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PAPER

Cloud Annealing: A Novel Simulated Annealing Algorithm Based
on Cloud Model

Shanshan JIAO†a), Nonmember, Zhisong PAN†b), Member, Yutian CHEN†c), and Yunbo LI†d), Nonmembers

SUMMARY As one of the most popular intelligent optimization algo-
rithms, Simulated Annealing (SA) faces two key problems, the generation
of perturbation solutions and the control strategy of the outer loop (cool-
ing schedule). In this paper, we introduce the Gaussian Cloud model to
solve both problems and propose a novel cloud annealing algorithm. Its
basic idea is to use the Gaussian Cloud model with decreasing numerical
character He (Hyper-entropy) to generate new solutions in the inner loop,
while He essentially indicates a heuristic control strategy to combine global
random search of the outer loop and local tuning search of the inner loop.
Experimental results in function optimization problems (i.e. single-peak,
multi-peak and high dimensional functions) show that, compared with the
simple SA algorithm, the proposed cloud annealing algorithm will lead to
significant improvement on convergence and the average value of obtained
solutions is usually closer to the optimal solution.
key words: simulated annealing, Gaussian Cloud model, cooling schedule,
solution perturbation, optimization algorithm

1. Introduction

Simulated annealing (SA) algorithm is a typical well-
studied heuristic approach of a one-point iterative search in
the field of operations research with the following advan-
tages: simple to implement, easy to calculate and effec-
tive for large-scale problems. It is an approximate global
optimization algorithm to find a good solution by random
perturbation of the current solution [1]. A worse solution
is accepted as the new solution with a probability that de-
creases as the solution space is explored. Since proposed by
Metropolis in 1953 [2], [3], it has been widely used in com-
plex combinatorial optimization and function optimization
problems.

The current research focus of the optimization algo-
rithm is how to avoid trapping in local optima (i.e., pre-
mature convergence) [4], [5]. Considering the global op-
timization ability of the SA algorithm to find an optimal
or near-optimal solution, some research works mainly fo-
cus on combining SA algorithm with other local search al-
gorithms to solve complex optimization problems, such as
simulated annealing with genetic algorithm [6]–[8], paral-
lel regeneration simulated annealing algorithm (PRSA) [9],
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simulated annealing with particle swarm optimization algo-
rithm [10]. Other few research works attempt to improve
the mechanism of the SA algorithm as well as solution con-
vergence and solution accuracy. For example, Ingber L [11]
proposed a very fast simulated annealing which has been
developed to fit empirical data to a theoretical cost-function
over a D-dimensional parameter-space; Jing Geng [12] em-
ployed chaotic sequence and cloud theory to improve the
original shortcomings of the simulated annealing algorithm
to avoid premature convergence. Although the above re-
search improved SA algorithm from different perspectives,
almost no work involved in the research about the heuris-
tic control strategy to combine global random search of the
outer loop and local tuning search of the inner loop.

In this paper, we propose a novel cloud annealing algo-
rithm that introduces the Gaussian cloud model to design a
heuristic control strategy of SA algorithm to combine global
random search and local tuning search. Experimental results
show that, compared with the simple SA algorithm, the pro-
posed method requires no user-specified parameters, leads
to significant improvement on convergence, and the aver-
age value of obtained solutions is always closer to the op-
timal solution for various function optimization problems
including single-peak, multi-peak, and high dimensional
functions.

In Sect. 2 we introduce the related backgrounds in-
cluding the principle of the simulated annealing and the
cloud model. In Sect. 3 we describe our cloud annealing
algorithm. By evaluating high dimensional functions and
multi-peak functions the results of cloud annealing compar-
ing with the classical simulated annealing are presented in
Sect. 4. In Sect. 5 we put forward the conclusion.

2. Related Backgrounds

2.1 Simulated Annealing

As seen in Fig. 1, a simulated annealing algorithm includes
three functions and two criteria. The inner loop includes the
acceptance criterion (Metropolis criterion), the new solu-
tion’s generation function (the perturbation of solutions) and
the probability function; the outer loop includes stop crite-
rion and temperature decrease function (cooling schedule).

