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SUMMARY In this paper we design a fast fabric defect detection
framework (Fast-DDF) based on gray histogram back-projection, which
adopts end to end multi-convoluted network model to realize defect clas-
sification. First, the back-projection image is established through the gray
histogram on fabric image, and the closing operation and adaptive thresh-
old segmentation method are performed to screen the impurity information
and extract the defect regions. Then, the defect images segmented by the
Fast-DDF are marked and normalized into the multi-layer convolutional
neural network for training. Finally, in order to solve the problem of diffi-
cult adjustment of network model parameters and long training time, some
strategies such as batch normalization of samples and network fine tuning
are proposed. The experimental results on the TILDA database show that
our method can deal with various defect types of textile fabrics. The aver-
age detection accuracy with a higher rate of 96.12% in the database of five
different defects, and the single image detection speed only needs 0.72s.
key words: back-projection, gray histogram, fabric detection, multi-layer
convolutional neural network

1. Introduction

In the textile industry, the presence of defects on the fab-
ric reduces the value of the product, and the loss is as high
as 45%-65% [1]. Therefore, the most important way to in-
crease production efficiency and reduce production costs is
to ensure the quality of fabric. However, for a long time, the
detection of fabric defects has been done manually. There
are many shortcomings, such as the low efficiency and high
labour cost, and the human visual system can only identify
about 50%-70% of textile fabrics [2]. Therefore, it is nec-
essary to design an automatic detection method for fabric
defects to reduce labour costs and improve fabric produc-
tion efficiency. Currently, the textile industry divides fabric
defects into more than 70 different categories [3]. Most of
these defects are composed of holes, broken weft, oil spot,
broken warp and breaking.

At present, the methods of fabric texture feature ex-
traction are mainly divided into statistical methods, spectral
methods and model methods [1]. Statistical methods mainly
include gray level co-occurrence matrix (GLCM) [4], [5],
fractal dimension [6], morphology[7] and Local binary
pattern (LBP)[8]. Spectral methods include Fourier
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transform [9], Gabor filter [10], [11] and wavelet trans-
form[12]. Model methods include autoregressive models
and Markov fields [13]. On the other hand, some researchers
use machine learning algorithms to incorporate defect clas-
sification into defect detection, making these algorithms
more efficient. Zhang [14] optimizes neural network param-
eters by genetic algorithm and used Elman network model
to classify fabric defects, which has better effect on differ-
ent defect classification. Salem [2] compared several feature
extraction methods and combined with support vector ma-
chine (SVM) to obtain better classification results, but such
algorithm has low accuracy for different types of defects.
Although the above methods have some effects, their
computational efficiency is not high. Back-projection is
a method suitable for periodically detecting fabric defects
in fabric textures. Swain et al. [15] first proposed a back-
projection of color histogram based on target positioning.
And a large number of subsequent researches also focused
on the back-projection of color histogram [16]-[19]. Color
histogram back-projection is mainly used for the detection
and tracking of targets in complex backgrounds. It is nec-
essary to know the color or region information of the target
in advance. However, the fabric objects studied in this pa-
per are mainly grey fabric, and there are many kinds of grey
fabric defects. It is impossible to know what defects will
occur before the detection, and there is no suitable color in-
formation, so the exact information of the defect cannot be
provided. Therefore, we proposed a method based on gray
histogram back-projection for fabric defect segmentation.
On the other hand, after AlexNet [20] was successful
in image recognition tasks, some deep learning methods
similar to convolutional neural networks (CNN), have set
off a research boom in many computer vision tasks. Mei
et al.[21] train multiple convolutional denoising autoen-
coder networks with randomly sampled image blocks from
defect-free samples, and finally predict the defects by syn-
thesizing multiple pyramid layers. However, in these visual
recognition task, most researchers use a network detection
model from coarse to fine. For example, Sun et al. [22]
proposed a system for recognizing typical faults based on
CNN, which can solve the problem of low quality images.
The fault inspection system includes two complex mod-
els based on CNN, which are used for target region detec-
tion and faults recognition respectively, but their versatility
and efficiency are not high. For an object detection tasks,
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Fig.1

