
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020
435

PAPER

Recurrent Neural Network Compression Based on
Low-Rank Tensor Representation

Andros TJANDRA†,††a), Nonmember, Sakriani SAKTI†,††b), and Satoshi NAKAMURA†,††c), Members

SUMMARY Recurrent Neural Network (RNN) has achieved many
state-of-the-art performances on various complex tasks related to the tem-
poral and sequential data. But most of these RNNs require much compu-
tational power and a huge number of parameters for both training and in-
ference stage. Several tensor decomposition methods are included such as
CANDECOMP/PARAFAC (CP), Tucker decomposition and Tensor Train
(TT) to re-parameterize the Gated Recurrent Unit (GRU) RNN. First, we
evaluate all tensor-based RNNs performance on sequence modeling tasks
with a various number of parameters. Based on our experiment results,
TT-GRU achieved the best results in a various number of parameters com-
pared to other decomposition methods. Later, we evaluate our proposed
TT-GRU with speech recognition task. We compressed the bidirectional
GRU layers inside DeepSpeech2 architecture. Based on our experiment
result, our proposed TT-format GRU are able to preserve the performance
while reducing the number of GRU parameters significantly compared to
the uncompressed GRU.
key words: recurrent neural network, model compression, tensor decom-
position, deep learning

1. Introduction

Modeling and predicting temporal sequential data are ma-
jor task in the machine learning field. In recent years, re-
current neural network (RNN) has been a prominent choice
for these tasks. Despite it has been studied for about
two decades [1], [2], the renaissance just arrived recently
thanks to the significant improvement of current computa-
tional power and the amount of available data. There are
many state-of-the-arts in several applications such as speech
recognition [3], [4] and machine translation [5]–[7] had been
achieved with RNN models.

Despite the fact that RNN produced impressive perfor-
mance, most RNN models are computationally expensive
and have a huge number of parameters. Inside an RNN,
the output are calculated by linear projection between matri-
ces and vectors, followed by nonlinear transformations, we
need multiple high-dimensional dense matrices as param-
eters. In-between two time-steps, we need to apply linear
projection between our dense matrix with high-dimensional

Manuscript received February 6, 2019.
Manuscript revised August 18, 2019.
Manuscript publicized October 17, 2019.
†The authors are with the Augmented Human Communication

Lab, Nara Institute of Science and Technology, Ikoma-shi, 630–
0192 Japan.
††The authors are with the RIKEN, Center for Advanced Intel-

ligence Project AIP, Ikoma-shi, 630–0192 Japan.
a) E-mail: andros.tjandra.ai6@is.naist.jp
b) E-mail: ssakti@is.naist.jp
c) E-mail: s-nakamura@is.naist.jp

DOI: 10.1587/transinf.2019EDP7040

input and previous hidden states. Especially for state-of-the-
art models on speech recognition [4] and machine transla-
tion [5], such huge models can only be implemented in high-
end cluster environments because they need massive compu-
tation power and millions of parameters. These limitations
restrict the creation of efficient RNN models that are fast
enough for massive real-time inference or small enough to
be implemented in low-end devices like mobile phones [8]
or embedded systems with limited memory.

There is a trade-off between high accuracy model and
huge resources requirement with fast and smaller model
with low computational and memory costs. Some re-
searchers have done notable work to minimize the accuracy
loss and maximize the model efficiency. Hinton et al. [9] and
Ba et al. [10] successfully compressed a large deep neural
network into a smaller neural network by training the latter
on the transformed softmax outputs from the former. Dis-
tilling knowledge from larger neural networks has also been
successfully applied to recurrent neural network architecture
by [11]. Denil et al. [12] utilized low-rank matrix decompo-
sition of the weight matrices. A recent study by Novikov
et al. [13] replaced the dense weight matrices with Tensor
Train (TT) format [14] inside convolutional neural network
(CNN) model. With the TT-format, they significantly com-
press the number of parameters and kept the model accu-
racy degradation to a minimum. However, to the best of
our knowledge, no study has focused on compressing more
complex neural networks such as RNNs with tensor-based
representation.

In this paper, we utilized several tensor decomposition
methods including CP-decomposition, Tucker decomposi-
tion and TT-decomposition for compressing RNN parame-
ters∗. We represent GRU RNN weight matrices with these
tensor decomposition methods. First, we conduct extensive
experiments on sequence modeling with a polyphonic mu-
sic dataset. We compare the performances of uncompressed
GRU model and three different tensor-based compressed
RNN models: CP-GRU, Tucker-GRU and TT-GRU [15] on
various number of parameters. From our experiment re-
sults, we conclude that TT-GRU achieved the best result
in various number of parameters compared to other tensor-
decomposition method. Later, we conducted another exper-
iment on speech recognition task. We modified a popular

∗Parts of this work were previously presented in [15]–[17]. In
this paper we summarized those works and provided a more de-
tailed description and comparison between all tensor-based RNNs.

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

436
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

end-to-end speech recognition model (DeepSpeech2 [4]) by
replacing the GRU with TT-GRU to reduce the number of
parameters. We achieve high-compression ratio and main-
tain the recognition accuracy from the compressed model.

In Sect. 2, we briefly review about RNN architectures
and their formulations. In Sect. 3, we explain about tensor
decomposition methods. In Sect. 4, we describe the details
of our proposed tensor-based RNN model and how we ten-
sorized the weight parameters inside RNN. In Sect. 5, we
describe about polyphonic music modeling task, including
the dataset, model settings and experimental results. In
Sect. 6, we describe about speech recognition task, includ-
ing the dataset, model description and experimental result.
We present related works in Sect. 7. Finally, we conclude
our result in Sect. 8.

2. Recurrent Neural Network

2.1 Simple Recurrent Neural Network

An RNN is a kind of neural network architecture that mod-
els sequential and temporal dependencies [18]. Typically,
we define input sequence x = (x1, . . . , xT), hidden vec-
tor sequence h = (h1, . . . , hT) and output vector sequence
y = (y1, . . . , yT). As illustrated in Fig. 1, a simple RNN at
time t is can be formulated as:

ht = f (Wxhxt +Whhht−1 + bh) (1)

yt = g(Whyht + by). (2)

where Wxh represents the weight parameters between the
input and hidden layer, Whh represents the weight param-
eters between the hidden and hidden layer, Why represents
the weight parameters between the hidden and output layer,
and bh and by represent bias vectors for the hidden and out-
put layers. Functions f (·) and g(·) are nonlinear activation
functions, such as sigmoid or tanh.

2.2 Gated Recurrent Neural Network

Simple RNNs cannot easily be used for modeling datasets
with long sequences and long-term dependency because the
gradient can easily vanish or explode [19], [20]. This prob-
lem is caused by the effect of bounded activation functions
and their derivatives. Therefore, training a simple RNN is

Fig. 1 Recurrent neural network

more complicated than training a feedforward neural net-
work. Some researches addressed the difficulties of training
simple RNNs. For example, Le et al. [21] replaced the acti-
vation function that causes the vanishing gradient with a rec-
tifier linear (ReLU) function. With an unbounded activation
function and identity weight initialization, they optimized a
simple RNN for long-term dependency modeling. Martens
et al. [22] used a second-order Hessian-free (HF) optimiza-
tion method rather than the first-order method such as gra-
dient descent. However, estimation of the second-order gra-
dient requires extra computational steps. Modifying the in-
ternal structure from RNN by introducing gating mechanism
also helps RNNs solve the vanishing and exploding gradient
problems. The additional gating layers control the informa-
tion flow from the previous states and the current input [2].
Several versions of gated RNNs have been designed to over-
come the weakness of simple RNNs by introducing gating
units, such as Long-Short Term Memory (LSTM) RNN and
GRU RNN. In the following subsections, we explain both in
more detail.

2.2.1 Long-Short Term Memory RNN

The LSTM RNN was proposed by Hochreiter et al. [2].
LSTM is a gated RNN with three gating layers and memory
cells, utilizes the gating layers to control the current memory
states by retaining the valuable information and forgetting
the unneeded information. The memory cells store the in-
ternal information across time steps. As illustrated in Fig. 2,
the LSTM hidden layer values at time t are defined by the
following equations [23]:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wx f xt +Wh f ht−1 +Wc f ct−1 + b f)

ct = ft � ct−1 + it � tanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

ht = ot � tanh(ct)

where σ(·) is sigmoid activation function and it, ft, ot and
ct are respectively the input gates, the forget gates, the out-
put gates and the memory cells. The input gates retain the

Fig. 2 Long short term memory unit.

