery is to newly input the
key/value which stored in the leaf node into the table, and
the specific area of the NVM space points to the head of the
leaf node so that the leaf nodes can be scanned.

5. Experiments

5.1 Experimental Environment

The experiment was conducted on a system consisting of In-
tel (R) i7-3770 (3.40GHz), 6GB DRAM and Linux 2.6.32
environment. CAWBT is an in-memory index structure,
thus all keys are stored in DRAM. CAWBT is compared
with wB+tree [16], fast-fair tree [22], basic B+tree and basic
B+tree with clflush and redo logging. We implemented
the wB+tree as closest as possible based on their paper [16],
and we use the source in the github.com in the case of the
fast-fair tree. We do not use any optimization option in the
compiler. For each index structure, we measured the perfor-
mance of inserting and searching operations along with the
performance of logging operation in performing split. The
performance of recovery operation is also measured. The
workload used in the experiments is the insertion of the 10
million KV pairs sequentially and the searching of all the
10 million KV pairs. In the other experiment, we used in-
dex with 0.5M KV pairs.

5.2 Verification

To verify that CAWBT is correctly implemented, we con-
firmed the number of split operation of CAWBT, B+tree,
and wB+tree. Because of the characteristic of B+tree’s split
algorithm, the number of split operations must be the same
if same workload is used in same degree. Figure 7 shows
the number of splits in three data structures while insert-
ing 0.5M KV pairs. Due to the characteristic of the B+tree,
the data structures of the same degree must have the same
number of the split operation. The result of the above graph
shows that this technique is implemented correctly.

Fig. 7 Comparison of split count between data structures (CAWBT:
CAWB+tree, BT: B+tree, NC: no consistency, CE: consistency ensured,
WBPT: wB+tree, D: degree)

5.3 The Comparison of clflush Counts

Figure 8 shows the number of flushes for each data structure
with different degrees in the comparison group. Consider-
ing along with the insertion performance (Fig. 9) which will
be discussed in the next section, the clflush count tends to
proportional to the index insertion performance. In addition
to clflush, there are factors such as the split count accord-
ing to the degree, and the overhead of the search inside of a
node according to the degree.

5.4 The Comparison of Insertion Performance

Figure 9 shows the total time taken to insert 10 million
sequential KV pairs. Since degree of fast-fair tree and
CAWBT cannot be changed, we experimented with the fixed
degree to make the comparison fair. CAWBT took 4,126ms
to complete the task and shows the fastest performance
among the entire comparison group. Since CAWBT have
to refer to the ID table, it should show similar or less su-
perior performance compared to basic B+tree. However, it
performs faster than basic B+tree by optimization of intra
node search. Overall, as the degree increases, the inser-
tion performances of indexes become better due to the re-

Fig. 8 Comparison of clflush count between data structures (CAWBT:
CAWB+tree, BT: B+tree, CE: consistency ensured, WBPT: wB+tree, FFT:
fast-fair tree, D: degree

Fig. 9 Comparison of overall insertion time (10 M KV pair) between
data structures (CAWBT: CAWB+tree, BT: B+tree, CE: consistency en-
sured, WBPT: wB+tree, FFT: fast-fair tree, D: degree)



2448
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

Fig. 10 Comparison of search time (10 M KV pair) between data struc-
tures (CAWBT: CAWB+tree, BT: B+tree, CE: consistency ensured,
WBPT: wB+tree, D: degree)

duction of the split operation. However, in the case of the
consistency-ensured B+tree, the insertion performance be-
comes worse because clflush is used whenever keys in-
side node are sorted, and because the amount of data which
is written in log during split operation is increased. In the
case of wB+tree, even though only one clflush is used for
the key sorting within a node, there are two flushes to up-
date the slot array and bitmap. Therefore, when the degree
is small, number of clflush caused by logging is added
to clflush needed for a node update so that clflush is
generated the most (see Fig. 8). However, as the degree in-
creases, it shows a drastic improvement in performance.

5.5 The Comparison of Search Performance

Figure 10 is a graph showing the sum of the all KV pair’s
search times in index which has 10 million KV pairs. Except
for the CAWBT, the search operation in other data structures
are performed until leaf node. Because the search operation
is a sum of reads and compares, it is read-intensive oper-
ation. Also, there are few writes during the search opera-
tion. In this case, the most optimized structure for intra node
search shows the highest performance. Fast-fair tree showed
the best search performance, followed by wB+tree of degree
15. Overall, the higher the degree of each data structure, the
higher the performance, and since it is a read operation, the
search performance of indexes which has the same degree
tends to be similar. The CAWBT has a small degree, but
overcomes the weakness through fast search algorithm and
has almost the same performance as other indexes. In the
case of fast-fair trees, linear search is used despite large or-
ders, nevertheless the search performance is the highest.

5.6 Minimal Logging Performance

One minimal logging is comprised of three cache line
flushes (status number writing, data writing, and status num-
ber clearing), three node reads (parent node, source node,
new node), and CPU operations. The average logging time
was calculated by measuring the sum of the minimal logging
time when 0.5M KV pairs were inserted to the CAWBT.

