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PAPER

HeteroRWR: A Novel Algorithm for Top-k Co-Author
Recommendation with Fusion of Citation Networks

Sufen ZHAO†,††a), Member, Rong PENG†b), Meng ZHANG††, and Liansheng TAN††,†††, Nonmembers

SUMMARY It is of great importance to recommend collaborators for
scholars in academic social networks, which can benefit more scientific
research results. Facing the problem of data sparsity of co-author recom-
mendation in academic social networks, a novel recommendation algorithm
named HeteroRWR (Heterogeneous Random Walk with Restart) is pro-
posed. Different from the basic Random Walk with Restart (RWR) model
which only walks in homogeneous networks, HeteroRWR implements mul-
tiple random walks in a heterogeneous network which integrates a citation
network and a co-authorship network to mine the k mostly valuable co-
authors for target users. By introducing the citation network, HeteroRWR
algorithm can find more suitable candidate authors when the co-authorship
network is extremely sparse. Candidate recommenders will not only have
high topic similarities with target users, but also have good community cen-
tralities. Analyses on the convergence and time efficiency of the proposed
approach are presented. Extensive experiments have been conducted on
DBLP and CiteSeerX datasets. Experimental results demonstrate that Het-
eroRWR outperforms state-of-the-art baseline methods in terms of preci-
sion and recall rate even in the case of incorporating an incomplete citation
dataset.
key words: heterogeneous networks, social networks, friend recommenda-
tion, co-author recommendation, random walk with restart

1. Introduction

Recommender Systems (RSs) have been one of the hottest
research topics in artificial intelligence for more than ten
years. Due to the fact that, the RSs’ techniques can signif-
icantly enhance the business value of enterprises and effi-
ciently reduce the information overloaded for users, many
enterprises and companies use RSs to recommend products
and services to customers in the domains, such as music rec-
ommendation, news recommendation, image recommenda-
tion, personalized point-of-interest (POI) recommendation
and friend recommendation, etc. [1].

In this study, we focus on top-k co-author recommen-
dation problem in the heterogeneous bibliographic network,
for a large number of studies have shown that scholars with
more collaborative relationships tend to publish more papers
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with better quality [2]. Recommending the k most poten-
tial co-authorship partnerships will help scholars to estab-
lish more and better cooperative relations and promote more
scientific research results. On the other hand, co-author rec-
ommendation problem is closely related to link prediction
problem. Many works treat them as the same while the dif-
ference is recommendation tasks output a ranking list. Link
prediction is the heart of social graph mining, which can
help us discover the intrinsic mechanism of social relation-
ship building and reveal the essence of social network evo-
lution. In addition, the link recommendation and prediction
models based on one complex network can usually be gen-
eralized to other types of complex networks. Therefore, this
research of co-author recommendation has both important
commercial and theoretical value.

However, even though the co-author recommendation
problem has attracted the attention of some scholars, its re-
search still faces some challenges:

• real-world social networks are usually extremely
sparse [3], which causes many traditional recommen-
dation models to face the problem of cold start. Hence,
in order to overcome the sparsity problem, how best to
use additional information in recommendation models
is a challenge.

• it’s imperative that recommendation models need to be
highly time efficient on large-scale networks, because
in the real world, academic collaborative RSs are often
built on large-scale graph structures.

• recommendation models need to be more adaptable to
incomplete and noisy data sets, for real-world data are
often incomplete and noisy.

As we know, RWR is a kind of random walk model
where we pick a node and move following a random walk
with probability α or we return to the starting node with
probability 1 − α [4]. Compared to other local similarity-
based measures, RWR can capture the whole network topol-
ogy information well and easily integrate more features into
the model. However, the basic RWR algorithm is defined on
homogeneous networks, hence it is difficult to overcome the
data sparsity of the co-authorship network.

Due to the abundant information contained in the ci-
tation network, we design a novel method named Het-
eroRWR. Different from the basic RWR which only defines
random walk on homogeneous networks, HeteroRWR com-
bines the citation network with the co-authorship network
and performs multiple random walks in the heterogeneous
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bibliographic network. In the case of sparse data of the
co-authorship network, HeteroRWR will choose the authors
who were cited in the target authors’ papers in the past as
the candidates for recommendations. For the citation net-
work contains a wealth of information, such as the relevance
of the topics between papers and the academic status of au-
thors, the recommended scholars will not only have high
topic similarities with target users, but also have good cen-
tralities in the research communities. It should be empha-
sized that in order to ensure the convergence of the random
walk process, we modify the original heterogeneous net-
work structure by adding a virtual paper node and a small
number of associated edges. We provide an insightful anal-
ysis and discuss the convegence of the proposed algorithm.

Extensive experiments have been performed on DBLP
and CiteSeerX datasets. The experimental results show that
HeteroRWR outperforms the state-of-the-art baseline meth-
ods such as Common Neighbors (CN), Adamic/Adar (AA),
Random Walk with Restart (RWR) [4] and MVCWalker [6]
models in terms of precicion and recall rate even for the in-
complete citation dataset. Nevertheless, the proposed Het-
eroRWR approach is time efficient and is thus faciliated to
be performed in large-scale networks.

To summarize, the main contributions of this paper are
as follows:

• We apply the idea of heterogenous random walk with
restart into the field of co-author recommendation ap-
plication and explore the convergence property of the
model. This has an advantage of fully using the cita-
tion network information and overcoming the difficulty
of the data sparsity.

• A new edge weighting metric for citation networks has
been proposed. The metric can guide the proposed al-
gorithm to mine more potentially valuable co-authors
with high topic-similarity and good community cen-
tralities.

• The proposed HeteroRWR algorithm improves recom-
mendation performance compared to the state-of-the-
art baseline methods in terms of precision and recall
rate, and meanwhile, it has reasonable time efficiency.

• Unlike traditional approaches which require many ci-
tations, our method can effectively improve the recom-
mendation performance particularly for the incomplete
citation datasets.

2. Related Work

In this section, we will classify the related studies into two
categories and then review them: friend recommendation
and random walk in heterogeneous networks.