TJANDRA et al.: RECURRENT NEURAL NETWORK COMPRESSION BASED ON LOW-RANK TENSOR REPRESENTATION
437

Fig. 3 Gated recurrent unit

candidate memory cell values that are useful for the current
memory cell and the forget gates retain the previous memory
cell values that are useful for the current memory cell. The
output gates retain the memory cell values that are useful for
the output and the next time-step hidden layer computation.

2.2.2 Gated Recurrent Unit RNN

The GRU RNN was proposed by Cho et al. [24] as an al-
ternative to LSTM. There are several key differences be-
tween GRU and LSTM. First, a GRU does not have memory
cells [25]. Second, instead of three gating layers, it only has
two: reset gates and update gates. As illustrated in Fig. 3,
the GRU hidden layer at time t is defined by the following
equations [24]:

rt = σ(Wxr xt +Whrht−1 + br) (3)

zt = σ(Wxzxt +Whzht−1 + bz) (4)

h̃t = f (Wxhxt +Whh(rt � ht−1) + bh) (5)

ht = (1 − zt) � ht−1 + zt � h̃t (6)

where σ(·) is a sigmoid activation function, f (·) is a tanh
activation function, rt, zt are the reset and update gates, h̃t is
the candidate hidden layer values, and ht is the hidden layer
values at time-t. The reset gates control the previous hidden
layer values that are useful for the current candidate hidden
layer. The update gates decide whether to keep the previous
hidden layer values or replace the current hidden layer val-
ues with the candidate hidden layer values. GRU can match
LSTM’s performance and its convergence speed sometimes
surpasses LSTM, despite having one fewer gating layer [25].

In this section, we provided the formulation and the de-
tails for several RNNs. As we can see, most of the RNNs
consist of many dense matrices that represents a large num-
ber of weight parameters that are required to represent all of
the RNN models. In the next section, we present an alter-
native RNN model that significantly reduces the number of
parameters and simultaneously preserves the performance.

3. Tensor Decomposition

In this section, we explain our approaches to compress

the parameters in the RNN. First, we define the tensoriza-
tion process to transform the weight matrices inside the
RNN model into higher order tensors. Then, we describe
three tensor decompositions method called as CANDE-
COMP/PARAFAC (CP) decomposition, Tucker decom-
position and Tensor Train (TT) decomposition.

3.1 Vector, Matrix and Tensor

Before we start to explain any further, we will define dif-
ferent notations for vectors, matrices and tensors. Vector is
an one-dimensional array, matrix is a two-dimensional ar-
ray and tensor is a higher-order multidimensional array. In
this paper, bold lower case letters (e.g., b) represent vec-
tors, bold upper case letters (e.g., W) represent matrices and
bold calligraphic upper case letters (e.g., W) represent ten-
sors. For representing the element inside vectors, matrices
and tensors, we explicitly write the index in every dimen-
sion without bold font. For example, b(i) is the i-th element
in vector b, W(p, q) is the element on p-th row and q-th col-
umn from matrix W andW(i1, .., id) is the i1, .., id-th index
from tensor W .

3.2 Tensor Decomposition Method

Tensor decomposition is a method for generalizing low-
rank approximation from a multi-dimensional array. There
are several popular tensor decomposition methods, such as
Canonical polyadic (CP) decomposition, Tucker decompo-
sition and Tensor Train decomposition. The factorization
format differs across different decomposition methods. In
this section, we explain briefly about CP-decomposition and
Tucker decomposition.

3.2.1 CP-Decomposition

Canonical polyadic (CANDECOMP/ PARAFAC) decom-
position [26]–[28] or usually referred to CP-decomposition
factorizes a tensor into the sum of outer products of vectors.
Assume we have a 3rd-order tensor W ∈ Rm1×m2×m3 , we can
approximate it with CP-decomposition:

W ≈
R∑

r=1

g1,r ⊗ g2,r ⊗ g3,r (7)

where ∀r ∈ [1..R], g1,r ∈ Rm1 , g2,r ∈ Rm2 , g3,r ∈ Rm3 , R ∈
Z
+ is the number of factors combinations (CP-rank) and ⊗

denotes Kronecker product operation. Elementwise, we can
calculate the result by:

W(x, y, z) ≈
R∑

r=1

g1,r(x) g2,r(y) g3,r(z) (8)

In Fig. 4, we provide an illustration for Eq. (7) in more de-
tails.

3.2.2 Tucker Decomposition

Tucker decomposition [28], [29] factorizes a tensor into a

438
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

Fig. 4 CP-decomposition for 3rd-order tensor W

Fig. 5 Tucker decomposition for 3rd-order tensor W

core tensor multiplied by a matrix along each mode. As-
sume we have a 3rd-order tensor W ∈ Rm1×m2×m3 , we can
approximate it with Tucker decomposition:

W ≈ G0 ×1 G1 ×2 G2 ×3 G3 (9)

where G0 ∈ Rr1×r2×r3 is the core tensor, G1 ∈ Rm1×r1 , G2 ∈
R

m2×r2 , G3 ∈ Rm3×r3 are the factor matrices and ×n is the
n-th mode product operator. The mode product between a
tensor G0 ∈ Rn1×n2×n3 and a matrix G1 ∈ Rm1×n1 is a tensor
R

m1×n2×n3 . By applying the mode products across all modes,
we can recover the original W tensor. Elementwise, we can
calculate the element from tensor W by:

W(x, y, z) ≈
r1∑

s1=1

r2∑
s2=1

r3∑
s3=1

G0(s1, s2, s3)

G1(x, s1) G2(y, s2) G3(z, s3) (10)

where x ∈ [1, ..,m1], y ∈ [1, ..,m2], z ∈ [1, ..,m3]. Figure 5
gives an illustration for Eq. (9)

3.2.3 Tensor Train Decomposition

Tensor Train decomposition [14] factorizes a tensor into a
collection of lower order tensors called as TT-cores. All TT-
cores are connected through matrix multiplications across
all tensor order to calculate the element from original tensor.
Assume we have a 3rd-order tensor W ∈ Rm1×m2×m3 , we can
approximate the element at index x, y, z by:

W(x, y, z) ≈
r1∑

s1=1

r2∑
s2=1

G1(x, s1)G2(s1, y, s2)G3(s2, z)

(11)

where x ∈ [1, ..,m1], y ∈ [1, ..,m2], z ∈ [1, ..,m3] and G1 ∈
R

m1×r1 ,G2 ∈ Rr1×m2×r2 ,G3 ∈ Rr2×m3 as the TT-cores. Figure 6
gives an illustration for Eq. (11).

To generalized TT-decomposition for d-dimensional

Fig. 6 Tensor Train decomposition for 3rd-order tensor W

Fig. 7 Representing a tensorW element at (1, 0, 3) using 3 TT-cores G1,
G2 and G3. Blue shaded vectors or matrices are used for chain multiplica-
tion

tensor, TT-decomposition equation can be described as:

W(j1, j2, .., jd−1, jd) =

G1(j1) · G2(:, j2, :) · . . . · Gd−1(:, jd−1, :) · Gd(:, jd).
(12)

where jk ∈ [1, ..,mk]. For all vectors or matrices sliced from
tensor Gk, if Gk(:, jk, :) related to the same dimension k, they
must be represented with size rk−1×rk, where r0 and rd must
be equal to 1 to retain the final matrix multiplication result as
a scalar. In TT-format, we define a sequence of rank {rk}dk=0
and we call them TT-rank from tensor W . The set of matri-
ces Gk = {Gk(:, jk, :)}mk

jk=1 where the matrices are spanned in
the same index are called TT-core.

We can generalized the TT-format equation in detail by
enumerating the index qk−1 ∈ {1, .., rk−1} and qk ∈ {1, .., rk}
in matrix Gk(jk) across all k ∈ {1, .., d}:

W(j1, j2, .., jd−1, jd) =∑
q0,..,qd

G1(q0, j1, q1) . . . Gd(qd−1, jd, qd). (13)

By factoring the original tensor W into multiple TT-
cores {Gk}dk=1, we can compress the number of elements
needed to represent the original tensor size from

∏d
k=1 mk

to
∑d

k=1 mkrk−1rk.
Lastly, to create an intuitive example on how to repre-

sent tensor using set of TT-cores, we illustrate how to rep-
resent a tensor W element at (1, 0, 3) with 3 TT-cores in
Fig. 7.