The inner loop shows that the optimal solution at this
temperature can be found as long as the number of pertur-
bations is sufficient. Due to the perturbation of solutions
in a constant step length, we think that the new solution

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Flow of the simulated annealing algorithm

generated by the inner loop has a stable tendency of uncer-
tainty. The outer loop refers to temperature decrease during
the entire simulated annealing process (cooling schedule).
As long as the initial temperature is high enough and slow
enough to fall, the global optimum solution can be found.
Since the selection of initial temperature and the mode of
temperature decrease have random uncertainty, these are
disadvantages of the simulated annealing algorithm.

From the analysis above, a conclusion is that in order
to increase the efficiency and accuracy of the simulated an-
nealing algorithm, we can improve it from two aspects. One
is the perturbation method of solutions and the other is the
control strategy of the outer loop. The improvement will be
discussed later.

2.2 Cloud Model

The cloud model was first proposed by Professor Li

Deyi [13], [14], which can synthetically describe random-
ness, fuzziness and their relationship. This theory has
been successfully applied in many fields, such as sce-
nario prediction [15], stochastic optimization [16], and path
planning [17].

The cloud model uses three numerical characteristics,
namely Ex (expectation), En (entropy) and He (hyper en-
tropy), to depict the intension and extension of a concept,
the following describes the meaning of each parameter [18].
Cloud model consists of many cloud drops, and each cloud
drop is a point in which the qualitative concept is mapped to
the space of number fields, i.e. the implementation of a sam-
ple reflecting the quantity. This implementation is uncertain,
and the model also provides the degree to which this point
can represent the definition of the qualitative concept. Let
X be a general set and X = {x} can be called the universe of
discourse.

1. Ex (Expectation): The mathematical expectation of the
cloud drops belonging to a concept in the universal can
be regarded as the most representative and typical sam-
ple of the qualitative concept.

2. En (Entropy): En is used to figure the granularity scale
of the concept. On the one hand, En is a measurement
of randomness, which reflects the dispersing extent of
the cloud drops; on the other hand, it is also a measure-
ment of fuzziness, which reflects the range of cloud
drops in the universe of discourse.

3. He (Hyper-entropy): The entropy of En, He is used to
depict the uncertainty of the concept granularity.

The Gaussian Cloud model is an important kind of
cloud models. The definition of a Gaussian Cloud model
is as follows:

Definition 1 [13]: Let U be the universe of discourse
and the Gaussian Cloud C(Ex, En,He) be a qualitative con-
cept in U. If x ∈ U is a random instantiation of concept
C, x obeys Gaussian distribution N(Ex, En′2), where En′2
is a random instantiation that obeys Gaussian distribution
N(En,He2); the certainty degree of x to C is:

μ = e
−(x−Ex)2

2(En′)2 . (1)

The Gaussian Cloud model has an important property:
Property 1 [14]: The cloud drop generated by the

Gaussian Cloud model is a random variable with expecta-
tion Ex and variance En2 + He2.

The proposed cloud annealing algorithm is based on
the Gaussian Cloud model.

3. Methodology

3.1 The Main Idea of Cloud Annealing Algorithm

In this algorithm, we have three clear targets in mind. Our
first goal is to propose a one-point search procedure that
does not use an experience-based cooling schedule. The
second goal is to effectively use the information collected
during previous iterations of the search. The third goal is to
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make a heuristic control strategy to combine global random
search of the outer loop and local tuning search of the inner
loop. The cloud annealing algorithm proposed is an improved
simulated annealing algorithm based on a Gaussian cloud
model with decreasing numerical character He (Hyper-
entropy) to generate new solutions in the inner loop, while
He essentially indicates a heuristic control strategy to com-
bine global random search of the outer loop and local tuning
search of inner loop. In the inner loop, the simulated anneal-
ing algorithm uses a constant step length to search for the
optimal solution, which results in slow convergence, while
we adjust the search step by controlling the change of He
to speed up the convergence in the cloud annealing algo-
rithm. Because a cloud drop is a possible new solution in
the cloud annealing, Property 1 shows that each cloud drop
generated by the Gaussian cloud model is subject to normal
distribution (Ex, En2 + He2). As He becomes smaller, the
variance of cloud drops becomes smaller and the distribu-
tion of cloud drops becomes dense. He controls the conden-
sation degree of cloud drops which indicates the aggregation
state of the distribution of solutions. When optimization be-
gins, the cloud annealing has a good global random search
capability because of the large search steps that result from
large initial He. As iterations go on increasing, He becomes
smaller and the local tuning search range becomes smaller.
In outer loop, the role of He in cloud annealing algorithm is
analogous to the role of temperature in the simulated anneal-
ing algorithm, which is used to control the rate of the itera-
tions. However, unlike the temperature only participating in
the outer loop, He participates in both outer loop and inner
loop. In conclusion, the cloud annealing algorithm improves
optimization performance from two aspects, the perturba-
tion of solutions and the control strategy of the outer loop.