Friend Recommendation. At a high level, existing
friend recommendation work can be classified into unsuper-
vised methods and supervised methods.

Most unsupervised friend recommendation algorithms
produce a ranked list in decreasing order of a “similar-
ity” measure between two nodes, relative to the network

topology [7], [8], [40], such as Common Neighbors, Jaccard
Coefficient, Adamic/Adar, SimRank, RWR, Katzβ etc [4].
Some other studies consider features about authors’ affili-
ated information or geographic information [2], or research
interests extracted from text information [9]. Unsupervised
methods usually have low computational complexity, except
for several global measures such as Katzβ, but it is difficult
for one single similarity metric to model complex social net-
work relationships, which results in inferior results. Some
studies use weighted methods to integrate multiple features,
but the performance is still unsatisfactory.

From the prospective of features used by algorithms,
supervised friend recommendation approaches fall into
three categories: explicit feature-based models, implicit
feature-based models and hybrid models. Explicit feature-
based methods extract explicit features related to the net-
work topologies or users’ information, and then use machine
learning algorithms, such as SVM, logistic regression, Ad-
aboost, neural network etc., to combine different features,
to train binary classifiers, and to predict new links [10]–
[12], [41]. Other supervised recommendation methods are
mainly based on implicit features. Matrix factorization is
the most frequently used technique for extracting the im-
plicit features [13], [14], [42]. It projects users and items
into a shared lower latent space and applies an inner product
on the two latent real-valued feature vectors. It’s the most
popular one in traditional Collaborative Filtering (CF) ap-
proaches. In recent years, with the vigorous development of
deep learning in speech recognition, natural language pro-
cessing and other fields, some works use neural network
models to extract implicit features for users and items [16]
rather than matrix factorization. Other works combine deep
learning technique with matrix factorization to extract the
implicit features of users or items [17], [18]. For neural net-
works can extract the non-linear expression of the features
and abstract them at a higher level, these deep learning-
based recommendation models typically have better perfor-
mance than pure matrix factorization or factorization ma-
chine models. It is natural for people to consider fusing the
explicit features and the implicit features into one model to
get better results, and such models are called hybrid mod-
els [20]–[22], [25].

The essence of recommendation problem is lying its
sorting procedure. From the prospective of learning to
rank [23], supervised friend recommendation approaches
can be divided into pointwise learning, pairwise learning
and listwise learning methods. Pointwise learning models
transfer the sorting problem into a multi-classification prob-
lem or a regression problem [11], [12], and the disadvantage
is that these models cannot deal with the high skewness of
data very well. Pairwise learning models treat friend recom-
mendation as a learning to rank problem based upon pair-
wise comparisons [14], [19], [24]–[26], [43]. Such kind of
approaches can better overcome the problem of data skew-
ness, but often suffers the problem of too large training
dataset size and high time complexity. Listwise models aim
to learn a ranking function by taking individual lists as in-
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stances and minimizing a loss function defined on the pre-
dicted list and the ground truth list [22]. These models can
directly optimize the ranking evaluation measures such as
MAP and NDCG, however, for large data sets with binary
classification labels, these methods are more complex to be
performed.

Random Walk in Heterogeneous Networks. Hetero-
geneous information network (HIN) is a newly emerging re-
search direction. It can model different objects and their
rich relations in RSs, in which objects are of different types
and links among objects represent different relations. HIN-
based recommendation model can better overcome the data
sparsity problem because of the ability to integrate abundant
information into the model [19], [27]–[29].

RWR is an excellent global similarity-based unsuper-
vised model for link recommendation. Many existing re-
search works use RWR-based models to model user rela-
tionship strength [6], [30]–[33]. However, the basic RWR
defined in homogeneous networks limits its performance, as
mentioned. Some works extend RWR to heterogeneous net-
works, such as gene-disease networks [5], [34], and biblio-
graphic networks [35], etc. Random walk in HIN enlarges
the extension of RWR and enhances its applicability.

However, although there have been some studies on
random walk in HIN, to our best knowledge, the applica-
tion of co-author recommendation in heterogeneous biblio-
graphic networks has not been explored yet, and the conver-
gence property of the HIN-based RWR models has not been
thoroughly analyzed. Therefore, we propose a framework
for multiple random walks in a heterogeneous bibliographic
network to address the sparsity problem in the co-author rec-
ommendation task.

3. Prelimiliary

This section begins with a description of the data model fol-
lowed by a definition of the research problem. Since there
are many symbols used in the article, we list the main sym-
bols in Table 1.

3.1 Data Model

A co-authorship network can be modeled by an undirected
graph Ga = (Va, Eaa) from the data set of academic pub-
lications. Va is the set of authors, while each link in Eaa

represents two authors have co-authored at least one paper.
The number of authors is n = |Va|, and the set of authors is
Va = {a1, a2, · · · , an}.

A citation network can be also modeled as a directed
graph Gp = (V p, Epp) from the citation dataset. V p is the set
of papers, while each directed edge in Epp denotes a citation
relationship between papers. The number of papers is m =
|V p|, and the set of papers is V p = {p1, p2, · · · , pm}.

An authorship network can be modeled as a bipartite
graph Gap = (Va ∪ V p, Eap). Edges in Eap connect each
paper with all of its authors.