4. Proposed Tensor-Based RNN

In this section, we describe our proposed approach to
compress RNN model using various tensor decomposition
method that we have described above. First, we will explain
about linear layer tensorization. After that, we rewrite the

TJANDRA et al.: RECURRENT NEURAL NETWORK COMPRESSION BASED ON LOW-RANK TENSOR REPRESENTATION
439

RNN equation based on the from the matrices weight for-
mat into the tensorized weight format.

4.1 Representing Linear Transformation on Tensorized
Weight

Most of RNN equations are composed by multiplication be-
tween the input vector and their corresponding weight ma-
trix:

y =Wx + b (14)

where W ∈ RM×N is the weight matrix, b ∈ RM is the bias
vector and x ∈ RN is the input vector. Thus, most of RNN
parameters are used to represent the weight matrices. To re-
duce the number of parameters significantly, we need to rep-
resent the weight matrices with the factorization of higher-
order tensor. First, we apply tensorization on the weight
matrices. Tensorization is the process to transform a lower-
order dimensional array into a higher-order dimensional ar-
ray. In our case, we tensorize RNN weight matrices into
tensors. Given a weight matrix W ∈ RM×N , we can rep-
resent them as a tensor W ∈ Rm1×m2×..×md ×n1×n2×..×nd where
M =

∏d
k=1 mk and N =

∏d
k=1 nk. For mapping each element

in matrix W to tensor W , we define one-to-one mapping be-
tween row-column and tensor index with bijective functions
fi : Z+ → Zd

+ and f j : Z+ → Zd
+. Function fi transforms each

row p ∈ {1, ..,M} into fi(p) = [i1(p), .., id(p)] and f j trans-
forms each column q ∈ {1, ..,N} into f j(q) = [j1(q), .., jd(q)].
Following this, we can access the value from matrix W(p, q)
in the tensor W with the index vectors generated by fi(p)
and f j(q) with these bijective functions.

After we determine the shape of the weight ten-
sor, we choose one of the tensor decomposition methods
(e.g., CP-decomposition (Sect. 3.2.1), Tucker decomposi-
tion (Sect. 3.2.2) or Tensor Train (Sect. 3.2.3)) to represent
and reduce the number of parameters from the tensor W . In
order to represent matrix-vector products inside RNN equa-
tions, we need to reshape the input vector x ∈ RN into a ten-
sor X ∈ Rn1×..×nd and the bias vector b ∈ RM into a tensor
B ∈ Rm1×..×md . Therefore, we can reformulate the Eq. (14)
to calculate y(p) elementwise with:

Y(fi(p)) =
∑

j1,.., jd

W (fi(p), j1, .., jd) X(j1, .., jd)

+ B(fi(p)) (15)

by enumerating all columns q position with j1, .., jd and
fi(p) = [i1(p), .., id(p)].

Based on the Eq. (15), we rewrite the linear layer equa-
tion differently depends on the the decomposition method:

1. CP-decomposition:
For CP-decomposition, we represent our tensor
W with multiple factors gmk,r, gnk,r where ∀k ∈
[1..d]∀r ∈ [1..R], (gmk,r ∈ Rmk , gnk,r ∈ Rnk). From
here, we replace Eq. (15) with:

Y(fi(p))

=
∑

j1,.., jd

⎛⎜⎜⎜⎜⎜⎜⎝
R∑

r=1

d∏
k=1

gmk,r(ik(p))gnk,r(jk)

⎞⎟⎟⎟⎟⎟⎟⎠ X(j1, .., jd)

+ B(fi(p)). (16)

By using CP-decomposition for representing the
weight matrix W, we reduce the number of parame-
ters from M × N into R ∗ (

∑d
k=1 mk + nk).

2. Tucker decomposition:
For Tucker decomposition, we represent our tensor
W with a tensor core G0 ∈ Rr1×...×rd×rd+1×...×r2d where
∀k ∈ [1..d], rk < mk and ∀k ∈ [1..d], rd+k < nk

and multiple factor matrices GMk,GNk, where ∀k ∈
[1..d], (GMk ∈ Rmk×rk ,GNk ∈ Rnk×rd+k). Generally,
the tensor core ranks r1, r2, .., rd are corresponding to
the row in tensor index and rd+1, rd+2, .., r2d are corre-
sponding to the column in tensor index. From here, we
replace Eq. (15) with:

Y(fi(p))=
∑

j1,.., jd

⎛⎜⎜⎜⎜⎜⎜⎝
r1,..,rd ,rd+1,..,r2d∑
s1,..sd ,sd+1,..,s2d

G0(s1, ..sd, sd+1, .., s2d)

d∏
k=1

GMk(ik(p), sk)GNk(jk, sd+k)

⎞⎟⎟⎟⎟⎟⎟⎠ X(j1, .., jd)

+ B(fi(p)). (17)

By using Tucker decomposition for representing the
weight matrix W, we reduce the number of parameters
from M × N into

∑d
k=1(mk ∗ rk + nk ∗ rd+k) + (

∏2d
k=1 rk).

3. Tensor-train decomposition:
For Tensor-train decomposition, we represent our ten-
sor W with multiple TT-cores Gm1..md and Gn1..nd . TT-
cores Gk ∈ Rrk−1×mk×rk , ∀k ∈ [1..d] are correspond-
ing to the row in tensor index and TT-cores Gd+k ∈
R

rd+k−1×nk×rd+k , ∀k ∈ [1..d] are corresponding to the
column in tensor index. rk−1..rd are the TT-ranks for
row TT-cores and rd+k−1..r2d are the TT-ranks for col-
umn TT-cores. From here, we replace Eq. (15) with:

Y(fi(p)) =
∑

j1,.., jd

(G1(:, i1(p), :)..Gd(:, id(p), :)

·Gd+1(:, j1, :)..G2d(:, jd, :))X(j1, .., jd)

+ B(fi(p)). (18)

By using TT-decomposition for representing the
weight matrix W , we reduce the number of parameters
from M×N into

∑d
k=1((rk−1∗mk∗rk)+(rd+k−1∗nk∗r2d)).

We can control the shape of TT-cores {Gk}2d
i=1 by choos-

ing factor M as {mk}dk=1 and N as {nk}dk=1 as long as
the number of factors is equal between M and N. We
can also define TT-rank and treat them as a hyper-
parameter. In general, if we use a smaller TT-rank,
we will get more efficient models but this action re-
stricts our model to learn more complex representation.
If we use a larger TT-rank, we get more flexibility to

440
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

express our weight parameters but we sacrifice model
efficiency.

4.2 Compressing Simple RNN

We represent a simple RNN in tensor-based format. From
Sect. 2.1, we focus our attention on two dense weight ma-
trices: (Wxh,Whh). Previously, we defined Wxh ∈ RM×N as
input-to-hidden parameters and Whh ∈ RM×M as hidden-to-
hidden parameters and bh .

First, we factorize matrix shape M into
∏d

k=1 mk and
N into

∏d
k=1 nk. Next, we determine which tensor decom-

position method to represent the weight matrices. We will
substitute weight matrix Wxh with tensor Wxh and Whh with
tensor Whh. We define bijective functions fx

i and fh
i to ac-

cess row p ∈ [1..M] from Wxh and Whh in the tensor-based
representation. We rewrite our simple RNN formulation to
calculate ht in Eq. (1):

axh
t (p) =

∑
j1,.., jd

Wxh(fx
i (p), [j1, .., jd]) · Xt (j1, .., jd)

ahh
t (p) =

∑
j1,.., jd

Whh(fh
i (p), [j1, .., jd]) · Ht−1 (j1, .., jd)

axh
t =
[
axh

t (1), .., axh
t (M)

]
ahh

t =
[
ahh

t (1), .., ahh
t (M)

]
ht = f (axh

t + ahh
t + bh),

where X is the tensor representation of input xt and Ht−1 is
the tensor representation of previous hidden states ht−1.

4.3 Compressing GRU RNN

In this section, we apply tensor-based format to represent a
gated RNN. Among several RNN architectures with gating
mechanism, we choose GRU to be reformulated in tensor-
based representation because it has less complex formula-
tion and similar performance as LSTM. For the rest of this
paper, we called Tucker-GRU if we used Tucker decompo-
sition, CP-GRU if we used CP-decomposition and TT-GRU
if we used TT-decomposition to replace the weight matri-
ces inside GRU. In Sect. 2.2.2, we focus on the following
six dense weight matrices: (Wxr, Whr, Wxz, Whz, Wxh, and
Whh). Weight matrices Wxr, Wxz, Wxh ∈ RM×N are parame-
ters for projecting the input layer to the reset gate, the update
gate, the candidate hidden layer, and Whr, Whz, Whh ∈ RM×M

are respectively parameters for projecting previous hidden
layer into the reset gate, the update gate and candidate hid-
den layer.