3.1.1 The Perturbation of Solutions

In cloud annealing algorithm, we use the Gaussian Cloud
generator to generate a new solution. The current solution is
chosen as Ex. The perturbation of solutions is

xnew = cloud(x, En,He), (2)

xnew ∼ N(Ex, En′2), (3)

En′ ∼ N(En,He2). (4)

3.1.2 The Control Strategy of Outer Loop

1. The initial value of He in cloud annealing
The outer loop is a process that narrows the optimal
range of the cloud from a wide scope, and it needs
to increase the degree of condensation of the cloud
drops. When He decreases, the overall tendency of
cloud drops is to concentrate on Ex and the search
radius is reduced. That is to say, we can control the
degree of aggregation of cloud drops around Ex by
changing He, thus controlling the selection range of the
new solution. Figure 2 shows the distribution of cloud
drops generated by the Gaussian Cloud Model on the

Fig. 2 Influence of changes in he (hyper-entropy) on cloud

Fig. 3 Comparison of different control strategies

Algorithm 1 Cloud annealing algorithm
Input: iterations k, tolerance YZ, expectation Ex, entropy En, hyper-

entropy He, attenuation coefficient α, the inner loop number (Markov
chain length) L

Output: optimal solution
1: Choose a random xk as the current solution and calculate its fitness

value f (xk). Randomly initialize of an xbest as the last optimal solu-
tion.

2: while f (xbest) − f (xk) > YZ do
3: for i = 1 : L do
4: Ex = xk
5: xnew = cloud(Ex, En,He)
6: if f (xnew) < f (xk) then
7: xk = xnew
8: if f (xk) < f (xbest) then
9: xbest = xk

10: else
11: P(Hek) = e−[ f (xnew)− f (xk)]/Hek

12: Generate a random number λ ∈ (0, 1)
13: if λ < P(Hek) then
14: xk = xnew
15: end if
16: end if
17: end if
18: end for
19: Hek+1 = α

k × Hek
20: xk+1 = xk
21: k = k + 1
22: end while

condition of different He. Let Ex = 0, En = 0.1, the
number of cloud drops be n = 1000, He = 1, 0.1, 0.01
respectively. It can be seen that as He decreases, all the
cloud drops tend to be concentrated around the core,
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and the number of cloud drops around Ex becomes
larger.
He finally will be infinitely close to 0, so that the func-
tion converges to the optimal value. When He is large
enough, the perturbation of solutions can traverse the
entire universe of discourse in order to find the optimal
solution space containing the minimum energy value,
so the choice of the initial value of He becomes sig-
nificant. If the initial value of He chooses too small,
it may find the local optimal solution; conversely, the
iterative time is too long, affecting convergence speed.
Compared with the uncertainty of initial temperature
selection in the simulated annealing algorithm, the ini-
tial He of cloud annealing algorithm can be calculated
by the following Eq. (7).
Let x ∈ (xmin, xmax), which can be seen from Property
1 that the cloud drop x ∼ N(Ex, En2 + He2). Accord-
ing to the 3σ property of the Gaussian distribution, the

Fig. 4 Flow of cloud annealing algorithm

probability of cloud drops falling outside (Ex − 3σ,
Ex + 3σ] is less than 0.3%. It can be concluded that:

6σ = ‖xmax − xmin‖, (5)

σ2 = En2 + He2, (6)

He =

√
‖xmax − xmin|2

36
− En2. (7)

2. Comparison of control strategies in outer loop
In order to choose a better way of the outer loop, we
compare two methods of the control strategy. All the
other conditions are the same, but the way of He de-
crease is different, calculate the minimum value of
Sphere function. α is the attenuation coefficient between
0 and 1, and k is the number of iterations. The results of
the calculation are shown in Fig. 3. It can be seen from
Fig. 3 that the two outer loops both behave well and the
values of cost function decrease rapidly. He = αk ×He
performs better, the convergence speed is faster and the
accuracy is higher. Therefore, the cloud annealing al-
gorithm adopts He = αk × He as outer loop mode.