Inspired by the existing studies [35], [36], we consider

Table 1 Symbolic description

Symbol Definition
G = (V, E) heterogenous bibliographic network
|V | number of nodes in G
Ga co-authorship network
Gp citation network
Gap authorship network

A adjacency matrix for G
Aaa adjacency matrix for Ga

App adjacency matrix for Gp

Aap adjacency matrix for Gap

Apa transpose of Aap

α 1 − α is the restart probability
λ probability assignment of random walk in Ga

β probability assignment of random walk in Gp

s target user
�RA probability distribution vector for authors
�RP probability distribution vector for papers
�Q restart vector

MAA transition matrix for Aaa

MPP transition matrix for App

MAP transition matrix for Aap

MPA transition matrix for Apa

ei j edge formed by node i and node j
wi j edge weight for ei j

p(i→ j) probability of moving from node i to j in one step
pi j 1-step transition probability from state j to state i

p(x)
i j x-step transition probability from state j to state i

M transition matrix for G
M′ the revised new transition matrix for G
M̃ transition matrix for HeteroRWR
M̃′ the revised transition matrix for HeteroRWR
n number of authors in Ga

m number of papers in original Gp

gcd {. . .} greatest common divisor for a set
k number of recommending authors
t̄ number of iterations of convergence for HeteroRWR

that the promising way for co-author recommendation is to
concatenate Ga, Gp and Gap as a whole to form a heteroge-
nous network G. In this regard, it enables us to capture rich
information across Ga, Gp and Gap for friend recommenda-
tion.

Definition 1. Heterogenous Network: G = (V, E).
Where V is the vertex set and E = V × V is the edge set.
V = Va ∪ V p, E = Eaa ∪ Eap ∪ Epp. i.e. the heteroge-
neous network G consists of three networks: an undirected
co-authorship network Ga = (Va, Eaa), a bipartite author-
ship network Gap = (Va ∪ V p, Eap), and a directed citation
network Gp = (V p, Epp).

Figure 1 is an example. Four authors A, B,C,D collab-
orate to publish papers p1, p2, p3, while p1 cites p2, p3, and
p2 cites p3. The three different types of relationships be-
tween authors and papers generate three different networks
Ga,Gp and Gap, as depicted in Fig. 1.

3.2 Adjacency Matrix

For the purpose of storing G, we use |V | × |V | adjacency
matrix A to represent G:
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Fig. 1 Example of a heterogeneous network

A =

[
Aaa Aap

Apa App

]
(1)

Where Aaa, Aap, Apa and App each denotes a different rela-
tion between authors (a) and papers (p). That is, Aaa de-
notes the co-author relationships in Ga, App denotes the ci-
tation relationships in Gp, and Aap denotes the authorship
relationships in Gap. Apa is the transpose of Aap.

For the example in Fig. 1, if Ga, Gap and Gp are set to
be unweighted, the generated adjacency matrix A is:

A =

A B C D p1 p2 p3

A
B
C
D
p1

p2

p3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
1
0
0

1
0
1
0
1
1
0

1
1
0
1
1
1
1

0
0
1
0
0
0
1

1
1
1
0
0
0
0

0
1
1
0
1
0
0

0
0
1
1
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

The weight setting for G counts a great deal for the proposed
algorithm. We give a detailed description of weight setting
in Sect. 4.

3.3 Problem Definition

Definition 2. Top-k co-author recommendation problem:
Given a snapshot of heterogeneous network G which con-
sists of a co-authorship network Ga, an authorship network
Gap, and a citation network Gp between time [t0, t1], for each
target user s, recommending the k most potentially valuable
co-authors during the interval from t1 to a given future time
t2.

4. Proposed Model

In this section, we describe and explain our proposed top-k
co-author recommendation algorithm in detail.

4.1 HeteroRWR Framework

As we know, citation networks contain a wealth of informa-

Fig. 2 HeteroRWR framework

tion. Citation relationships imply topic similarities between
papers. Authors whose papers are heavily cited are likely
to have relatively high centralities in research communities.
Therefore, in the case of an extremely sparse co-authorship
network, if random walk in the co-authorship network can
be extended to the citation network, more partners with po-
tential cooperative value can be found. Based on this intu-
ition, we design a novel model named HeteroRWR for co-
author recommendation in the heterogeneous bibliographic
network G. The proposed model is briefly sketched in Fig. 2.

Different from the basic RWR which only defines ran-
dom walk in homogeneous networks, there are three differ-
ent types of random walks in HeteroRWR: One on Ga, one
on Gp and the other on Gap. Specifically, for recommending
co-authors to the target user s, a random walker starts from
s. At each step of the random walk, we define:

• when the random walker moves from one node to an-
other, it chooses to move to the neighbor nodes of the
current node with probability α, while return to s with
probability 1 − α.

• If the random walker swims to an author node, at the
next step, it will move to the homogeneous nodes (au-
thor nodes) with probability α · λ, and to the heteroge-
neous nodes (paper nodes) with probability α · (1 − λ).

• If the random walker swims to a paper node, at the next
step, it will move to the homogeneous nodes (paper
nodes) with probability α · β, and to the heterogeneous
nodes (author nodes) with probability α · (1 − β).

It can be seen that at each step of random walk, there are two
different scenarios: homogeneous random walk and hetero-
geneous random walk. Homogeneous random walk includes
the random walks within Ga or Gp, while heterogenous ran-
dom walk means the random walk on Gap. The two homo-
geneous random walks on Ga and Gp are coupled by the
heterogeneous random walk on Gap.

At each step, the random walker returns to the initial
node s with the probability of α ∈ (0, 1). Parameter α con-
trols the restart probability. Parameters λ and β regulate the
coupling and their values reflect the extent to which we want
to use the citation network information for co-author rec-
ommendation, and they also range from 0 to 1. In order to
maintain symmetry, we usually set λ + β = 1. In this case,
the value of a single parameter λ (or β) can reflect the prob-
ability of random walk assigned to Gp in the random walk
process. But it needs to be stated that, λ + β = 1 does not
necessarily have to be satisfied.
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4.2 Formulation

As can be seen from Sect. 4.1, there are two coupled random
walk processes in HeteroRWR: one is on Ga and the other is
on Gp.

Let �RA ∈ Rn denote the probability distribution col-
umn vector for author nodes, and �RP ∈ Rm denote the prob-
ability distribution column vector for paper nodes. Define

�R =
⎛⎜⎜⎜⎜⎝ �RA�RP
⎞⎟⎟⎟⎟⎠, then �R ∈ R(m+n) is a probability distribution vec-

tor for all nodes in G. || �RA||1+ || �RP||1 = 1 should be satisfied
during the whole random walk process.