We factorize matrix shape M into
∏d

k=1 mk and N into∏d
k=1 nk. All weight matrices (Wxr, Whr, Wxz, Whz, Wxh,

Whh) are substituted with tensors (Wxr, Whr, Wxz, Whz,
Wxh, Whh) in tensor-based weight representation. We de-
fine bijective function fx

i to access row p from Wxr,Wxz,Wxh

and function fh
i to access row p from Whr,Whz,Whh in

tensor-based weight representation. We rewrite the GRU
formulation to calculate rt in Eq. (3):

axr
t (p) =

∑
j1,.., jd

Wxr(fx
i (p), [j1, .., jd]) · Xt (j1, .., jd)

ahr
t (p) =

∑
j1,.., jd

Whr(fh
i (p), [j1, .., jd]) · Ht−1 (j1, .., jd)

axr
t =
[
axr

t (1), .., axr
t (M)

]
ahr

t =
[
ahr

t (1), .., ahr
t (M)

]
rt = σ(axr

t + ahr
t + br). (19)

Next, we rewrite the GRU formulation to calculate zt in
Eq. (4):

axz
t (p) =

∑
j1,.., jd

Wxz(fx
i (p), [j1, .., jd]) · Xt (j1, .., jd)

ahz
t (p) =

∑
j1,.., jd

Whz(fh
i (p), [j1, .., jd]) · Ht−1 (j1, .., jd)

axz
t =
[
axz

t (1), .., axz
t (M)

]
ahz

t =
[
ahz

t (1), .., ahz
t (M)

]
zt = σ(axz

t + ahz
t + bz). (20)

Finally, we rewrite the GRU formulation to calculate h̃t in
Eq. (5):

axh
t (p) =

∑
j1,.., jd

Wxh(fx
i (p), [j1, .., jd]) · Xt (j1, .., jd)

ahh
t (p) =

∑
j1,.., jd

Whh(fh
i (p), [j1, .., jd]) ·

(Rt (j1, .., jd) · Ht−1 (j1, .., jd))

axh
t =
[
axh

t (1), .., axh
t (M)

]
ahh

t =
[
ahh

t (1), .., ahh
t (M)

]
h̃t = f (axh

t + ahh
t + bh). (21)

After rt, zt and h̃t are calculated, we calculate ht on Eq. (6)
with standard operations like element-wise sum and multi-
plication.

In practice, we could assign a different d for each
weight tensor as long as the input data dimension can also
be factorized into the d values. The choice of tensor decom-
position method, ranks, and factors shape are determined by
the user and treated as hyperparameter. However, to sim-
plify our implementation we use the same d for both the
input and hidden factorization size. For TT-GRU, we also
use the same factorizations M =

∏d
k=1 mk and N =

∏d
k=1 nk

for all weight tensors.
We do not substitute bias vector b into tensorB because

the number of bias parameters is insignificant compared to
the number of parameters in matrix W. In terms of perfor-
mance, the element-wise sum operation for bias vector b is
also insignificant compared to the matrix multiplication be-
tween a weight matrix and the input layer or the previous
hidden layer.

4.4 Tensor Core and Factors Initialization Trick

Because of the large number of recursive matrix

TJANDRA et al.: RECURRENT NEURAL NETWORK COMPRESSION BASED ON LOW-RANK TENSOR REPRESENTATION
441

multiplications, followed by some nonlinearity (e.g, sig-
moid, tanh), the gradient from the hidden layer will diminish
after several time-step [30]. Consequently, training recur-
rent neural networks is much harder compared to standard
feedforward neural networks.

Even worse, we decompose the weight matrix into mul-
tiple smaller tensors or matrices, thus the number of mul-
tiplications needed for each calculation increases multiple
times. Therefore, we need a better initialization trick on the
tensor cores and factors to help our model convergences in
the early training stage.

In this work, we follow Glorot et al. [31] by initializing
the weight matrix with a certain variance. We assume that
our original weight matrix W has a mean 0 and the variance
σ2

W . We utilize the basic properties from a sum and a prod-
uct variance between two independent random variables.

Definition 4.1. Let X and Y be independent random vari-
ables with the mean 0, then the variance from the sum of X
and Y is Var(X + Y) = Var(X) + Var(Y)

Definition 4.2. Let X and Y be independent random vari-
ables with the mean 0, then the variance from the product of
X and Y is Var(X ∗ Y) = Var(X) ∗ Var(Y)

After we decided the target variance σ2
w for our original

weight matrix, now we need to derive the proper initializa-
tion rules for the tensor core and factors. We calculate the
variance for tensor core and factors by observing the num-
ber of sum and product operations and utilize the variance
properties from Def. 4.1 and 4.2. Here, we listed differ-
ent initialization strategies for each tensor decomposition
methods:

1. CP-decomposition:
For weight tensor W based on the CP-decomposition,
we can calculate σg as the standard deviation for all
factors gmk,r, gnk,r with:

σg =
4d

√
σ2
w

R
(22)

and initialize gmk,r, gnk,r ∼ N(0, σ2
g).

Proof. Define 1) a dense matrix W and each element
are initialized with independent random variable w, 2)
all tensor factors gm, gn element are initialized with
independent random variable g. We approximate vari-
able w by series of summation and multiplication from
elements of tensor factors random variable g (Eq. (16)).

W(p, q) =
R∑

r=1

d∏
k=1

gmk,r(ik(p))gnk,r(jk(q)) (23)

We replace W(p, q) with random variable w and
gmk,r(ik(p)), gnk,r(jk(q)) with random variable g.

w =

R∑
r=1

d∏
k=1

g ∗ g (24)

w =

R∑
r=1

g2d (25)

w = Rg2d (26)

Apply variance for both sides.

Var(w) = Var
(
Rg2d
)

(27)

Var(w) = RVar
(
g2d
)

(28)

Var(w) = RVar (g)2d (29)

σ2
w = Var(w) (30)

σ2
g = Var(g) (31)

σ2
w

R
= (σ2

g)
2d (32)

2d

√
σ2
w

R
= σ2

g (33)

4d

√
σ2
w

R
= σg (34)

∗ Notes: g between different factors and positions are
not a same random variable (we just write as g for sake
of simplicity). Therefore, for the case where multiple
sum of g, we use Definition 4.1, not of Var(aX) =
a2Var(X). For the case of multiple multiplication of
g, we use Definition 4.2, not based on Chi-Square ran-
dom variable and their variance calculation.

2. Tucker decomposition:
For weight tensor W based on the Tucker decomposi-
tion, we can calculate σg as the standard deviation for
the core tensor G0 and the factor matrices GMk,GNk

with:

σg =
(4d+2)

√
σ2
w∏2d

k=1 rk

(35)

and initialize G0,GMk,GNk ∼ N(0, σ2
g).

Proof. Define 1) a dense matrix W and each element
are initialized with independent random variable w,
2) all tensor factors G0,GM,GN element are initial-
ized with independent random variable g. We approx-
imate variable w by series of summation and multipli-
cation from elements of tensor factors random variable
g (Eq. (17)).

W(p, q) =
r1,..,rd ,rd+1,..,r2d∑
s1,..,sd ,sd+1,.,s2d

G0(s1, ..sd, sd+1, .., s2d)

d∏
k=1

GMk(ik(p), sk)GNk(jk(q), sd+k) (36)

We replace W(p, q) with random variable w and
G0,GM,GN with random variable g.

w =

r1,..,rd ,rd+1,..,r2d∑
s1,..,sd ,sd+1,.,s2d

g

d∏
k=1

g ∗ g (37)

442
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

w =

r1,..,rd ,rd+1,..,r2d∑
s1,..,sd ,sd+1,.,s2d

g ∗ g2d (38)

w =

r1,..,rd ,rd+1,..,r2d∑
s1,..,sd ,sd+1,.,s2d

g2d+1 (39)

w =

2d∏
k=1

rkg
2d+1 (40)

Apply variance for both sides.