region-based CNN (R-CNN) detection methods [23] such
as Faster R-CNN [24] and the region-based fully convolu-
tional networks (R-FCN) [25] are now main examples with
increasingly better accuracy. However, the fabric image usu-
ally has a large size, and the defect only accounts for a small
part of the whole image. If CNN is used for defect segmen-
tation, it will take a lot of time.

As shown in Fig. 1, inspired by faster R-CNN, we de-
sign a fast fabric defect detection framework (Fast-DDF) for
multi-layer CNN based on gray histogram back-projection.
It consists of defect segmentation and defect classifica-
tion. Defect segmentation is realized by a Fast-DDF based
on gray histogram back projection. Since the gray his-
togram back-projection algorithm has the advantage of re-
moving texture background information, we combine Adap-
tive threshold segmentation method to quickly extract fabric
image defect region. Defect classification is achieved by de-
signing an end-to-end multi-convolution network structure.
We use sample batch normalization (BN) [26] and network
finetuning strategies to improve network training efficiency.

The remainder of this paper is organized as follows.
Section 2 presents the principles of the proposed fast fault
detection framework. Section 3 introduces the construction
of a multi-layer CNN. The databases, experimental results
and analysis are shown in Sect.4. We end this paper with
the conclusion in Sect. 5.

2. Fast-DDF Based on Gray Histogram Back-Projec-
tion

2.1 Fast-DDF Process

The procedure of fabric defect detection is showed in Fig. 2.
First, we calculate the gray histogram back-projection of the
image, and then further remove the interference points in the
back projection image by morphological processing. Fur-
ther, the binarization processing and the defect connected
operation are performed to obtain a complete defect region.
Finally, locate the defect location in the original image.

2.2 Gray Histogram Back-Projection
The histogram back-projection based on pixels is to calcu-

late the feature histogram of each pixel within the input im-
age firstly, and then the character eigenvalue of each pixel in

Fast-DDF for multi-layer convolutional neural network based on gray histogram back-projection

Fig.2  Process of Fast-DDF.

input image should be replaced by the specific bin value to
which the eigenvalue is corresponding in the histogram, and
finally the back-projection image is obtained by the normal-
ized result image. For example, in gray level images, the
greater the number of the pixels with specific gray value is
in the whole gray images, the greater its value is in the his-
togram, and the greater its corresponding value is in back-
projection. Conversely, the smaller the region occupied by
a certain gray value, the smaller its new value by back-
projection is. The back-projection based on the gray his-
togram is shown as follows:

55 * Qb(i,j)

2
bp(i, j) = max(g,) (m=1,2,--

n). )]
The bp(i, j) is pixel value of back-projection in point (i, j).
The b(i, j) represents a bin of histogram to which the pixel at
the point (i, j) corresponds. Histogram generally has n bins.
The gy j is value of the bin b(i, j). The g, is value of the
m-th bin in histogram. The max(g,,) means the max value
of them.

In addition, because of the characteristics of fabric
texture, the gray values of the defective pixels and non-
defective pixels in the back projection are close to each
other, which is difficult to distinguish. In order to detect
defects more effectively, the calculation equation of back-
projection can be changed as follows:

qb(i,j) < 255
qu(i,j) 2 255°

qbG.j)

255 @

bp(, ) ={

After calculating image histogram, if the number of
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pixels corresponding to the gray value is less than 255, the
number of pixels is taken as the gray value of these pixels.
If the number of pixels corresponding to the gray value is
greater than or equal to 255, the gray value of these pixels is
set to 255. In this way, most of the non-defective pixels can
be filtered out, and then back-projection of the rest pixels
will be more targeted.