Based on the HeteroRWR framework defined above,
the transition iterative formulas for the two mutual coupling
random walks can be written as:

�RA(t+1)
= α · [λMAA

�RA(t)
+ (1 − β)MAP

�RP(t)
]

+ (1 − α) · �QA (3)

�RP(t+1)
= α · [(1 − λ)MPA

�RA(t)
+ βMAP

�RP(t)
]

+ (1 − α) · �QP (4)

where MAA, MPA, MAP and MPP each represents the prob-
ability transition matrix whose i jth element is the probabil-
ity of moving from node j to node i in G at one step, i.e.
p( j → i). We give the detailed computation in Sect. 4.6.

�Q =
⎛⎜⎜⎜⎜⎝ �QA�QP
⎞⎟⎟⎟⎟⎠ is a restart vector, in which the corresponding

value of s is 1, while all the other elements are zeros, i.e.
�Q = (0, . . . 0, 1, 0, . . . 0) ∈ R(n+m). The initial value of �R is
equal to �Q.

Next, we merge Eq. (3) and Eq. (4) into one iterative
formula:

�R(t+1) = α ·
[
λMAA (1 − β)MAP

(1 − λ)MPA βMPP

]
�R(t)

+ (1 − α) · �Q (5)

let eT ∈ R(m+n) denote the all-ones row vector, i.e. eT =

(1, 1, . . . , 1), then eT · �R(t) = 1 holds due to the fact that the
1-norm for �R(t) is always equal to 1. Therefore, we get:

�R(t+1)=α

[
λMAA (1 − β)MAP

(1 − λ)MPA βMPP

]
�R(t)

+ (1 − α) �Q · eT �R(t)

=

{
α

[
λMAA (1 − β)MAP

(1 − λ)MPA βMPP

]
+ (1 − α) �QeT

}

· �R(t) (6)

Define

M̃ = α

[
λMAA (1 − β)MAP

(1 − λ)MPA βMPP

]
+ (1 − α) �QeT (7)

then M̃ is the transition matrix for the HeteroRWR random
walk.

The stationary distribuion �Rt̄, solution of the �R = M̃∗�R
represents the probability for the random walker to be lo-
cated at a specific node after a sufficiant amount of time.
However, Markov chains do not always converge. Can the
transition matrix M̃ satisfy the convergence condition of
Markov chains? If not, what changes can be made to meet
the required conditions? Next, we will present the conver-
gence analysis of the HeteroRWR model.

4.3 Convergence Analysis

Random walk can be regarded as a special case of Markov
chains. A Markov chain converges to a stationary distribu-
tion if the transition matrix P = (pi j) satisfy the following
conditions [37], [38], [45]:

• stochastic. A matrix P is stochastic means: for all i, j,
pi j ≥ 0, and

∑
i pi j = 1.

• irreducible. A Markov chain is said to be irreducible
if: for all i, j, there exists a positive integer x such that
p(x)

i j > 0. That is, all states communicate with each
other, as one can always go from any state to any other
state.

• aperiodic. A Markov chain is aperiodic when the num-
ber of steps required to move between two states is not
required to be multiple of some integer. In other words,
the chain is not forced into some cycle of fixed length
between certain states.

Before analyzing the convergence, we first give the assump-
tions of this paper.

Assumption 1. Ga is a strongly connected network.
Many complex networks may not necessarily be

strongly connected. But most of them contain a large con-
nection component that contains most of the nodes in the
network. We assume that the co-authorship network Ga in
this paper is the largest connected component of the whole
co-authorship network. Next, we explore the convergence
property of the transition matrix M̃.

Firstly, we analyze the stochasticness of M̃. We be-
gin with the stochasticness of four sub transition matrices
MAA,MAP,MPA,MPP. For convenience, we use M to union
them as a whole:

M =

[
MAA MAP

MPA MPP

]
(8)

For a strongly connected network Ga and a bipartite graph
Gap, each node in Ga and Gap has at least one outgoing link
within each network, which ensures that the column sum for
each transition matrix MAA, MAP, MPA equals 1, i.e. MAA,
MAP and MPA are stochastic.

However, that’s not the case for MPP. In MPP, there
are always some columns with all zeros. For example,
we record the earliest published papers in the time interval
[t0, t1] as X set. If a paper in X contains any reference infor-
mation, the related cited papers are certainly not published
during [t0, t1], but earlier. Therefore, each paper in X has
no outgoing links in Gp, which result in the corresponding
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Fig. 3 Example of a modified heterogeneous network

column values in MPP all being zeros.
Take Fig. 1 as an example. Assume the publication

years of papers p1, p2 and p3 are 2011, 2009 and 2000, re-
spectively. If G is set to be unweighted, the original transi-
tion matrix M is as following:

M =

[
MAA MAP

MPA MPP

]

=

A B C D p1 p2 p3

A
B
C
D
p1

p2

p3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1/2
1/2
0
1
0
0

1/2
0

1/2
0

1/2
1/2
0

1/3
1/3
0

1/3
1/3
1/3
1/3

0
0
1
0
0
0
1

1/3
1/3
1/3
0
0

1/2
1/2

0
1/2
1/2
0
0
0
1

0
0

1/2
1/2
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

For p3 has no outgoing links in Gp, the column vector for
p3 in MPP is a zero vector, which causes MPP to violate the
stochastic property.

We use a trick here. An addtional virtual paper node pv
is added to Gp to ensure that when the random walker swims
to a paper node without outgoing links in Gp, it chooses to
move to each author node with roughly equal probability.
Specifically, each paper node without outgoing links gener-
ates a directed link to the virtual node pv, and pv generates
directed links from itself to each author node. To ensure
MPP is stochastic, pv also generates a directed link to itself.
We present the revised heterogeneous network structure for
Fig. 1 in Fig. 3.