Var(w) = Var

⎛⎜⎜⎜⎜⎜⎜⎝
2d∏

k=1

rkg
2d+1

⎞⎟⎟⎟⎟⎟⎟⎠ (41)

Var(w) =
2d∏

k=1

rkVar
(
g2d+1

)
(42)

Var(w) =
2d∏

k=1

rkVar(g)2d+1 (43)

σ2
w = Var(w) (44)

σ2
g = Var(g) (45)

σ2
w∏2d

k=1 rk

= (σ2
g)

2d+1 (46)

2d+1

√
σ2
w∏2d

k=1 rk

= σ2
g (47)

4d+2

√
σ2
w∏2d

k=1 rk

= σg (48)

3. Tensor-train decomposition:
For weight tensor W based on the Tensor Train decom-
position, we can calculate σg as the standard deviation
for all the TT-cores Gk with:

σg =
(4d−2)

√
σ2
w∏2d

k=0 rk

(49)

and initialize Gk ∼ N(0, σ2
g).

Proof. Define 1) a dense matrix W and each element
are initialized with independent random variable w, 2)
all tensor cores Gm1,..,md ,Gn1,..,nd element are initial-
ized with independent random variable g. We approx-
imate variable w by series of summation and multipli-
cation from elements of tensor factors random variable
g (Eq. (18)).

W(p, q) = G1(:, i1(p), :)Gd(:, id(p), :)

Gd+1(:, j1(q), :)G2d(:, jd(q), :) (50)

We replace W(p, q) with random variable w and
Gm1,..,md ,Gn1,..,nd with random variable g.

w =

2d∏
k=0

rkg
(2d−1) (51)

Apply variance for both sides.

Var(w) = Var

⎛⎜⎜⎜⎜⎜⎜⎝
2d∏

k=0

rkg
(2d−1)

⎞⎟⎟⎟⎟⎟⎟⎠ (52)

Var(w) =
2d∏

k=0

rkVar
(
g(2d−1)

)
(53)

Var(w) =
2d∏

k=0

rkVar (g)(2d−1) (54)

σ2
w = Var(w) (55)

σ2
g = Var(g) (56)

σ2
w =

2d∏
k=0

rkσ
2(2d−1)
g (57)

σ2
w =

2d∏
k=0

rkσ
4d−2
g (58)

σ2
w∏2d

k=0 rk

= σ4d−2
g (59)

4d−2

√
σ2
w∏2d

k=0 rk

= σg (60)

By choosing a good initialization, our neural network
will converge faster and obtain better local minima. Based
on our preliminary experiments, we get better starting loss at
the first several epochs compared to the randomly initialized
model with the same σk on Gaussian distribution for all set
of factors or cores.

5. Experiments 1: Polyphonic Music Modeling

In this section, we describe our dataset and all model con-
figurations. We performed experiments with three differ-
ent tensor-decompositions (CP decomposition, Tucker de-
composition and TT decomposition) to compress our GRU
and also the baseline GRU. In the end, we report our ex-
periment results and compare various tensor decomposi-
tion method with different settings and number of param-
eters. Our codes are available at https://github.com/
androstj/tensor rnn.

5.1 Dataset

We evaluated our models with sequential modeling tasks.
We used a polyphonic music dataset [32] which contains 4
different datasets†: Nottingham, MuseData, PianoMidi and
JSB Chorales. For each active note in all time-step, we set
the value as 1, otherwise 0. Each dataset consists of at least
7 hours of polyphonic music and the total is ± 67 hours. In
Fig. 8, we visualize the dataset and the task for this experi-
ment.

†Dataset are downloaded from: http://www-etud.iro.umontreal.
ca/∼boulanni/icml2012

TJANDRA et al.: RECURRENT NEURAL NETWORK COMPRESSION BASED ON LOW-RANK TENSOR REPRESENTATION
443

Fig. 8 A simple illustration for polyphonic music dataset. For each time-
step, we have a vector of binary number. The colored circle denotes the
active note and the blank circle denotes the non-active note. The main
objective in this task is to predict which notes will be active at time-step t
given the information from previous active notes at time-step t−1, t−2, . . .,
etc.

5.2 Models

We evaluate several models in this paper: GRU-RNN (no
compression), CP-GRU (weight compression via CP de-
composition), Tucker-GRU (weight compression via Tucker
decomposition), TT-GRU [15] (compressed weight with TT-
decomposition). For each timestep, the input and output tar-
gets are vectors of 88 binary value. The input vector is pro-
jected by a linear layer with 256 hidden units, followed by
LeakyReLU [33] activation function. For the RNN model
configurations, we enumerate all the details in the following
list:

1. GRU

• Input size (N): 256
• Hidden size (M): 512

2. Tensor-based GRU

• Input size (N): 256
• Tensor input shape (n1..4): 4 × 4 × 4 × 4
• Hidden size (M): 512
• Tensor hidden shape (m1..4): 8 × 4 × 4 × 4

a. CP-GRU

• CP-Rank (R): [10, 30, 50, 80, 110]

b. Tucker-GRU

• Core (G0) shape:

– (2 × 2 × 2 × 2) × (2 × 2 × 2 × 2)
– (2 × 3 × 2 × 3) × (2 × 3 × 2 × 3)

– (2 × 3 × 2 × 4) × (2 × 3 × 2 × 4)
– (2 × 4 × 2 × 4) × (2 × 4 × 2 × 4)
– (2 × 3 × 3 × 4) × (2 × 3 × 3 × 4)

c. TT-GRU

• TT-ranks:

– (1 × 3 × 3 × 3 × 1)
– (1 × 5 × 5 × 5 × 1)
– (1 × 7 × 7 × 7 × 1)
– (1 × 9 × 9 × 9 × 1)
– (1 × 9 × 9 × 9 × 1)

In this task, the training criterion is to minimize the
negative log-likelihood (NLL). In evaluation, we measured
two different scores: NLL and accuracy (ACC). For calcu-
lating the accuracy, we follow Bay et al. [34] formulation:

ACC =

∑T
t=1 T P(t)∑T

t=1 (T P(t) + FP(t) + FN(t))
(61)

where T P(t), FP(t), FN(t) is the true positive, false positive
and false negative at time-t. We only used true positive (TP),
false positive (FP), false negative (FN) and ignored the true
negative (TN) because most of the notes were turned off or
zero in the dataset.

For training models, we use Adam [35] algorithm for
our optimizer. To stabilize our training process, we clip our
gradient when the norm ||∇w|| > 5. For fair comparisons,
we performed a grid search over learning rates (1e − 2, 5e −
3, 1e − 3) and dropout probabilities (0.2, 0.3, 0.4, 0.5). The
best model based on loss in validation set will be used for
the test set evaluation.

5.3 Result and Discussion

We report results of our experiments in Table 1. For the
baseline model, we choose standard GRU-RNN without any
compression on the weight matrices. For the comparison be-
tween compressed models (CP-GRU, Tucker-GRU and TT-
GRU), we run each model with 5 different configurations
and varied the number of parameters ranged from 2232 up
to 12184. In Figs. 9–12, we plot the negative log-likelihood
(NLL) score corresponding to the number of parameters for
each model. From our results, we observe that TT-GRU per-
formed better than Tucker-GRU in every experiments with
similar number of parameters. In some datasets (e.g., Piano-
Midi, MuseData, Nottingham), CP-GRU has better results
compared to Tucker-GRU and achieves similar performance
(albeit slightly worse) as TT-GRU when the number of pa-
rameters are greater than 6000. Overall, TT-GRU performed
the best in most of the settings. Therefore, for the next ex-
periment, we will apply TT-GRU as our main compression
method.

