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PAPER

Android Malware Detection Scheme Based on Level of SSL Server
Certificate

Hiroya KATO†a), Member, Shuichiro HARUTA†b), Student Member, and Iwao SASASE†c), Fellow

SUMMARY Detecting Android malwares is imperative. As a promis-
ing Android malware detection scheme, we focus on the scheme leverag-
ing the differences of traffic patterns between benign apps and malwares.
Those differences can be captured even if the packet is encrypted. How-
ever, since such features are just statistic based ones, they cannot identify
whether each traffic is malicious. Thus, it is necessary to design the scheme
which is applicable to encrypted traffic data and supports identification of
malicious traffic. In this paper, we propose an Android malware detec-
tion scheme based on level of SSL server certificate. Attackers tend to use
an untrusted certificate to encrypt malicious payloads in many cases be-
cause passing rigorous examination is required to get a trusted certificate.
Thus, we utilize SSL server certificate based features for detection since
their certificates tend to be untrusted. Furthermore, in order to obtain the
more exact features, we introduce required permission based weight val-
ues because malwares inevitably require permissions regarding malicious
actions. By computer simulation with real dataset, we show our scheme
achieves an accuracy of 92.7%. True positive rate and false positive rate
are 5.6% higher and 3.2% lower than the previous scheme, respectively.
Our scheme can cope with encrypted malicious payloads and 89 malwares
which are not detected by the previous scheme.
key words: Android malwares, SSL certificate, machine learning

1. Introduction

Android is the most popular smartphone platform occupying
85% of market share in the world [1]. In that situation, un-
fortunately, smartphones running on Android system have
become the main target of attackers due to its popularity [2].
Most malwares send sensitive information such as contact
lists, SMS messages, GPS and device information to ex-
ternal servers via network. The Android apps released on
Google Play which is the official store of apps are automat-
ically evaluated because manual evaluation spends a lot of
personnel expenses and more time. Since such evaluation
cannot completely prevent malwares from spreading, users
are under the risk of installing malwares. Thus, this circum-
stance results in the urgency of detecting Android malwares.

Existing solutions for detecting malwares are mainly
classified into internal interaction based schemes [3]–[5] and
unavoidable feature based schemes [6]–[8]. Internal interac-
tion based schemes focus on internal behavior information
such as application programming interface (API) calls and
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communication among Android system and apps.
Deshotels et al. [3] propose a scheme focusing on the

fact that malwares abuse sensitive API call. Malwares are
classified in accordance with malicious patterns predefined
in advance. However, that scheme is difficult to detect the
malwares which conspire with another app by installing an-
other malware since none of sensitive API calls are used by
the main malwares.

In order to deal with such collusion attack, Xu et
al. [4] propose a scheme focusing on the difference of Inter-
Component Communication (ICC) patterns between benign
apps and malwares. ICC is inner communication among An-
droid system and apps. While ICC is mainly utilized for
internal communication in a benign app, malwares tend to
communicate with other apps via ICC to conduct malicious
operations. Although that scheme can detect the collusion
attack, it is difficult for that scheme to detect the malwares
which conduct simple actions such as sending sensitive in-
formation via network due to the absence of ICC related
features.

Sun et al. [5] propose a scheme that leverages binder
call graph (BCG) to detect malwares. Binder relays inter-
process communication between apps. That scheme fo-
cuses on the fact that the BCG of malwares is similar to
that of existing malwares variants since most malwares are
created by adding new malicious logic into existing ones.
Although that scheme is applicable to both collusion at-
tacks and simple malicious ones, malwares can invalidate
that scheme by inserting dummy actions into malicious ac-
tions in order not to be similar to BCG of existing mal-
wares [9]. Although the schemes mentioned above are use-
ful, their features can be manipulated by clever attackers’
implementation techniques. Thus, since internal interaction
based schemes can be evaded by such techniques, exploring
new detection schemes is needed.