The revised transition matrix M′ for G therefore is:

M′=
[

MAA M′AP
M′PA M′PP

]

=

A B C D p1 p2 p3 pv
A
B
C
D
p1

p2

p3

pv

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1/2
1/2
0
1
0
0
0

1/2
0

1/2
0

1/2
1/2
0
0

1/3
1/3
0

1/3
1/3
1/3
1/3
0

0
0
1
0
0
0
1
0

1/3
1/3
1/3
0
0

1/2
1/2
0

0
1/2
1/2
0
0
0
1
0

0
0

1/2
1/2
0
0
0
1

1/4
1/4
1/4
1/4
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

As observed, the network structures of Gp and Gap have
been modified due to the addition of pv. The transition ma-
trices MPP, MAP, MPA, and the restart vector �QP are also
modified accordingly. Therefore, the revised transition ma-
trix for HeteroRWR is as following:

M̃′ = α
[
λMAA (1 − β)M′AP

(1 − λ)M′PA βM′PP

]
+ (1−α) �Q′eT (11)

For four transition matrices MAA ∈ R
n×n,M′AP ∈

R
n×(m+1),M′PA ∈ R(m+1)×n, and M′PP ∈ R(m+1)×(m+1) are

all stochastic, we can easily prove that
∑

i M̃′i j = 1 for
j ∈ [1, (m + n + 1)], i.e. the revised transition matrix M̃′
is stochastic.

Next, we analyze the irreducibility for the HeteroRWR
Markov chain. Since Ga is a strongly connected network
and the original Gap is a bipartite graph, the original hetero-
geneous network G must be strongly connected regardless
of whether Gp is connected. Even if we add an additional
virtual node pv to the network, it does not change the strong
connectivity of G because pv has both the outgoing links and
ingoing links to the original network. That is to say, every
node in G can reach any other node in G (all states commu-
nicate with each other), which proves the irreducibility of
the HeteroRWR Markov chain.

Finally, we explore the aperiodicity of the Markov
chain. What we need to prove is that for any state i in the
Markov chain, the greatest common divisor of steps required
to return to state i from itself is equal to 1 [44], that is to say,
the period of each state in the Morkov chain is 1. From [37],
we know that if state i and state j belong to the same class
(state i and state j are mutually reachable), the periods of
state i and state j are equal. Hence, for a strongly connected
network (all nodes belong to the same class), as long as we
prove that the period of one state in the Markov chain is 1,
then the periods of all the other states are also 1.

This is obvious for the initial node s. Let{
x : x ≥ 1, p(x)

ii > 0
}

denote the set of all the steps that the
Markov chain can return to state i when it starts from state
i. As defined in [44], the period for state i can be denoted
as: di = gcd

{
x : x ≥ 1, p(x)

ii > 0
}
. In the HeteroRWR ran-

dom walk, node s has a link to itself, if the random walker
moves to other nodes, it can return to s at each step with
the probability of 1 − α. That is, starting from the first step,
the random walker can return to s at each step. Therefore,
ds = gcd {1, 2, 3, 4, 5 . . .} = 1. In this way, we prove that M̃′
is aperiodic.

Based on the above anaysis, the revised transition ma-
trix M̃′ in Eq. (11) satisfies all convergence conditions, and
the Markov chain will reach a stable distribution in finite
steps.

4.4 HeteroRWR Recommending Algorithm

It’s known that a right eigenvector associated with the eigen-
value equals to 1 of the stochastic transition probability ma-
trix of a Markov chain is its stationary probability vector.
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Table 2 HeteroRWR Recommendation Algorithm

Algorithm 1. HeteroRWR Recommendation Algorithm.
Input: target author s; adjacency matrix A; parameters α, β, λ, k;
Output: top-k recommending author list for author s.
1. Initialization

compute transfer matrix MAA,M′AP,M
′
PA,M

′
PP

�Q′ ←(0, . . . 0, 1, 0, . . . 0)
�R(0)← �Q′

2. Repeate

3. �RA(t+1)
= αλMAA �RA(t)

+ α(1 − β)M′AP
�RP(t)
+ (1 − α) �QA

4. �RP(t+1)
= α(1 − λ)M′PA

�RA(t)
+ αβM′PP

�RP(t)
+ (1 − α) �Q′P

5. Until Convergence
6. sort RA t̄

7. recommending list← topk(RA t̄)

The numerical solution of Markov chain can be solved with
an algebraic method, but it always has a heavy workload
for a large transition matrix. We choose to solve it with
an iterative algorithm by successively multiplying some ini-
tial probability distribution vector by the matrix of transition

probabilities [38]. Let �Rt̄ =

⎛⎜⎜⎜⎜⎜⎜⎝
�RA t̄

�RP t̄

⎞⎟⎟⎟⎟⎟⎟⎠ be the stationary distribu-

tion, then �RA t̄
can be used to describe the similarity between

s and each author node, and it is the basis for us to recom-
mend collaborators.

The detailed description of proposed HeteroRWR rec-
ommendation algorithm is shown in Table 2.

4.5 Time Complexity Analysis

Due to the addition of the virtual paper node pv, the dimen-
sions of the transition matrices M′AP, M′PA, M′PP are changed
to n× (m+1), (m+1)×n, and (m+1)× (m+1), respectively.
Therefore, in one iteration, the computational time complex-
ity of the HeteroRWR algorithm is O(n ·n+n · (m+1)+ (m+
1)·n+(m+1)·(m+1)) = O((n+m+1)2) = O((|V |+1)2). Let t̄
denote the number of iterations of convergence, then the to-
tal time complexity of recommending a top-k collaborator
list for a single target user is O(t̄(|V | + 1)2).

It should be noted that, since the three networks in G
are all extramely sparse, we use sparse matrices to store
the four sub transition matrices. When performing matrix
multiplication, only non-zero elements participate in the op-
eration. Let C denote the maximum number of non-zero
elements in each row vector of the transition matrix M′,
then the time complexity of each iteration is reduced to
O(C · (m + n + 1)). The total time complexity of recom-
mending a top-k collaborator list for a single user is reduced
to O(t̄C(|V | + 1)).

4.6 Weight Setting

In this section, we introduce the weight setting for G. After
that, we give the calculation method for the transition ma-
trix.