As shown in Fig. 3, the original, binarization and back-
projection images are shown from left to right. The exper-
imental results show that the pixel values in the fabric im-
ages have different levels from high to low, and gray values
of pixels belonging to defects are also different, simple bi-
narization processing may not separate defects out. How-
ever, the image will well retain defective regions after back-
projection and eliminate non-defective regions through mor-
phological processing. Regardless of directions of the fabric
texture, back-projection has a great effect for shielding fab-
ric texture. Compared with Gabor transform which need to
determine directions of the texture or Gabor nucleus of mul-
tiple dimensions and scales, back-projection is practical and
can greatly reduce the complexity.
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Fig.3 Comparison of processing results with binarization and back-
projection. (a) Images with no defects; (b) images with hole defects (from
left to right are the original image, binarization image and back-projection
image).
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2.3 Parameter Selection for Back-Projection

When calculating the histogram of gray image of the fabric,
the size of the histogram, that is, the number m of bins, has a
certain influence on the back-projection image. Since there
are 256 gray levels in the gray image, when m is equal to 16,
each bin occupies 16 gray levels. If m is equal to 256, each
gray level corresponds to one bin. Taking the fabric image
with hole defects as an example, when m is equal to 8, 16,
32, 64, 128 and 256, the corresponding back-projection and
final processing effect of the hole defects image are shown
in Fig. 4.

From Fig.4 (a), it can be seen that the average gray
value of the region near the defect is significantly lower than
other regions. With the increasing of m, impurities in back-
projection will gradually aggrandize. But if m is too small,
it can be seen from Fig. 4 (b) that regions of detected defects
will shrink. So it is not conducive to help us find complete
defect region.

In order to select the range of m reasonably. The
probability of defects which may be detected in the back-
projection image is denoted as A, and the possessive prob-
ability of defects in the back-projection image is denoted
as B. The number of pixels belonging to hole defects in
Fig. 3 (b) is Q. The amount of the pixels which are detected
and belong to hole defects in Fig. 3 (b), is recorded as C.
The amount of the pixels, whose corresponding number is
less than 255 in the gray histogram of Fig. 3 (a), is recorded
as P. The calculation formulas of A and B are as follows:

A= 0 B= P 3)

As shown in Fig.5, A and B in the hole defect image
with m ranging from 8 to 256 are counted. With the in-
crease of m, A and B is fluctuant in local part due to un-
even gray distribution of defects, but overall A increases
and B decreases gradually. The greater A and B are, the
better effect of defect detection is. But the tendency of A

m=64 m=128

m=256

A

Fig.4  Effect of bin values on back-projection: (a) back-projection image; (b) final result image.



SUN et al.: A FAST FABRIC DEFECT DETECTION FRAMEWORK FOR MULTI-LAYER CNN BASED ON HISTOGRAM BACK-PROJECTION

2507
1.2
1
0.8
05 WM —_—
LA
04 ey "\ .H
0
TERRSYRENBEESISREINEEA3ES8580F 84
Fig.5 A and B changing with m in the hole defect image.
Broken weft Oil spot Broken warp Breaking
Fig.6  Experimental results of different threshold segmentation methods. (a) Fabric defect images;
(b) basic global threshold segmentation result; (c) Otsu segmentation result; (d) maximum entropy
threshold segmentation result; (e) iterative segmentation result.
and B is opposite, so it is necessary to find a balance point. found that m has the best range from 56 to 104. Along with
Smaller A or B is not desirable, so we performed experi- the change of defect types and light, it will change a little

ments on multiple sets of images for each defect, and finally but does not deviate too far. However, it is impractical to
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Table 1  Speed of different binarization methods for fabric defect images
Time(ms) .
Methods Average
Hole Broken weft ~ Oil spot  Broken warp Breaking time(ms)
Basic global threshold 6.21 8.27 7.43 7.15 5.32 6.88
Otsu 0.53 0.65 0.49 0.67 0.48 0.56
Maximum entropy threshold 126.67 129.82 128.26 148.05 118.14 130.19
Iteration method 0.27 0.58 0.35 0.44 0.37 0.40

manually select a different m for each image during fabric
defects detection. Therefore, we can verify and select the
empirical value first. As long as the value of m is feasible
within the effective interval, m is set as 80 in this paper.