Meanwhile, unavoidable feature based schemes [6]–[8]
focus on the fact that most malwares must exploit permis-
sions regarding malicious operations and network to estab-
lish attacks. Because these features are independent of at-
tackers’ implementation techniques, useful features can be
extracted from most malwares.

Li et al. [6] propose a scheme leveraging the fact that
malwares tend to require the common permissions which
enable to conduct high risk operations such as accessing de-
vice information and personal information of users. How-
ever, permissions are just features indicating potential mali-
ciousness since it does not include dynamic evidence. Al-
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though permission are useful as the supplementary features,
using only permissions is insufficient to accurately detect
malwares. Thus, the features including dynamic evidence
are needed.

Wang et al. [7] propose a scheme which pays attention
to the occurrence of words regarding sensitive information
in HTTP header of traffic data of malwares. Since malwares
use HTTP-POST/GET methods for sending sensitive infor-
mation, semantic text features can be extracted. The seman-
tic text features are the words such as “latitude”, “longitude”
and “imei” which is the unique identifier of the phone. Al-
though that scheme can extract useful features including dy-
namic evidence, the malwares that encrypt malicious pay-
loads cannot be efficiently detected.

In order to deal with encrypted traffic data, Garg et
al. [8] propose a scheme leveraging the difference of net-
work traffic patterns between benign apps and malwares.
Although various schemes are proposed, we pay attention
to the scheme [8] as the previous scheme because unavoid-
able features including dynamic evidence can be extracted
regardless of attackers’ implementation techniques and en-
cryption. However, the previous features are insufficient to
precisely represent the features of malwares. Because the
previous features are just statistic based ones, they cannot
identify whether each traffic is malicious. Thus, it is neces-
sary to design the scheme which enables to support identifi-
cation of malicious traffic.

In order to support identification of malicious traffic,
in this paper, we propose an Android malware detection
scheme based on level of SSL server certificate. The main
idea of our scheme is that malwares tend to communicate
with untrusted destination servers in order to transfer en-
crypted malicious payloads. As a result, the malicious evi-
dences of traffic can be obtained. Untrusted servers can be
identified on the basis of the level of SSL server certificate of
destination servers. In order to encrypt traffic data, attack-
ers must introduce SSL server certificates to their servers.
Attackers tend to use an untrusted certificate in many cases
since passing rigorous examination process is required to
obtain a trusted certificate. However, since benign apps also
communicate with untrusted servers, the detection perfor-
mance may be degraded. In order to mitigate such situa-
tion, we introduce required permission based weight values
to SSL server certificate based features because malwares
must require the permissions regarding malicious actions.
By doing this, our scheme can obtain the more exact fea-
tures of malwares. The contributions of this paper are as
follows:

1. Through an inspection regarding SSL server certificate
of destination servers, we discovered that there exists
the difference of the certificates introduced to destina-
tion servers between benign apps and malwares.

2. To the best of our knowledge, our scheme is first one
which uses level of SSL server certificate for detection.
Our scheme can be applicable to encrypted traffic data
and support identification of malicious traffic.

The rest of this paper is constructed as follows. Attack
model, the previous scheme and its shortcoming are intro-
duced in Sect. 2. Proposed scheme is described in Sect. 3.
Various evaluation results are shown in Sect. 4. Finally, the
conclusions of this paper are presented in Sect. 5.

2. Attack Model and Previous Scheme

2.1 Attack Model

We assume attackers try to conduct malicious actions such
as stealing sensitive information from user’s devices and in-
stalling other malwares on user’s device by exploiting An-
droid malwares. In order to establish attacks, it is premised
that malwares communicate with external attacker’s servers
via HTTP and HTTPS.