4.6.1 Co-Authorship Network Ga

For Ga, the obvious defect of 0−1 matrix is that the adjacent
matrix cannot express the relationship strength between two
authors. Therefore, we set the weight of edge ei j ∈ Eaa to
be the number of papers co-authored by author ai and au-
thor a j. In this way, when performing a random walk algo-
rithm, those neighbors who have co-authored more papers
with the current author will have higher probabilities of be-
ing selected for random walk.

4.6.2 Authorship Network Gap

For Gap, the order of the authors largely reflects the contri-
bution of different authors to the same paper, so it is very
important information. If Gap is set to be unweighted, all
the authors of one paper will be treated equally. Such a de-
fect cannot highlight the contribution difference between the
authors.

How to measure the contribution of different authors in
a multi-authored paper is a widely discussed issue in the
reseach field of bibliometrics. In this paper, we use the
fractional counting method [39] for determining individual
credit of coauthors, i.e. if author ai is one of the authors of
paper p j, the edge weight for edge ei j ∈ Eap is:

wi j = 1/r (12)

where r is author ai’s order in the paper p j’s naming list.
The advantage of edge weighting is that, when per-

forming HeteroRWR, if the random walker moves from a
paper node to author nodes, the top-ranked authors will be
selected with higher probabilities. And if the random walker
moves from an author node to paper nodes, it is more likely
to choose papers that the current author has made more con-
tributions.

4.6.3 Citation Network Gp

If Gp is unweighted, recommendations tend to be made in
favor of authors with a lot of ingoing links, i.e. the authors’
papers have a large number of citations. Such scholars may
have good centralities in the reseach communities, but they
are likely to be academic bulls who published papers very
earlier, and they may be old enough. On the other hand,
papers that are widely cited but published for a long time
may be relatively basic research. That’s to say, when the
publication time interval between two papers is too large,
even though there is a citation relationship between them, it
does not mean that the research interests between the related
authors are very similar.

Therefore, we believe the publication time interval be-
tween the papers and the cited papers is a significant indi-
cator. The closer the publication time of the two papers is,
the more similar the research interests of the related authors
are. Hence, we define a new edge weighting metric for Gp.
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If paper pi cites paper p j, the weight for the edge ei j ∈ Epp

is:

wi j =
1

log (2 + ti − t j)
(13)

In Eq. (13), we use log as the abbreviation of log2. ti and
t j are the publishing years of papers pi and p j, respectively.
Since ti ≥ t j, i.e. the minimum value of ti − t j is 0, we add a
constant 2 to the denominator to ensure that the edge weight-
ing metric is positive. It can be easily found that, the weight
decays with the increase of the publication time interval be-
tween the papers, and it ranges from 0 to 1. This weight met-
ric will guide the HeteroRWR algorithm to mine the poten-
tial valuable authors whose topic-related papers have been
published in a more recent time.

4.6.4 Calculating the Transition Matrix

Based on the weight setting of G, we use the following for-
mula to calculate the 1-step transition probability from node
i to node j in each Ga, Gp and Gap:

p(i→ j) =
wi j∑
j wi j

(14)

Let the value of row i column j element of matrix M be
p( j → i). Based on Eq. (14), we know that the i jth entry in
each transition matrix MAA,MAP,MPA, and MPP is the col-
umn normalization of the four adjacency matrices respec-
tively.

It needs to be stated that, due to the addition of pv, the
final transition matrix of HeteroRWR is the revised version
(in Eq. (11)).

4.7 Special Case Analysis

In HeteroRWR algorithm, parameters λ and β control the ra-
tio of homogeneous random walk to heterogeneous random
walk. Here, we analyze some extreme cases:

(1) λ = 1, β = 0: HeteroRWR random walk is performed
only in Ga, Gp and Gap do not work at all. HeteroRWR
degenerates into a single homogeneous random walk in
Ga, which is equivalent to the basic RWR.

(2) λ = 0, β = 1: HeteroRWR random walk is performed
only in Gp, Ga and Gap are completely useless. Het-
eroRWR degenerates into a single random walk algo-

rithm in Gp. In this case, only the value of �RP(t)
is up-

dated in each iteration, while the value of �RA(t)
keeps

the intitial value and does not change. The HeteroRWR
algorithm fails in this case.

(3) λ = 1, β = 1: the case is equivalent to the case (1).
(4) λ = 0, β = 0: HeteroRWR random walk occurs only in

Gap, while Ga and Gp do not work at all. HeteroRWR
degenerates into a completely heterogeneous random
walk, and no homogeneous random walk is allowed.

From the above analysis, we can see that when setting the

values of parameters λ and β, we should try to avoid using
such extreme values.

5. Experiment and Results

In this section, we first describe the experimental settings
and then report the experimental results.

5.1 Datasets

The datasets we use includes DBLP† dataset and CiteSeerX
dataset††.

DBLP dataset is in XML format, and it contains meta-
data information about the computer-related academic pub-
lications, including author, title, booktile, url, crossref, etc.
We use DBLP dataset to generate Ga and Gap. The DBLP
dataset we use is the last version of January 2018.

However, DBLP fails to provide citation informa-
tion between publications, so we consider using CiteSeerX
database which is a famous citation system. We crawl the
citation information and reference information of the papers
on CiteSeerX website to generate Gp.

5.2 Preprocessing

Firstly, we parse the original XML file of the DBLP dataset,
which contains 2104606 conference papers and 1758872
journal papers ranging from year 1969 to 2018. Next, we
select 23 well-known journals††† and 22 conferences†††† pa-
pers related to the topics of data mining and machine learn-
ing and remove the papers published before 1990, 96174
papers are left.

Then, we divide the selected time interval into train-
ing interval and test interval with 2011 as the divding point.
That is, the papers published in 1990.1 ∼ 2011.12 consti-
tute the training set, and the papers published in 2012.1 ∼
2018.1 constitute the test set. We count all the authors in
the selected papers, and the number of papers they had pub-
lished during the training and the test periods, respectively.