2.4 Morphology Processing

The morphology processing after back-projection is very
important to avoid the interference of impurities. The lo-
cation region where the defect is located will be retained,
and no error will be judged for the image without the defect.
The erosion of gray image is to select the minimum of the
difference between image pixels and structural elements in
neighborhood block determined by structural elements. The
dilation of gray image is expressed as selecting the maxi-
mum of the sum between image pixels and structural ele-
ments in neighborhood block determined by structural ele-
ments. Structural element of 3 X 3 is adopted in this paper.

2.5 Binarization and Defect Connection

Since the image after the closed operation is a gray image,
binarizing the image is advantageous for positioning the de-
fect. According to the principle of back-projection, the pixel
with high gray value has high occupancy rate after back-
projection, so there are some independent small interference
points after the closing operation. If the threshold of bi-
narization is too small, the defect will also be filtered. In
order to eliminate some of the interference points without
excessively reducing the defect region, a suitable binariza-
tion threshold is required. Obviously, a fixed threshold is
not suitable, so it is necessary to choose an adaptive thresh-
old segmentation method. Since the image after the closed
operation shows obvious foreground and background, there
is a significant trough in the histogram. However, com-
mon adaptive threshold segmentation methods include ba-
sic global threshold segmentation method, maximum inter-
class variance (Otsu) segmentation method, maximum en-
tropy threshold segmentation method and iterative segmen-
tation method. We perform experiments on four methods,
and the results are shown in the Fig. 6.

It can be seen from the experimental results in Fig. 6
that basic global threshold segmentation method, Otsu and
maximum entropy threshold segmentation have effects, and
the basic global threshold segmentation method and Otsu
segmentation method have the best retention of the defects

as a whole, so they have the best effect. From Table 1, it
can be concluded that iteration segmentation method is the
fastest, but its experimental results lose more information
about defects. However, the speed of Otsu segmentation
method is not lagging behind with iteration segmentation
method. Therefore, we use Otsu segmentation method to
perform binarization processing on the image. Most defects
after binarization are discrete, and we connect defects into a
whole through connected domain processing.

The contours of binarization image are marked as the
defects by minimum bounding rectangle method. When
solving minimum bounding rectangles of the contours, the
contours with smaller region can be excluded according to
the quality requirements of fabric. In addition, all the re-
served contours in images can be judged as defects as long
as they are located, thereby the location method could be
more accurate and rapid.

3. Defect Classification Based on Multi-Layer Convo-
lutional Neural Network

The classical CNN is mainly composed of multiple convolu-
tional layers and pooling layers. It is widely used in image
recognition because of its strong robustness to translation,
scaling and deformation. The structure of CNN proposed
in this paper for classification of fabric defect is shown in
Fig.1. It is mainly composed of three convolution lay-
ers, two pooling layers, one fully connected layer and one
Softmax layer. The details will be described later in this
section.

The first six layers of this network are used for the ex-
traction of defect features, and the last layer is used for clas-
sification. The batch size of each layer is uniformly set to
128. The activation function adopts ReLu. The output layer
adopts Softmax regression with strong nonlinear classifica-
tion ability and fast speed as the classifier. The loss function
adopts cross-entropy.

3.1 Batch Normalization

Network training is a complicated process. When a certain
layer of data changes slightly, the changes of subsequent
layers of changes will be cumulatively amplified, and the
network needs to re-adjust the learning rate and other pa-
rameters to adapt to the new data distribution, further af-
fecting the training speed and accuracy. The change of data
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distribution in the middle layer during the training process
is called as “Internal Covariate Shift”, and BN [26] is an ef-
fective method to solve this problem.