6. Experiment II: Speech Recognition

In this task, we will evaluate our proposed TT-GRU model

444
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

Table 1 Comparison between all models and their configurations based on the number of parameters,
negative log-likelihood and accuracy of polyphonic test set

Dataset
Model Config Param Nottingham JSB PianoMidi MuseData

NLL ACC NLL ACC NLL ACC NLL ACC
GRU

IN:256 1181184 3.369 71.1 8.32 30.24 7.53 27.19 7.12 36.30
OUT:512

Rank

CP-GRU
10 2456 3.79 67.51 8.60 27.29 8.15 19.03 7.87 27.32

IN: 4,4,4,4
30 4296 3.48 69.85 8.49 28.33 7.68 25.03 7.27 36.19

OUT: 8,4,4,4
50 6136 3.46 69.56 8.40 28.47 7.66 26.18 7.23 36.34
80 8896 3.43 69.73 8.41 27.88 7.61 28.28 7.19 36.57
110 11656 3.34 70.42 8.41 29.45 7.60 27.36 7.18 36.89

Cores

TUCKER-GRU
2,2,2,2 2232 3.71 68.30 8.57 27.28 7.98 20.79 7.81 29.94

IN: 4,4,4,4
2,3,2,3 4360 3.64 68.63 8.48 28.10 7.75 24.92 7.38 34.20

OUT: 8,4,4,4
2,3,2,4 6408 3.55 69.10 8.44 28.06 7.73 25.66 7.69 32.50
2,4,2,4 10008 3.52 69.18 8.41 27.70 7.75 24.46 7.38 35.58
2,3,3,4 12184 3.41 70.23 8.43 29.03 7.69 25.26 7.43 33.63

TT-rank

TT-GRU
1,3,3,3,1 2688 3.49 69.49 8.37 28.41 7.60 26.95 7.49 34.99

IN: 4,4,4,4
1,5,5,5,1 4096 3.45 69.81 8.38 28.86 7.58 27.46 7.50 33.37

OUT: 8,4,4,4
1,7,7,7,1 6016 3.40 70.72 8.37 28.83 7.57 27.58 7.23 36.53
1,9,9,9,1 8448 3.35 70.82 8.36 29.32 7.58 27.62 7.20 37.81

1,11,11,11,1 11392 3.38 70.51 8.37 29.55 7.58 28.07 7.16 36.54

Fig. 9 NLL comparison between TT-GRU, Tucker-GRU, and CP-GRU
on Nottingham test set

Fig. 10 NLL comparison between TT-GRU, Tucker-GRU, and CP-GRU
on JSB Chorales test set

Fig. 11 NLL comparison between TT-GRU, Tucker-GRU, and CP-GRU
on PianoMidi test set

Fig. 12 NLL comparison between TT-GRU, Tucker-GRU, and CP-GRU
on MuseData test set

TJANDRA et al.: RECURRENT NEURAL NETWORK COMPRESSION BASED ON LOW-RANK TENSOR REPRESENTATION
445

on speech recognition task. We describe our dataset for
speech recognition task and our end-to-end ASR model for
this task. In the end, we report our experiment results by
comparing the performance of uncompressed model with
TT-GRU compressed model.

6.1 Dataset

For the dataset, we used English speech corpus LibriSpeech
corpus [36] as a task to evaluate our proposed model model.
Due to time and resource constraints, we only used the
smallest “train-clean-100” subset for training data, “dev-
clean” subset for validation data, and “test-clean” subset
for test data as shown in Table 2. The speech utterances
were segmented into multiple frames with a 25-ms window
size and a 10-ms step size. Then we extracted 23-dimension
filter bank features using Kaldi’s feature extractor [37] and
normalized them to have zero mean and unit variance.

6.2 Model

First, we will briefly introduce the ASR system that we
use in this experiment. Our baseline ASR model is
based on “Deep Speech 2” architecture [38]. DeepSpeech2
model consists multiple different type of layers, includ-
ing convolutional layer, recurrent bidirectional GRU layer,
and fully connected layer. Given an input speech X(i)

and transcription Y (i) sampled from the training set D =
{(X(1),Y (1)), (X(2),Y (2)), . . .}, a single speech utterance is rep-
resented as a matrix X(i) ∈ RS×D where T is the length
of speech utterance and D is the feature dimension. A
transcription output Y (i) = [y1, y2, . . . , yS] is a sequence of
phoneme or grapheme plus a blank character with length T .

We illustrated the model architecture on the left side of
Fig. 13. First, the speech features X are projected by one or
more 1D convolution (convolution over the time dimension)
and transformed by a nonlinear activation function ReLU:

hl
s = f (Wl � hl−1

s−c:s+c) (62)

where Wl is a convolution filter weight at layer-l, c is the
context window size and f (x) = max(0, x) is a rectifier lin-
ear unit (ReLU) activation function. After that, the output
from convolutional layers hl

1:S is fed into multiple bidirec-
tional GRU layers:

−→
hl

t = GRU(hl−1
t ,
−−→
hl

t−1) (63)
←−
hl

t = GRU(hl−1
t ,
←−−
hl

t+1). (64)

The result from left-to-right GRU
−→
hl

t is combined with the←−
hl

t by sum between two hidden states hl
t =
−→
hl

t +
←−
hl

t . Next, the
result from bidirectional GRU are fed into one or more fully
connected layers, followed by nonlinear activation function
ReLU:

hl
t = f (Wlhl−1

t + bl). (65)

Table 2 Librispeech dataset information

Subset hours speakers per-spk minutes
train-clean-100 100 251 25
dev-clean 5 40 10
test-clean 5 40 10

Fig. 13 We replace multiple layers of bidirectional GRU with TT-GRU

The last output from our model hL
t are used to represent

the label probability:

P(yt = c|X) =
exp(wL

c ∗ hL−1
t + bc)∑

k exp(wL
k ∗ hL−1

t + bk)
. (66)

To train this model, we use Connectionist Temporal Classi-
fication (CTC) loss function [39].

We perform the TT-format representation on the bidi-
rectional GRU layers in the middle of DeepSpeech2 archi-
tecture. In Fig. 13, we mark the layer that we change from
GRU to TT-GRU.

The setting of the model parameters of the GRU base-
line is based on the paper of Deep Speech 2 [3], and the
configuration of the parameters of TT-GRU is determined
based on the tensor decomposition. For baseline GRU,
we used the SGD optimizer. However, our TT-GRU could
not converge with SGD, and thus we used the Adam algo-
rithm to optimize the TT-GRU model parameters. We eval-
uate ASR performance by calculating the normalized edit-
distance between the generated transcription and the ground

446
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

Table 3 Parameters, Compression Rate, Validation CER and Test CER
on Librispeech dataset

Model Params Compr. Val CER Test CER
GRU-H1510 13M 100 20.03% 20.62%

TTGRU
H4x8x6x8-R3 11K 0.08 27.57% 27.21%
H4x8x6x8-R5 22K 0.16 23.76% 23.40%
H4x8x6x8-R7 37K 0.27 22.68% 23.73%

truth. Here, we use character error-rate (CER) because our
output token are set of alphabet letters (a-z) and space char-
acter.

6.3 Result and Discussion

Table 3 shows the performance of the proposed TT-GRU
in comparison with the baseline (uncompressed) GRU. The
baseline model is a GRU with 1510 hidden units. Our pro-
posed model has a 4x8x6x8 output shape and TT-GRU of
tensor train rank (3, 5, 7). No language model was applied,
and thus a character error rate (CER) was used for the eval-
uation function. The best system of our proposed model
could drastically reduce the parameters from 13 millions to
37,000. Overall, this reduction was about 99% in the con-
verted GRU layer and about 60% in the entire model. This
reveals that the performance could be maintained while re-
ducing the number of parameters. Importantly, unlike sev-
eral published systems using these benchmarks, our pro-
posed system does not involve a language model. Therefore,
the results reported in the paper could not reach state-of-the-
art performance. Nevertheless, the results are still convinc-
ing as evidence of the proposed framework’s effectiveness.

7. Related Work

Compressing parameters on neural network architecture has
become an interesting topic over the past several years due
to the increased complexity of neural networks. The number
of parameters and processing times has also grown tremen-
dously along with their performance. A number of re-
searchers comes up with many different ways to tackle this
problem.

Ba et al. [10] and Hinton et al. [9] “distilled” the knowl-
edge from a deep neural network into a shallow neural net-
work. First, they trained a state-of-the-art model with a deep
and complex neural network using the original dataset and
hard label as the target. After that, they reused the trained
deep neural network by extracting output from the softmax
layer and used them as the output target for a shallow neural
network. By training the shallow network with a soft target,
they achieved a better performance than the model trained
using hard target labels. Recently, Tang et al. [11] utilized
a similar approach for training RNN with a trained DNN.
However, they had to train two different neural networks and
built different structures to transfer the knowledge from big-
ger models.

From the probabilistic perspective, Graves et al. [40]

proposed a variational inference method for learning the
mean and variance of Gaussian distribution for each weight
parameter. They reformulated the variational inference as
the optimization of a Minimum Description Length [41]. By
modeling each weight parameter, they learned the impor-
tance of each weight in regard to the model. After the train-
ing process was finished, they pruned the parameters by re-
moving the weight that has a high probability to be zero.
However, they still needed large matrix multiplication and
represented their model in dense weight matrix, and thus the
algorithmic and memory complexity remained the same as
in the original model. LeCun et al. [42] proposed a method
to prune the weight with low-saliency based on their second
derivatives.