2.2 Previous Scheme

2.2.1 Overview of the Previous Scheme

The main idea of the previous scheme [8] is that there ex-
ists the difference of network traffic patterns between benign
apps and malwares. For example, in terms of the commu-
nication of malwares, a large amount of communication oc-
curs in a short period to finish the attack in a short time.
In the literature [10] which carries out empirical analysis of
lifetime of Command and Control (C&C) servers, an ana-
lytical result shows that survival probability of C&C servers
becomes about 50% after 1,000 hours (42 days) of inspec-
tion. In many cases, attackers tend to use hosting servers as
C&C servers. In the case where hosting servers are judged
that they are abused as C&C ones, IP addresses of the C&C
servers are blacklisted, and those servers become unavail-
able. Hence, the lifetime of C&C servers is limited and
short compared with legitimate servers. Although the liter-
ature [10] is study about C&C servers, it is not irrelevant to
the previous scheme since it is premised that malwares com-
municate with C&C servers in the previous scheme. Since
the lifetime of attacker’s servers is limited, malwares repeat-
edly try to conduct malicious actions regardless of user’s op-
erations to enhance the success probability of attacks. Thus,
malwares more frequently transmit sensitive data at short
intervals than benign apps. Table 1 shows the features used
in the previous scheme. The previous scheme mainly uti-
lizes four types of features, namely, DNS, HTTP, Origin-
Destination (O-D) and TCP based ones. In particular, O-D
based features are calculated from packets and data bytes
transferred between user’s device and destination servers.
Since traffic pattern based features such as byte size and
packet length are extracted only from traffic data of a run-
ning app, the useful ones including dynamic evidence can
be extracted regardless of attackers’ techniques and encryp-
tion. Finally, these features are fed into machine learning
classifier such as Decision Tree and Random Forest for de-
tection.
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Table 1 The features used in the previous scheme.

Category Features

DNS
1.All DNS query count,

2.Average DNS interval, 3.Distinct DNS query

HTTP

4.GET/POST request count,
5.GET/POST request interval,

6.Destination IP count for distinct GET/POST request,
7.Average packets length of GET/POST request,

8.Distinct source port used for GET/POST request

O-D

9.Average packet length, 10.Sent bytes size,
11.Received bytes size, 12.Average sent packet length,

13.Average received packet length, 14.Sent packet count,
15.Received packet count, 16.Destination IP count
17.IO bytes (sent bytes size / received bytes size),

TCP 18.TCP-RST packet count, 19.TCP-SYN packet count

2.2.2 Shortcoming of the Previous Scheme

Although the previous features are useful ones which can
be extracted regardless of clever attackers’ techniques and
encryption, they are insufficient to represent the features of
malwares. Since the previous features are just statistic based
ones, they cannot identify whether each traffic is malicious.
Thus, it is necessary to identify malicious traffic for more
exact evidence of malwares by focusing on the factor that
attackers cannot eliminate. The requirements that we must
satisfy are to be applicable to encryption and support iden-
tification of malicious traffic.

3. Proposed Scheme

In order to meet the requirements mentioned in Sect. 2.2.2,
in this paper, we propose an Android malware detection
scheme based on level of SSL server certificate. The main
idea of our scheme is that malwares tend to communicate
with untrusted servers in order to transfer encrypted mali-
cious payloads. Untrusted servers can be identified by the
level of SSL server certificates of destination servers. The
level of SSL server certificate is divided into three types,
namely Extended Validation (EV), Organization Validation
(OV) and Domain Validation (DV) certificates. EV and
OV certificates are highly trusted certificates because pass-
ing the rigorous examination process such as certifying ex-
istence of organizations is required to acquire them. For
example, major enterprises introduce trusted certificates to
their servers in order to indicate trust for themselves. Mean-
while, since a DV certificate is an untrusted one due to le-
nient examination, the server which has a DV certificate is
not trusted one. In order to encrypt traffic data, attackers
must acquire SSL server certificates. From this point of
view, we argue that attackers tend to use a DV certificate
to encrypt malicious payload. This is because it is hard for
them to acquire trusted certificates due to rigorous examina-
tions. Furthermore, the price of getting DV certificate is fur-
ther lower in comparison to EV and OV certificates. Thus,
attackers are willing to introduce a DV certificate to their
servers because one of their objectives is earning money by
selling sensitive information.

Fig. 1 The ratio of apps which communicate with each kind of server.