BN refers to normalizing the input data in units of batch
samples in a random gradient descent, so that the probabil-
ity distribution of each latitude becomes a stable probability
distribution with a mean of 0 and a standard deviation of 1.
In order to avoid the destruction of the features learned in
the normalization, it is necessary to introduce two trainable
parameter y and 8 to transform and reconstruct the data. If
the input of a layer is x = (x',---, x%), the total dimension is
d, the batch size is set to m, and the sample set of a batch is

B = {xy, -, x,}, then the BN can be defined as follows:
Ly o)
= — Xi
H mi=
] m
oy = ) )’ )
i=1
k
PO 6)
(o]
y(k) — y(k) )'e(k) + ﬂ(k) (7)

ug, o-% represent the mean and variance of the sample set B,
respectively. The normalized result of input x® is 2%, y®
represents the result of linear transformation of £®. y®,
B® represent the parameters to be learned corresponding to
x®_ In the CNN, a feature map can be treated as a neuron
for processing due to weight sharing. It means that the mean
and variance of all the neurons of a feature map are obtained,
and then the neurons of the feature map are normalized.

In the proposed network, the BN layer is placed in front
of the activation function layer, and the calculation of for-
ward conduction is as follows:

z = g(BN(W X u + b)), ()

Where W and b are the layer weights and thresholds, g(-) is
the activation function, u is the input of the BN layer, z is
the output obtained of the activation function.

3.2 Parameter Optimization

In the convolutional neural network, the random gradient
descent method based on small batch samples is usually
used, but this method is difficult to select for suitable hyper-
parameters, and the selection of parameters such as learning
rate and initial weight will affect training speed and classifi-
cation effect to some extent. Therefore, the adaptive param-
eterization method is widely used in the model tuning of the
network, and the Adam method [27] is one of the representa-
tives. Its main idea is to dynamically adjust the learning rate
of each parameter by using the first moment estimation and
the second moment estimation of the gradient. The iterative
learning rate will be used each time after the offset correc-
tion and it is limited to a certain range, so that the parameters
are relatively stable and the training speed is accelerated. Its
formula is as follows:
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Where m, and n, are the first moment and the second mo-
ment estimate of the gradient g,, respectively. B, and S,
represent the corresponding exponential decay factor, and
the value range is [0, 1). 77, and 71, are the correction of m;,
and n,, respectively. Af; represents the update amount of the
parameter. 1 represents the learning rate. € is the minimum
value which is greater than 0.

The Adam method can adaptively adjust the network
parameters to make the network converge quickly, but the
final training results often fail to achieve optimal results. In
this paper, a parameter training method combining Adam
and traditional SGD is used. In the early stage, the Adam
method is used to adaptively adjust the learning rate to make
the network converge quickly. In the later stage, the SGD
method is used to further fine-tune the trained model with a
very small learning rate to achieve an optimal classification
effect.

4. Experimental Results

The experimental database has a total of 1000 images con-
taining two parts: the TILDA database [28] and the other
part of our own database. This paper mainly focuses on five
kinds of common defects such as holes, broken weft, oil
stain, broken warp and broken joint in plain weave fabric.
In the TILDA database, we select two types of plain weave
fabric samples, C1 and C2. Each type of defect contains
50 sample images for a total of 500 images. In our own
database, 100 images are selected for each type of defect,
for a total of 500 images. All image sizes are normalized to
800 x 600 pixels. The experimental environment is as fol-
lows: Windows 10 (x64) operating system, CPU Intel Core
17-6700 v4 @2.60GHz and 16GB RAM, all experiments are
implemented by Matlab and Tensorflow. Furthermore, in or-
der to effectively verify the performance of the algorithm,
four evaluation indicators are established [29]: correct de-
tection rate (CDR), missing detection rate (MDR), false de-
tection rate (FDR), and detection speed. For example, sup-
pose the number of all fault images in the test set is n, the
number of detected fault images is a, the number of unde-
tected fault images is b, and the number of incorrect image
detection results is ¢. So, the above indexes can be defined
as: CDR = a/n, MDR = b/n, FDR = ¢/n.