Next, we select 3 − core authors [11] from all authors,
i.e. the authors who had published at least three papers dur-
ing the training and the test intervals, respectively. The au-
thors who fail to meet the requirement are excluded, 4146
authors are left. After that, based on the 4146 authors’
publications in the training interval, we generate the co-
authorship network of these authors. The network is not
strong connected, and the largest connected component con-
sists of 3609 authors. Since random walk in a disconnected

†http://dblp.uni-trier.de/xml/
††http://citeseerx.ist.psu.edu/index
†††AI, JMLR, DKE, IS, TNN, AMAI, ESWA, IDA, IJIS, KBS,

NCA, PAA, WIAS, TODS, TOIS, TKDD, IEEE TKDE, DKE,
DMKD, IS, KIS, IJIS, JIIS.
††††AAAI, CIKM, ECIR, EDBT, ICDE, ICDM, ICDT, ICML,

IJCAI, JCDL, KDD, NIPS, PAKDD, PKDD, PODS, SDM, SIGIR,
SIGMOD CONFERENCE, UAI, VLDB, WSDM, WWW.
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Table 3 Statistics of training data

Networks Ga Ḡap Ḡp

Number of Nodes 3609
Va :3609
V p :19673

19673

Number of Edges 12971 36182 96326

Average Degree 7.19
Va :10.03
V p :1.84

9.29

Density of Networks 0.00199 0.000134 0.000249

Fig. 4 Degree distributions of Ga

network does not guarantee convergence, we remove the au-
thors who are not in the largest connected component. Fi-
nally, the total papers published by the 3609 authors are
taken as the final data set, which contains 29877 publica-
tions in the training interval and 22293 publications in the
test interval.

Using all the training papers as the seeds, we crawl the
citation information from CiteSeerX website to generate Gp.
However, real-world data are usually incomplete. The data
we have crwaled from CiteSeerX website contains only the
citation information of 19673 papers. Therefore, the citation
network we ultimately use is Ḡp, which consists of about 67
percent papers. We give the statistical information of the
final training data set in Table 3 (in which Ḡp, Ḡap means
incomplete dataset, and the virtual node pv and the associ-
ated edges are excluded). As can be seen from the table, Ga,
Ḡp and Ḡap are all extremely sparse.

In Fig. 4, we give the degree distributions of Ga in the
training period. From the chart presented, we can see that
the degree distribution curve of the sampled authors reaches
its maximum value of 3, followed by a sharp decline, and
shows a trend of long tail distribution. Many complex net-
works follow the long tail distribution, which shows that the
dataset we sampled has catholicity.

5.3 Experimental Setup

5.3.1 Experimental Environment

All the experiments are implemented in Python 2.7. The
computer we used is Dell workstation, with 100G hard disk,
4G memory, Intel Core i7-4790CPU. The operating system

Table 4 Default values of parameters

Parameter Range Default Value
α [0,1] 0.15
λ [0,1] 0.6
β [0,1] 0.4
k 5˜50 5,10

Table 5 Confusion matrix

Collaborated Not Collaborated
Recommend TP FP

Not Recommend FN TN

is Ubuntu 16.04.

5.3.2 Comparison Methods

We compare the performance of the HeteroRWR algorithm
with several classical baseline methods, including Common
Neighbors (CN), Adamic/Adar (AA) [4], the basic RWR
and MVCWalker [6]. Since the basic RWR method to be
compared is unweighted, there are two versions of the Het-
eroRWR algorithm: the unweighted version (HeteroRWR-
U) and the weighted version (HeteroRWR).

Here, it should be noted that, all the baselines we com-
pare use only Ga network information for recommending
collaborators.

5.3.3 Setup and Evaluation

Based on Ga, Ḡp and Ḡap, we firstly generate the adjacency
matrices Aaa, Apa, Aap and App, then we use Eq. (14) to gen-
erate the four transition matrices MAA,M′PA,M

′
AP and M′PP.

After that, the algorithm shown in Table 2 is used to rec-
ommend the top-k potentially valuable co-authors for target
users. When evaluating the recommendation performance,
219 authors who had no co-authors in the test interval are
excluded, and the remaining 3390 authors are the final test
subjects.

The experimental parameters include k (the number of
recommended authors), α, β and λ. When we explore the
effect of one parameter, all the other parameters are set to
default values. Table 4 shows the ranges and default val-
ues of the parameters, which are the relatively better values
obtained by a large number of experiments.

We use precision@k and recall@k as measures of rec-
ommendation performance. The data set in the training in-
terval is used to run various algorithms to generate top-k
co-author recommendation lists for each target author, and
the co-author relationships built in the test interval are used
as the ground truth to evaluate the recommendation perfor-
mance of the algorithms. For a target user s, we divide all
users into four sets (as shown in Table 5):

• T P = {users who are recommended to s and had col-
laborated with s in the test interval};

• FP = {users who are recommended to s but hadn’t col-
laborate with s in the test interval};
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Table 6 Performance comparison

Algorithm pre@5 rec@5 pre@10 rec@10
CN 0.201 0.184 0.142 0.251
AA 0.230 0.212 0.157 0.277

MVC 0.288 0.303 0.180 0.350
RWR 0.308 0.328 0.204 0.400

HeteroRWR-U 0.317 0.339 0.207 0.405
HeteroRWR 0.322* 0.344* 0.210* 0.408*

• FN = {users who are not recommended to s but had
collaborated with s in the test interval};

• T N = {users who are not recommended to s and hadn’t
collaborate with s in the test interval}.
Then, the precision rate is defined as:

precision@k =
|T P|

|T P| + |FP| (15)

and the recall rate is:

recall@k =
|T P|

|T P| + |FN| (16)

In each experiment, the precision and recall rates are ob-
tained by calculating the average of all the target users.

5.4 Experimental Results and Discussion

5.4.1 Comparing HeteroRWR with Baselines

We compare the proposed HeteroRWR algorithm with the
baselines. The results under the default parameter values are
shown in Table 6. As observed from Table 6, when the num-
ber of recommendation authors is 5 and 10, the weighted
version HeteroRWR achieves the best performance, fol-
lowed by the unweighted version HeteroRWR-U.