Fig. 11 Re-building overhead

Fig. 12 Space overhead

The total number of logging calls is 374,986, which was the
same as the number of split operations because the logging
code is called only when the split operation is executed. The
total logging time was 36ms and the average logging time
was 96ns. This is about four times the clflush time mea-
sured on average and is almost the same as the time set by
design.

5.7 ID Table Re-Building Performance

Although the ID table is introduced to improve the I/O per-
formance of the data structure, it is essential to recover the
system when a system crash occurs due to the data existing
in the DRAM. Figure 11 shows the time taken to recover the
ID table by scanning the entire KV pair in an experiment
using a workload that inserts 0.5M, 1M, 1.5M, and 2M KV
pairs. Since the re-building algorithm is similar to sequen-
tial memory writing, thr result shows that the time linearly
increases proportionally to the number of KV. It takes an
average recovery time of 10ns per key, which is affordable.

5.8 Space Overhead

CAWBT occupies more memory because there is a mapping
table in DRAM compared to other techniques. Figure 12
shows the space required per KV pair while storing 500,000



LEE et al.: CAWBT: NVM-BASED B+TREE INDEX STRUCTURE USING CACHE LINE SIZED ATOMIC WRITE
2449

KVs. As a result, it takes up more space than wB+tree with
higher order, but the diffrence is not notable.

6. Conclusion

In this paper, we introduced index structure called CAWBT
which uses cache line sized atomic write. This index struc-
ture guarantees atomicity and consistency through cache
line size atomic write and redo logging, and uses the mini-
mum flushes to maximize the I/O performance of the NVM.
This technique has been experimentally verified to oper-
ate normally, and the I/O performance is higher than gen-
eral B+tree and the wB+tree, which is a novel index for
NVM. Experimental results show that the performance of
the proposed index structure is comparable to basic B+tree.
It shows the performance of insert and search operation is
200% and 40% better than that of wB+tree, respectively.

Acknowledgments

This work is funded by Basic Research Lab Program (NRF,
No. 2017R1A4A1015498) and ICT R&D program (IITP,
R7117-16-0232). This work was also supported by the Na-
tional Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (No. 2019R1G1A1100455).

References

[1] B.C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable dram alternative,” ACM SIGARCH
Computer Architecture News, pp.2–13, ACM, 2009.

[2] Panasonic, “The new microcontrollers with on-chip non-volatile
memory reram,” https://news.panasonic.com/jp/press/data/
jn120515-1/jn120515-1.html, acceessed May 5 2012.

[3] J.F. Scott and C.A.P. de Araujo, “Ferroelectric memories,” Science,
vol.246, no.4936, pp.1400–1405, 1989.

[4] Y. Huai, “Spin-transfer torque mram (stt-mram): Challenges and
prospects,” AAPPS Bulletin, vol.18, no.6, pp.33–40, 2008.

[5] J. Jung, Y. Won, E. Kim, H. Shin, and B. Jeon, “Frash: Exploiting
storage class memory in hybrid file system for hierarchical storage,”
ACM Transactions on Storage (TOS), vol.6, no.1, p.3, 2010.

[6] J. Condit, E.B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger,
and D. Coetzee, “Better i/o through byte-addressable, persistent
memory,” Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles, SOSP ’09, New York, NY, USA,
pp.133–146, ACM, 2009.

[7] S.R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent mem-
ory,” Proceedings of the Ninth European Conference on Computer
Systems, EuroSys ’14, New York, NY, USA, pp.15:1–15:15, ACM,
2014.

[8] J. Ou, J. Shu, and Y. Lu, “A high performance file system for
non-volatile main memory,” Proceedings of the Eleventh European
Conference on Computer Systems, p.12, ACM, 2016.

[9] J. Coburn, A.M. Caulfield, A. Akel, L.M. Grupp, R.K. Gupta, R.
Jhala, and S. Swanson, “Nv-heaps: making persistent objects fast
and safe with next-generation, non-volatile memories,” ACM Sig-
plan Notices, vol.46, no.3, pp.105–118, 2011.

[10] H. Volos, A.J. Tack, and M.M. Swift, “Mnemosyne: Lightweight
persistent memory,” ACM SIGARCH Computer Architecture News,
pp.91–104, ACM, 2011.

[11] J. Guerra, L. Mármol, D. Campello, C. Crespo, R. Rangaswami,

and J. Wei, “Software persistent memory,” presented as part of the
2012 USENIX Annual Technical Conference (USENIX ATC 12),
pp.319–331, 2012.

[12] T. Hwang, J. Jung, and Y. Won, “Heapo: Heap-based persistent ob-
ject store,” ACM Transactions on Storage (TOS), vol.11, no.1, p.3,
2015.

[13] F. Xia, D. Jiang, J. Xiong, and N. Sun, “Hikv: A hybrid index key-
value store for dram-nvm memory systems,” 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pp.349–362, 2017.

[14] S. Venkataraman, N. Tolia, P. Ranganathan, R.H. Campbell, et
al., “Consistent and durable data structures for non-volatile byte-
addressable memory.,” FAST, pp.61–75, 2011.