4.1 Frame Experiment of Defect Extraction

Image block feature is an effective method for dimensional-
ity reduction. Its effect is equivalent to compressing image,
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Fig.7  Effect of partial defect detection: (a) hole; (b) broken weft; (c) oil spot; (d) broken warp;
(e) breaking (from left to right are back-projection, closed operation, binarization, defect connection,
result images).

reducing image resolution, and reducing the total histogram
statistics when the histogram is projected backward. At the
same time, by partitioning the sample image, mutual inter-
ference between multiple defects on the same image can be
reduced to some extent, and the number of defects can be
increased. We divided all 1000 images in the database into
200 x 200 pixel windows to get 12000 sample images. Then
defect detection is carried out through the proposed defect
framework. Some detection results are shown in Fig. 7, from
left to right are gray histogram back-projection, closed op-
eration, binarization, defect connection, result images.

In order to illustrate the effectiveness of Fast-DDF, we
compared the current mainstream fabric defect detection
methods. With some widely used defect detection methods
such as Gabor filter, LBP, lattice segmentation assisted by
Gabor filters (LSG) [11], GLCM [4] and Faster RCNN [24].
All of the above experiments were performed on Matlab,
and the parameters of above all methods are all default

values. The experimental results are shown in Table 2. The
comprehensive performance on the CDR of Faster RCNN is
better than other algorithms, but the method has higher hard-
ware requirements. The detection speed is much slower than
other algorithms in general hardware environments. How-
ever, our detection framework has an absolute advantage in
speed. In addition, it can be seen that our detection frame-
work also performs well in terms of average detection rate.

4.2 Classification Experiment

In order to train the network, we divided the 1000 images
in the database into a training library with 800 images and
a test library 200 images respectively. The selection princi-
ple ensures that the five defect types are equally distributed.
Then we extract the defect images from the 800 images in
the training library through the defect detection framework
in Sect.4.1. Due to the different sizes of defect regions, in
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Table 2  Different methods of defect segmentation results and speed
Methods Gabor filter LBP LSG GLCM Fast-DDF  Faster-RCNN
CDR/% 90.32 93.29 97.24 94.75 99.28 99.12
Hole MDR/% 3.42 1.67 1.32 2.32 0.72 0.88
FDR/% 6.26 5.04 1.44 2.93 0 0
Speed/ms 16.45 348.09 216.30 24.48 4.25 425.15
CDR/% 83.50 92.12 96.72 92.58 95.63 97.38
Broken weft MDR/% 6.21 3.48 2.26 2.53 3.12 2.12
FDR/% 10.29 4.4 1.02 4.89 1.25 0.50
Speed/ms 16.49 357.95 220.48 23.42 5.32 482.09
CDR/% 76.64 85.61 94.18 86.24 93.74 95.30
Oil spot MDR/% 10.78 7.43 3.90 3.06 2.32 3.66
FDR/% 12.58 6.96 1.92 10.70 3.94 1.04
Speed/ms 16.43 358.09 226.31 26.31 4.09 452.68
CDR/% 80.26 87.75 95.25 91.27 97.30 97.15
Broken warp MDR/% 7.28 4.25 1.53 2.43 2.15 2.52
FDR/% 12.46 8.00 3.22 6.30 0.55 0.33
Speed/ms 16.86 367.78 215.08 25.68 3.85 430.72
CDR/% 89.03 90.23 94.32 92.04 96.12 97.62
Breaking MDR/% 4.26 3.32 3.21 5.27 1.26 1.33
FDR/% 6.71 6.45 2.47 2.69 2.62 1.05
Speed/ms 16.02 338.43 206.82 22.45 3.67 452.30
Table3  Comparison of network structure models
A B C D
Input image (32x32)
Conv1(32x3x3) Conv1(32x3x3) Convl1(32x3x3) Conv1(32x3x3)
BN BN BN
network structure Max pooling(2x2) Max pooling(2x2)
Conv2(32x3x3) Conv2(32x3x3) Conv2(32x3x3) Conv2(32x3x3)
BN BN BN
Max pooling(2x2) Max pooling(2x2) Max pooling(2x2) Max pooling(2x2)
Conv3(64x3x3) Conv3(64%x3x3)
BN BN
Max pooling(2x2) Max pooling(2x2)
FC (1x512) FC (1x512) FC (1x512) FC(1x1024)
BN BN BN
Softmax
Accuracy rate(%) 94.37 96.43 97.30 97.47
Detection time (s) 0.24 0.33 0.69 1.02
Table 4  Defect detection results of different methods.
Methods CDR /% MDR/% FDR/% Speed/s
LBP+BP-AdaBoost 94.86 1.83 3.31 1.07
LBP+AdaBoost+SVM 93.35 2.38 4.27 0.84
LBP+KNN 88.63 4.39 6.98 1.58
GLCM+BP 93.52 4.35 2.13 1.12
LSG+SVM 95.40 2.12 2.48 0.93
Fast-DDF+SVM 94.26 3.49 2.25 0.58
Our method 96.12 1.20 2.68 0.72
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order to facilitate network training, all defect samples were
normalized to 32 X 32 pixel images and marked, and the
marked sample images were put into the network model for
training.