The result verifies that citation network information is
helpful to improve the performance of the basic RWR algo-
rithm. The main reason lies in that citing others’ publica-
tions implies a certain degree of recognition of their work,
so it is reasonable for us to use the referenced authors as the
potential co-author candidates. Experimental results con-
firm this intuition. In addition, the weighted version out-
performs the unweighted version, which indicates that rea-
sonably setting the edge weight for the heterogeneous bib-
liographic network counts a great deal for the HeteroRWR
algorithm.

5.4.2 Effect of Parameter α Setting

In this part, we explore the sensitivity of the parameter α.
Related algorithms include the basic RWR, MVCWalker,
and HeteroRWR. We present the experimental results in
Fig. 5, Fig. 6, Fig. 7 and Fig. 8.

From the charts of Fig. 5 and Fig. 6, we observe that the
proposed algorithm performs better when α is in the range
of [0.05, 0.15]. When α is greater than 0.15, the precision
gradually decreases as α increases. When α is greater than
0.8, the precision curve becomes steeper. Meanwhile, the

Fig. 5 The curve of the precision@5 with the change of α

Fig. 6 The curve of precision@10 with the change of α

recall rates in Fig. 7 and Fig. 8 are similar trends.
We give the following analysis. As we know that 1 − α

is the restart probability. When α is larger, the restart proba-
bility of the random walk decreases, so the probability of
walking to farther nodes increases. However, in the real
world, social networks usually have the characteristic of
small-world [40]. When the graph distance between two
persons is too large, it is difficult for them to establish a
real connection. Hence, larger αmay lead to inferior perfor-
mance, and we should try to avoid such a situation.

Based on the experimental results, we consider that
0.15 is the optimal value for the parameter α, so it is set
as the default value in our experiments.

5.4.3 Effect of Parameters λ and β Setting

In this part, we explore the sensitivity of parameters λ and β.
We always set λ + β = 1 in order to maintain the symmetry
of the multiple random walks.

As can be seen from Fig. 9, Fig. 10, Fig. 11 and Fig. 12,
when λ varies within the range of [0.05, 0.95], the shape
of the precision and recall curves is like an arch. In other
words, when λ is too large or too small, the precision and
recall rate are relatively low, and when λ is medium, the
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Fig. 7 The curve of recall@5 with the change of α

Fig. 8 The curve of recall@10 with the change of α

Fig. 9 The curve of the precision@5 with the change of λ

precision and recall rate are relatively high. Specifically,
there are slight differences between the two versions. Firstly,
the weighted version always performs better than the un-
weighted version. Secondly, when λ is larger than 0.6, the
performance of the unweighted version shows a significant
downward trend, while the performance of the weighted ver-
sion is relatively stable.

Fig. 10 The curve of precision@10 with the change of λ

Fig. 11 The curve of recall@5 with the change of λ

Fig. 12 The curve of recall@10 with the change of λ

As a whole, it is more appropriate when λ falls in the
range of [0.4,0.65]. We give the following explanations.
When λ falls in [0.4, 0.65], it represents that the probabilities
of random walks allocated in Ga and Gp are roughly equal.
Therefore, HeteroRWR algorithm can make full use of the
topology information of both the co-authorship network and
the citation network. Otherwise, HeteroRWR random walk
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Fig. 13 Number of iterations with the change of α

will focus only on one network, which will result in poor
overall effect. Hence, we set the default value of λ to 0.6 (β
is 0.4) in the experiments.

5.4.4 Analysis of Convergence Iteration Number

In this section, we explore the convergence iteration number
of the HeteroRWR algorithm. We set the maximum iteration
number of HeteroRWR to be 100, and the termination con-

dition || �RA(t+1) − �RA(t)||1 < Δ = 10(−10).
Based on a lot of experiments, we find that the conver-

gence rate of HeteroRWR is not sensitive to λ and β, but very
sensitive to the parameter α. As can be seen from Fig. 13,
the number of iterations of the two versions of the Het-
eroRWR algorithm increases with the increase of α. What’s
more, the iteration numbers are almost exactly the same for
the two different versions. We give the following explana-
tions. When α becomes larger, the restart probability be-
comes smaller. As mentioned, it means that the random
walks will go farther and reach more nodes in the network.
Therefore, it needs more time for the whole random walk
process to be stable.

In addition to investigating the number of convergence
iterations, we also measure the actual execution time of the
proposed algorithm (parameters are set to the default val-
ues). We find that it takes an average of 60 seconds for the
proposed algorithm to generate a top-10 collaborator rec-
ommendation list for all 3390 test subjects. Therefore, on
average, it takes 0.018 seconds to recommend a top-10 co-
author list for each target user. In a real-world RS, this is a
fully acceptable response time for users, which verifies the
proposed method has high time efficiency on large datasets.

6. Conclusions and Future Work

In this paper, we have proposed a novel algorithm named
HeteroRWR for attacking top-k co-author recommendation
problem. To our best knowledge, HeteroRWR is the first
co-author recommendation algorithm by multiple random
walks in a heterogeneous bibliographic network which is

composed of a co-authorship network and a citation net-
work. We give the detailed analysis for the convergence
property and time efficiency of the proposed HeteroRWR
model. Numerous experiments on DBLP and CiteSeerX
datasets have been conducted. The experimental results val-
idate the efficiency and the effectiveness of the proposed al-
gorithm. It should be noted that we only use an incomplete
citation dataset. If more complete citation information can
be obtained, the experimental results are expected to be bet-
ter.

Our work can be further extended in several aspects.
First, we expect that more features can be integrated into
the model, such as users’ geographic location information,
and so on. Secondly, social networks are highly dynamic.
A time-sensitive recommendation model is promising and
worthy of being developed. Lastly, the experimental dataset
used in the paper covers the major machine learning and
data mining conferences and journals, we’d like to extend
the experiments to consider papers in other fields.
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