3.2 Cloud Annealing Algorithm Steps

Based on the above analysis, the flow of cloud annealing
algorithm is shown as Fig. 4. In cloud annealing, the signif-
icance of numerical characteristics (Ex, En,He) are as fol-
lows. (1) Ex is the current solution. The cloud is generated
with Ex as the center. The farther away from Ex, the greater
the difference in cost function values may be. (2) En2 +He2

reflects the deviation of cloud drops from the current solu-
tion, the degree of cloud drops dispersion, representing the
scope of the search. (3) He is an outer loop switch, a measure
of the uncertainty of the search. By changing He, the den-
sity of the entire cloud drops can be flexibly adjusted, and
the cohesion and diffusion of cloud drops can be controlled.

4. Numerical Experiments

4.1 An Experiment on the Effectiveness of the Initial
Value of Hyper-Entropy

The numerical experiment below demonstrates whether

Fig. 5 The distribution of cloud drops
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Table 1 Test function set

Function name Test function

Sphere f1(x) =
∑D

i=1 x2
i

Rosenbrock f2(x) =
∑D−1

i=1 100(xi+1 − x2
i )2 + (1 − xi)2

Ackley f3(x) = 20 + exp(1) − 20exp(−0.2
√

1
n

∑n
i=1 x2

i ) − exp( 1
n

∑n
i=1 cos(2πxi))

Griewank f4(x) =
∑

i=1 D
x2

i
4000 −

∏D
i=1 cos xi√

i
+ 1

Rastrigin f5(x) =
∑D

i=1 x2
i − 10cos(2πxi) + 10

Bohachevsky f6(x) =
∑D−1

i=1 x2
i + 2x2

i+1 − 0.3cos(3πxi) − 0.4cos(4πxi+1) + 0.7

Matyas f7(x) = 0.26(x2
1 + x2

2) − 0.48x1 x2

Table 2 Test functions scope

range minimum dimension
f1 [-10,10] 0 20
f2 [-100,100] 0 10
f3 [-32,32] 0 3
f4 [-600,600] 0 10
f5 [-5.12,5.12] 0 10
f6 [-15,15] 0 2
f7 [-10,10] 0 2

cloud drops generated by the initial value of He can cover
the entire universe of discourse or not. Let x ∈ [−3, 3],
y ∈ [−3, 3], Ex = 0, En = 0.1, n = 1000, according to
Eq. (7), He = 0.995, draw the cloud as Fig. 5.

The initial He calculated by Eq. (7) is applied to a
Gaussian Cloud generator in Fig. 5. Generated cloud drops
can reach the boundary of the universe of discourse x ∈
[−3, 3], y ∈ [−3, 3]. As long as the number of cloud drops
n is large enough that all the cloud drops can cover the en-
tire universe of discourse. This illustrates the completeness
of cloud annealing algorithm, that is, all the values in the
universe of discourse can be obtained.

4.2 Performance Experiments of Cloud Annealing Algo-
rithm

In order to observe the quality of solutions and the conver-
gence rate of cloud annealing, we have chosen single-peak
functions and multi-peak functions to carry out the exper-
iments. Sphere is a single-peak function. Rosenbrock is a
single-peak function in two and three dimensions, but can be
regarded as a multi-peak function in more dimensions [19].
The rest functions are multi-peak functions with many local
extreme points [20]. Parameters set: Markov chain length
L = 200, En = 0.01, attenuation parameter α = 0.998,
tolerance YZ = 10−8. For a more scientific and objective
comparison, we conduct 50 independent experiments under
the same configuration environment and parameters. The
test functions are in Table 1, Table 2.

4.2.1 Quality Analysis of Solutions

The quality of the solution is expressed as “mean error ∓
standard deviation”, SA for simulated annealing, and CA
for cloud annealing. The results are shown in Table 3.