As can be seen from the comparison between model A
and model B in Table 3, although the detection time is not
reduced after the addition of BN, the accuracy of model B
is significantly improved, which indicates that BN is feasi-
ble to improve the model training effect. Similarly, com-
paring model B and model C, it can be found that after
adding a layer of convolution, the accuracy and detection
time increase. After increasing the number of fully con-
nected layers in the model D, the accuracy rate has a small
increase, but the time cost also increases. Therefore, Model
C is adopted in this paper.

In order to prove the effectiveness of our method, we
combined the trained network with Fast-FDD for a com-
plete test experiment. We chose three defect detection meth-
ods that performed well in Sect. 4.1, such as GLCM, LSG,
and LBP. Combine them with mainstream machine learn-
ing classification methods to compare experiments with our
methods. With some widely used classification methods
such as back propagation (BP), BP-AdaBoost, AdaBoost
with a linear SVM classifier [30] and K-nearest neighbor
(KNN). All of the above experiments were performed on
Matlab, and the parameters of above all methods are all
default values. The experimental results are shown in Ta-
ble 4, we can see that our method has 96.12% correct detec-
tion rate, 1.2% missing detection rate, 2.68% false detection
rate. The result has certain advantages over other meth-
ods. Furthermore, Fast-DDF combined with linear SVM
method performs best in speed, but it is not as accurate as
our method.

5. Conclusion

In this paper, a universal fast fabric defect detection frame-
work, Fast-DDF, based on gray histogram back-projection
has been proposed. We introduce Fast-DDF into our de-
signed CNN and achieve satisfied results. Our detection
framework is sensitive to texture features and can detect de-
fect regions very quickly. For the extracted defect regions,
we normalize and put them into the designed network for
training. This innovative way greatly reduces the computa-
tional complexity of the network training and improves the
detection speed. Finally, the experimental results show that
our method has great advantages in comprehensive perfor-
mance compared with the existing methods. The average
detection accuracy with a higher rate of 96.12%, and the
single image detection speed only needs 0.72s. Of course,
this detection framework only has a good effect on the tex-
ture features. In the future, we will consider optimizing the
framework structure and studying the application of CNN
in texture defect segmentation, so that our framework has a
larger application scenario.
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