Another approach to tackle the compression problem
by a technical perspective is to limit the precision for weight
parameters. Gupta et al. [43] and Courbariaux et al. [44]
minimized the performance loss while using fewer bits (e.g.,
16 bits) to represent floating points. Courbariaux et al. [45]
proposed BinaryConnect to constrain the weight possible
values to −1 or +1. Han et al. [46] utilized a combination
between pruning, quantization and compression by Huffman
coding. Most of these ideas can be easily applied with
our proposed model since several deep-learning frameworks
have built-in low-precision floating point options [47], [48].

Model compression using low-rank matrix has also
been reported [12], [49]. Both of these works showed that
many weight parameters are significantly redundant, and by
representing them as low-rank matrices, they reduced the
number of parameters with only a small drop in accuracy.
Recently, Lu et al. [50] used low-rank matrix ideas to reduce
the number of parameters in an RNN. Novikov et al. [13] uti-
lized TT-format to represent weight matrices on feedforward
neural networks. From their empirical evaluation on DNN-
based architecture, the feedforward layer represented by the
TT-format has a far better compression ratio and smaller
accuracy loss compared to the low-rank matrix approach.
Tjandra et al. [15] and Yang et al. [51] utilized the TT-format
to represent the RNN weight matrices. Based on the empir-
ical results, TT-format are able to reduce the number of pa-
rameters significantly and retain the model performance at
the same time. Recent work from [52] used block decom-
positions to represent the RNN weight matrices.

To the best of our knowledge, there are only a few re-
search about compression on RNN models. In this work,
we presented an RNN model by using CP decomposi-
tion, Tucker decomposition and TT-decomposition to re-
parameterize the weight matrices into a low-rank tensor for-
mat. We also compared the performance to standard uncom-
pressed RNNs with a greater number of parameters. We ex-
pect our model could minimize the number of parameters
and preserved the performance simultaneously.

8. Conclusion

In this paper, we presented an efficient and compact RNN
model based on tensor decomposition method. In this work,

TJANDRA et al.: RECURRENT NEURAL NETWORK COMPRESSION BASED ON LOW-RANK TENSOR REPRESENTATION
447

we presented some alternatives for compressing RNN pa-
rameters with tensor decomposition methods. Specifically,
we utilized CP-decomposition and Tucker decomposition to
represent the weight matrices. For the experiment, first, we
run our experiment on polyphonic music dataset with un-
compressed GRU model and three tensor-based RNN mod-
els (CP-GRU, Tucker-GRU and TT-GRU). We compare the
performance of between all tensor-based RNNs under vari-
ous number of parameters. Based on our experiment results,
we conclude that TT-GRU has better performances com-
pared to other methods under the same number of parame-
ters. To extend our result, we run another experiment which
is speech recognition task. We modified DeepSpeech2 ar-
chitecture and we were able to represent dense weight ma-
trices inside the RNN layer with multiple low-rank tensors
based on TT-format. We evaluated our proposed model on
LibriSpeech data. Our proposed TT-GRU is able to com-
press the number of parameters significantly while retaining
high model performance and accuracy at the same time.

Acknowledgments

Part of this work was supported by JSPS KAKENHI Grant
Numbers JP17H06101 and JP17K00237. We also thank
Takuma Mori for his supports and insightful discussions.

References

[1] J.L. Elman, “Finding structure in time,” Cognitive science, vol.14,
no.2, pp.179–211, 1990.

[2] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neu-
ral computation, vol.9, no.8, pp.1735–1780, 1997.

[3] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, et al., “Deep
speech: Scaling up end-to-end speech recognition,” arXiv preprint
arXiv:1412.5567, 2014.

[4] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B.
Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos, et al.,
“Deep speech 2: End-to-end speech recognition in English and
Mandarin,” arXiv preprint arXiv:1512.02595, 2015.

[5] Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[6] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[7] I. Sutskever, O. Vinyals, and Q.V. Le, “Sequence to sequence learn-
ing with neural networks,” Advances in neural information process-
ing systems, pp.3104–3112, 2014.

[8] M. Schuster, “Speech recognition for mobile devices at Google,”
Pacific Rim International Conference on Artificial Intelligence,
pp.8–10, Springer, 2010.

[9] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[10] J. Ba and R. Caruana, “Do deep nets really need to be deep?,”
Advances in neural information processing systems, pp.2654–2662,
2014.

[11] Z. Tang, D. Wang, and Z. Zhang, “Recurrent neural network train-
ing with dark knowledge transfer,” 2016 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
pp.5900–5904, IEEE, 2016.

[12] M. Denil, B. Shakibi, L. Dinh, N. de Freitas, et al., “Predicting pa-
rameters in deep learning,” Advances in Neural Information Pro-
cessing Systems, pp.2148–2156, 2013.

[13] A. Novikov, D. Podoprikhin, A. Osokin, and D.P. Vetrov, “Tensoriz-
ing neural networks,” Advances in Neural Information Processing
Systems, pp.442–450, 2015.

[14] I.V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Sci-
entific Computing, vol.33, no.5, pp.2295–2317, 2011.

[15] A. Tjandra, S. Sakti, and S. Nakamura, “Compressing recurrent neu-
ral network with tensor train,” 2017 International Joint Conference
on Neural Networks (IJCNN), pp.4451–4458, IEEE, 2017.

[16] A. Tjandra, S. Sakti, and S. Nakamura, “Tensor decomposition
for compressing recurrent neural network,” 2018 International Joint
Conference on Neural Networks (IJCNN), pp.1–8, July 2018.

[17] T. Mori, A. Tjandra, S. Sakti, and S. Nakamura, “Compressing
end-to-end ASR networks by tensor-train decomposition,” Inter-
speech 2018, 19th Annual Conference of the International Speech
Communication Association, Hyderabad, India, 2-6 Sept. 2018,
pp.806–810, 2018.

[18] A. Graves, A.r. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” 2013 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
pp.6645–6649, IEEE, 2013.

[19] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term de-
pendencies with gradient descent is difficult,” IEEE Trans. Neural
Netw., vol.5, no.2, pp.157–166, 1994.

[20] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient
flow in recurrent nets: the difficulty of learning long-term dependen-
cies,” 2001.

[21] Q.V. Le, N. Jaitly, and G.E. Hinton, “A simple way to initial-
ize recurrent networks of rectified linear units,” arXiv preprint
arXiv:1504.00941, 2015.

[22] J. Martens and I. Sutskever, “Learning recurrent neural networks
with Hessian-free optimization,” Proc. 28th International Confer-
ence on Machine Learning (ICML-11), pp.1033–1040, 2011.

[23] A. Graves, N. Jaitly, and A.r. Mohamed, “Hybrid speech recogni-
tion with deep bidirectional LSTM,” 2013 IEEE Workshop on Auto-
matic Speech Recognition and Understanding (ASRU), pp.273–278,
IEEE, 2013.

[24] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F.
Bougares, H. Schwenk, and Y. Bengio, “Learning phrase represen-
tations using RNN encoder-decoder for statistical machine transla-
tion,” arXiv preprint arXiv:1406.1078, 2014.

[25] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical eval-
uation of gated recurrent neural networks on sequence modeling,”
arXiv preprint arXiv:1412.3555, 2014.

[26] R.A. Harshman, “Foundations of the parafac procedure: Models and
conditions for an “explanatory” multimodal factor analysis,” 1970.

[27] H.A. Kiers, “Towards a standardized notation and terminology
in multiway analysis,” Journal of chemometrics, vol.14, no.3,
pp.105–122, 2000.

[28] T.G. Kolda and B.W. Bader, “Tensor decompositions and applica-
tions,” SIAM review, vol.51, no.3, pp.455–500, 2009.

[29] L.R. Tucker, “Some mathematical notes on three-mode factor anal-
ysis,” Psychometrika, vol.31, no.3, pp.279–311, 1966.

[30] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” International Conference on Machine
Learning, pp.1310–1318, 2013.

[31] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” Proc. International Conference
on Artificial Intelligence and Statistics (AISTATS’10), Society for
Artificial Intelligence and Statistics, 2010.