[15] S.L. Graham, P.B. Kessler, and M.K. McKusick, “Gprof: A call
graph execution profiler,” SIGPLAN Not., vol.39, no.4, pp.49–57,
April 2004.

[16] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main
memory,” Proceedings of the VLDB Endowment, vol.8, no.7,
pp.786–797, 2015.

[17] I. Moraru, D.G. Andersen, M. Kaminsky, N. Tolia, P. Ranganathan,
and N. Binkert, “Consistent, durable, and safe memory manage-
ment for byte-addressable non volatile main memory,” Proceedings
of the First ACM SIGOPS Conference on Timely Results in Operat-
ing Systems, TRIOS ’13, New York, NY, USA, pp.1:1–1:17, ACM,
2013.

[18] D. Narayanan and O. Hodson, “Whole-system persistence,” Pro-
ceedings of the Seventeenth International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
ASPLOS XVII, New York, NY, USA, pp.401–410, ACM, 2012.

[19] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner, “Fp-
tree: A hybrid scm-dram persistent and concurrent b-tree for stor-
age class memory,” Proceedings of the 2016 International Confer-
ence on Management of Data, SIGMOD ’16, New York, NY, USA,
pp.371–386, ACM, 2016.

[20] H. Volos, A.J. Tack, and M.M. Swift, “Mnemosyne: Lightweight
persistent memory,” Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, New York, NY, USA,
pp.91–104, ACM, 2011.

[21] J. Yang, Q. Wei, C. Chen, C. Wang, K.L. Yong, and B. He, “Nv-
tree: Reducing consistency cost for nvm-based single level sys-
tems.,” FAST, pp.167–181, 2015.

[22] D. Hwang, W.H. Kim, Y. Won, and B. Nam, “Endurable transient
inconsistency in byte-addressable persistent b+-tree,” 16th USENIX
Conference on File and Storage Technologies (FAST 18), Oakland,
CA, pp.187–200, 2018.

[23] T. Wang, J. Levandoski, and P.A. Larson, “Easy lock-free indexing
in non-volatile memory,” 2018 IEEE 34th International Conference
on Data Engineering (ICDE), pp.461–472, April 2018.

[24] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson,
“Strata: A cross media file system,” Proceedings of the 26th Sym-
posium on Operating Systems Principles, pp.460–477, ACM, 2017.

[25] Y. Mao, E. Kohler, and R.T. Morris, “Cache craftiness for fast mul-
ticore key-value storage,” Proceedings of the 7th ACM European
Conference on Computer Systems, EuroSys ’12, New York, NY,
USA, pp.183–196, ACM, 2012.

http://dx.doi.org/10.1145/1555815.1555758
http://dx.doi.org/10.1126/science.246.4936.1400
http://dx.doi.org/10.1145/1714454.1714457
http://dx.doi.org/10.1145/1629575.1629589
http://dx.doi.org/10.1145/2592798.2592814
http://dx.doi.org/10.1145/2901318.2901324
http://dx.doi.org/10.1145/1961296.1950380
http://dx.doi.org/10.1145/1961295.1950379
http://dx.doi.org/10.1145/2629619
http://dx.doi.org/10.1145/989393.989401
http://dx.doi.org/10.14778/2752939.2752947
http://dx.doi.org/10.1145/2524211.2524216
http://dx.doi.org/10.1145/2150976.2151018
http://dx.doi.org/10.1145/2882903.2915251
http://dx.doi.org/10.1145/1950365.1950379
http://dx.doi.org/10.1109/icde.2018.00049
http://dx.doi.org/10.1145/3132747.3132770
http://dx.doi.org/10.1145/2168836.2168855


2450
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

Dokeun Lee received the B.S. degree
in Electronic, Communication, Computer En-
gineering from Hanyang University, Korea in
2009. He is a Ph.D. candidate at Department
of Computer Software at Hanyang University,
Korea. His research interests include on NVM
management system and filesystem for persis-
tent memory.

Seongjin Lee is currently an Assistant Pro-
fessor at Department of Aerospace and Soft-
ware Engineering, Gyeongsang National Uni-
versity, South Gyeongsang Province, Korea. He
did his BS and MS in Department of Electron-
ics and Computer Engineering, Hanyang Uni-
versity, Seoul Korea in 2006 and 2008, respec-
tively. He received his Ph.D. in Computer En-
gineering in the same university in 2015. Be-
fore joining Gyeongsang National University in
2017, he worked as PostDoc and assistant re-

search professor at Hanyang University. His research interests include sys-
tem performance, measurements, analysis, characterization, and classifica-
tion.

Youjip Won is ICT Endowed Chair Profes-
sor at School of Electrical Engineering, KAIST.
He did his BS and MS in Dept. of Computer Sci-
ence, Seoul National University, Seoul,Korea in
1990 and 1992, respectively. He received his
Ph.D. in Computer Science from University of
Minnesota in 1997. He worked for Intel Corp.
as Server Performance Analyst till 1999. From
1999 till 2019, he was with Dept. of Computer
Science, Hanyang University, Seoul, Korea. His
research interests include Filesystem, Storage

System and Distributed System.