Table 3 Average function value error between SA and CA

method Optimal value mean error ∓ standard deviation

f1
SA 1.3400E-03 1.6000E-03∓ 1.7387E-03
CA 4.5680E-04 5.4800E-04∓4.2071E-04

f2
SA 7.0921E-07 1.3511E-05∓ 2.1689E-05
CA 1.6497E-09 2.7188E-08∓3.7146E-08

f3
SA 1.1021E-03 1.8504E-03∓ 4.9185E-01
CA 3.5230E-04 5.2327E-04∓ 1.0271E-02

f4
SA 4.4310E-02 5.4086E-02∓9.7075E-02
CA 1.1660E-02 3.2252E-02∓1.0042E-03

f5
SA 1.3096E-03 1.9997E-02∓ 5.8930E-01
CA 7.2420E-07 8.0898E-07∓ 9.7536E-02

f6
SA 1.9552E-07 1.6467E-06∓ 1.3938E-06
CA 4.2004E-09 4.4111E-08∓ 7.9103E-08

f7
SA 1.3120E-08 6.9318E-08∓ 8.0525E-06
CA 6.2196E-09 3.3543E-08 ∓ 3.9906E-08

Fig. 6 Sphere function

As can be seen from Table 3, the optimal solution of
the CA algorithm is closer to the real optimal solution 0 than
that of the SA algorithm. Meanwhile, the average error and
standard deviation of the CA algorithm are much smaller
than that of SA algorithm, especially in f2, f5 and f6. The
results show that the cloud annealing algorithm significantly
improves the accuracy and stability of the solution both in
single-peak functions and multi-peak functions.

4.2.2 Convergence Rate Analysis

In the case of the same experimental parameters, we com-
pare the convergence speeds of the different functions us-
ing simulated annealing and the cloud annealing algorithms.
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Fig. 7 Rosenbrock function

Fig. 8 Ackley function

Fig. 9 Griewank function

The results are shown in Figs. 6, 7, 8, 9, 10, 11, 12. The
ordinate represents the function value and the abscissa rep-
resents the number of iterations. Figure 6 shows the dif-
ferent performance of f1 function using the simulated an-
nealing algorithm and the cloud annealing algorithm. At the
same number of iterations, the function value obtained by

Fig. 10 Rastrigin function

Fig. 11 Bohachevsky function

Fig. 12 Matyas function

the cloud annealing algorithm is far less than that obtained
by the simulated annealing algorithm. The cloud annealing
algorithm converges faster than the simulated annealing al-
gorithm. Figures 7, 8, 9, 10, 11 are the same as Fig. 6. The
convergence rate of the cloud annealing algorithm is signifi-
cantly better than that of the simulated annealing algorithm.
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Table 4 The average number of iterations that converge to the error
threshold

function error threshold SA iterations CA iterations

f1 10−3 6.779E+05 1533

f2 10−6 9.372E+04 8.251E+04

f3 10−3 4.828E+05 1018

f4 10−2 2.324E+03 3675

f5 10−6 - 568

f6 10−6 6.132E+05 1688

f7 10−8 9.273E+05 3.808E+05

It can be seen from Table 4 that when reaching to the
same error threshold, the iterative times of the cloud anneal-
ing is obviously less than that of the simulated annealing. In
f1, f3, f4, f6, the cloud annealing algorithm greatly reduced
iterative times. In f5, the simulated annealing algorithm did
not reach the error threshold, cloud annealing algorithm per-
formed better.

5. Conclusion

In this paper, we presented an advanced cloud annealing al-
gorithm based on Gaussian Cloud model whose selection
mechanism was controlled by He (hyper-entropy). It was a
heuristic control strategy to combine global random search
of the outer loop and local tuning search of the inner loop
in terms of finding global optimal solutions by controlling
the change of He. We have made several experimental com-
parisons of the cloud annealing with the simulated anneal-
ing on different types of functions. The results showed that
the cloud annealing could improve the accuracy and conver-
gence speed of solutions. Through the above research on
cloud annealing algorithm from the principle to numerical
experiments, we can get the following conclusions:

1. Based on the idea of the cloud model, we proposed
an original perturbation method of solutions which
can adjust the search step by changing the He (hyper-
entropy).

2. We proposed a way for calculating the initial value of
He (hyper-entropy) and a heuristic control strategy in
the outer loop.
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