[32] N. Boulanger-lewandowski, Y. Bengio, and P. Vincent, “Modeling
temporal dependencies in high-dimensional sequences: Applica-
tion to polyphonic music generation and transcription,” Proc. 29th
International Conference on Machine Learning (ICML-12), ed. J.
Langford and J. Pineau, New York, NY, USA, pp.1159–1166, ACM,

http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1007/978-3-642-15246-7_3
http://dx.doi.org/10.1109/icassp.2016.7472809
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1109/ijcnn.2017.7966420
http://dx.doi.org/10.1109/ijcnn.2018.8489213
http://dx.doi.org/10.21437/interspeech.2018-1543
http://dx.doi.org/10.1109/icassp.2013.6638947
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/asru.2013.6707742
http://dx.doi.org/10.1002/1099-128x(200005/06)14:3<105::aid-cem582>3.0.co;2-i
http://dx.doi.org/10.1137/07070111x
http://dx.doi.org/10.1007/bf02289464

448
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

2012.
[33] A.L. Maas, A.Y. Hannun, and A.Y. Ng, “Rectifier nonlinearities

improve neural network acoustic models,” Proc. 30th International
Conference on Machine Learning (ICML-13).

[34] M. Bay, A.F. Ehmann, and J.S. Downie, “Evaluation of multiple-
f0 estimation and tracking systems,” 2009 International Society
for Music Information Retrieval Conference (ISMIR), pp.315–320,
2009.

[35] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[36] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
an asr corpus based on public domain audio books,” 2015 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp.5206–5210, IEEE, 2015.

[37] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N.
Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky,
G. Stemmer, and K. Vesely, “The kaldi speech recognition toolkit,”
IEEE 2011 Workshop on Automatic Speech Recognition and Under-
standing, IEEE Signal Processing Society, Dec. 2011. IEEE Catalog
No.: CFP11SRW-USB.

[38] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E.
Battenberg, C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen,
et al., “Deep speech 2: End-to-end speech recognition in english and
mandarin,” International Conference on Machine Learning, pp.173–
182, 2016.

[39] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connec-
tionist temporal classification: labelling unsegmented sequence data
with recurrent neural networks,” Proc. 23rd international conference
on Machine learning, pp.369–376, ACM, 2006.

[40] A. Graves, “Practical variational inference for neural networks,” Ad-
vances in Neural Information Processing Systems, pp.2348–2356,
2011.

[41] G.E. Hinton and D. Van Camp, “Keeping the neural networks simple
by minimizing the description length of the weights,” Proc. sixth an-
nual conference on Computational learning theory, pp.5–13, ACM,
1993.

[42] Y. LeCun, J.S. Denker, and S.A. Solla, “Optimal brain damage,” Ad-
vances in neural information processing systems, pp.598–605, 1990.

[43] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” Proc. 32nd International
Conference on Machine Learning, ICML 2015, Lille, France, 6-11
July 2015, pp.1737–1746, 2015.

[44] M. Courbariaux, J.P. David, and Y. Bengio, “Training deep neu-
ral networks with low precision multiplications,” arXiv preprint
arXiv:1412.7024, 2014.

[45] M. Courbariaux, Y. Bengio, and J.P. David, “BinaryConnect: Train-
ing deep neural networks with binary weights during propagations,”
Advances in Neural Information Processing Systems, pp.3123–
3131, 2015.

[46] S. Han, H. Mao, and W.J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huff-
man coding,” arXiv preprint arXiv:1510.00149, 2015.

[47] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I.
Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015. Software available from tensorflow.org.

[48] Theano Development Team, “Theano: A Python framework for
fast computation of mathematical expressions,” arXiv e-prints,
vol.abs/1605.02688, May 2016.

[49] T.N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B.
Ramabhadran, “Low-rank matrix factorization for deep neural net-
work training with high-dimensional output targets,” 2013 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing,
pp.6655–6659, IEEE, 2013.

[50] Z. Lu, V. Sindhwani, and T.N. Sainath, “Learning compact recurrent
neural networks,” 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp.5960–5964, IEEE,
2016.

[51] Y. Yang, D. Krompass, and V. Tresp, “Tensor-train recurrent neu-
ral networks for video classification,” International Conference on
Machine Learning, pp.3891–3900, 2017.

[52] J. Ye, L. Wang, G. Li, D. Chen, S. Zhe, X. Chu, and Z. Xu, “Learning
compact recurrent neural networks with block-term tensor decom-
position,” Proc. IEEE Conference on Computer Vision and Pattern
Recognition, pp.9378–9387, 2018.

Andros Tjandra received his B.E degree
in Computer Science (cum laude) from Faculty
of Computer Science, Universitas Indonesia,
Indonesia in 2014. Later, he continued his study
and obtained M.S (cum laude) in 2015 from the
same faculty and university. At the moment, he
is currently taking doctoral course in Graduate
School of Information Science, Nara Institute
of Technology, Japan. He is a student mem-
ber of ASJ. His research interests include ma-
chine learning (deep learning), speech recogni-

tion, speech synthesis and natural language processing.

Sakriani Sakti received her B.E. degree
in Informatics (cum laude) from Bandung Insti-
tute of Technology, Indonesia, in 1999. In 2000,
she received DAAD-Siemens Program Asia 21st
Century Award to study in Communication
Technology, University of Ulm, Germany, and
received her MSc degree in 2002. During
her thesis work, she worked with Speech Un-
derstanding Department, DaimlerChrysler Re-
search Center, Ulm, Germany. Between 2003–
2009, she worked as a researcher at ATR SLC

Labs, Japan, and during 2006–2011, she worked as an expert researcher
at NICT SLC Groups, Japan. While working with ATR-NICT, Japan, she
continued her study (2005–2008) with Dialog Systems Group University
of Ulm, Germany, and received her PhD degree in 2008. She was actively
involved in collaboration activities such as Asian Pacific Telecommunity
Project (2003–2007), A-STAR and U-STAR (2006–2011). In 2009–2011,
she served as a visiting professor of Computer Science Department, Uni-
versity of Indonesia (UI), Indonesia. From 2011, she has been an assistant
professor at the Augmented Human Communication Laboratory, NAIST,
Japan. She served also as a visiting scientific researcher of INRIA Paris-
Rocquencourt, France, in 2015–2016, under “JSPS Strategic Young Re-
searcher Overseas Visits Program for Accelerating Brain Circulation”. She
is a member of JNS, SFN, ASJ, ISCA, IEICE and IEEE. Her research in-
terests include statistical pattern recognition, speech recognition, spoken
language translation, cognitive communication, and graphical modeling
framework.

http://dx.doi.org/10.1109/icassp.2015.7178964
http://dx.doi.org/10.1145/1143844.1143891
http://dx.doi.org/10.1145/168304.168306
http://dx.doi.org/10.1109/icassp.2013.6638949
http://dx.doi.org/10.1109/icassp.2013.6638949
http://dx.doi.org/10.1109/icassp.2016.7472821
http://dx.doi.org/10.1109/cvpr.2018.00977

TJANDRA et al.: RECURRENT NEURAL NETWORK COMPRESSION BASED ON LOW-RANK TENSOR REPRESENTATION
449

Satoshi Nakamura is Professor of Graduate
School of Information Science, Nara Institute
of Science and Technology, Japan, Honorarpro-
fessor of Karlsruhe Institute of Technology,
Germany, and ATR Fellow. He received his B.S.
from Kyoto Institute of Technology in 1981 and
Ph.D. from Kyoto University in 1992. He was
Associate Professor of Graduate School of In-
formation Science at Nara Institute of Science
and Technology in 1994–2000. He was Direc-
tor of ATR Spoken Language Communication

Research Laboratories in 2000–2008 and Vice president of ATR in 2007–
2008. He was Director General of Keihanna Research Laboratories and
the Executive Director of Knowledge Creating Communication Research
Center, National Institute of Information and Communications Technol-
ogy, Japan in 2009–2010. He is currently Director of Augmented Hu-
man Communication laboratory and a full professor of Graduate School
of Information Science at Nara Institute of Science and Technology. He
is interested in modeling and systems of speech-to-speech translation and
speech recognition. He is one of the leaders of speech-to-speech transla-
tion research and has been serving for various speech-to-speech translation
research projects in the world including C-STAR, IWSLT and A-STAR.
He received Yamashita Research Award, Kiyasu Award from the Informa-
tion Processing Society of Japan, Telecom System Award, AAMT Nagao
Award, Docomo Mobile Science Award in 2007, ASJ Award for Distin-
guished Achievements in Acoustics. He received the Commendation for
Science and Technology by the Minister of Education, Science and Tech-
nology, and the Commendation for Science and Technology by the Minister
of Internal Affairs and Communications. He also received LREC Antonio
Zampoli Award 2012. He has been Elected Board Member of International
Speech Communication Association, ISCA, since June 2011, IEEE Signal
Processing Magazine Editorial Board Member since April 2012, IEEE SPS
Speech and Language Technical Committee Member since 2013, and IEEE
Fellow since 2016.