In order to demonstrate our argument, we first in-
spected SSL server certificate of destination servers by us-
ing our dataset. The data used for this inspection is based
on the same data source described in Sect. 4.1 (Simulation).
In Sect. 4.1, the data is described in detail. The method to
inspect the certificate level is the same as the method of
Sect. 3.1.2. In this inspection, we found the servers whose
level of certificates is unknown because of refusing access
to the servers or timeout. Hereinafter, we call such servers
“Unknown servers”. Figure 1 shows the ratio of apps which
communicate with each kind of server. The x-axis of Fig. 1
indicates the label of apps, namely, benign label and mali-
cious label. This ratio is separately calculated for benign
apps and malwares. An app can be included in the ratio
regarding communication with each kind of server. For ex-
ample, suppose that a malware communicates with OV and
DV servers, the malware is included in the numerator of the
ratio regarding both OV and DV in duplicate. The result
of Fig. 1 means that malwares tend to communicate with
DV and Unknown servers in comparison to benign apps.
Meanwhile, in terms of EV and OV, there is no difference
between benign apps and malwares. Although there ex-
ists the case where malwares communicate with all kind
of servers, namely, EV, OV, DV and Unknown servers, we
concluded that our scheme can support identification of ma-
licious traffic by focusing on the communication with DV
and Unknown servers (hereinafter, such communication are
called “untrusted communication”) from the result of Fig. 1.
Thus, these results motivate us to use SSL server certificate
based features (hereinafter, such features are called “SSL
features”).

Furthermore, our scheme supports malwares that com-
municate with the attacker’s server only by HTTP. A server
that only supports HTTP is included as an Unknown server
since the SSL server certificate cannot be obtained from
such server. From the viewpoint of a server’s reliability,
since a server that does not have certificate is not trusted,
the communication with such server is handled as untrusted
communication in our scheme. In order to deal with the mal-
wares which communicate with such servers, our scheme
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Table 2 SRDP and RRDP.

Category Permission name

SRDP

1.READ PHONE STATE, 2.READ CALENDAR,
3.READ CALENDAR, 4.READ CONTACTS,

5.GET ACCOUNTS, 6.ACCESS FINE LOCATION,
7.ACCESS COARSE LOCATION, 8.CAMERA,

9.READ PHONE STATE, 10.READ CALL LOG,
11.ADD VOICEMAIL, 12.RECORD AUDIO,

13.BODY SENSORS, 14.SEND SMS,
15.READ SMS, 16.READ EXTERNAL STORAGE

RRDP

1.WRITE CALENDAR, 2.WRITE CONTACTS,
3.WRITE EXTERNAL STORAGE,

4.WRITE CALL LOG, 5.RECEIVE SMS,
6.RECEIVE MMS, 7.RECEIVE WAP PUSH

adopts HTTP related features. The proposed HTTP related
features are calculated from traffic data regarding the un-
trusted communication with Unknown servers. In addition
to that, our scheme is applicable to encrypted data since IP
address is not encrypted.

However, since benign apps also communicate with
DV and Unknown servers, benign ones might be misjudged
as malwares. In order to mitigate such situation, we intro-
duce required permission based weight values to SSL fea-
tures. This is because malwares inevitably require the dan-
gerous permissions (DP) [11]. DP are predefined as the ones
regarding access to sensitive information in Android refer-
ence. By considering required DP, our scheme can extract
more exact features and reduce the misjudgement of benign
apps which do not require DP. In order to properly assign re-
quired DP based weight to SSL features, we divide DP into
two types, namely sending related DP (SRDP) and receiving
related ones (RRDP). For example, READ PHONE STATE
is SRDP since a malware which sends device information to
attackers’ servers requires it for accessing device informa-
tion. Table 2 shows SRDP and RRDP.

Moreover, our features are also divided into sending
related features (SRF) and receiving related ones (RRF) in
accordance with relation with SRDP and RRDP. Table 3
shows SRF and RRF. SRF consist of untrusted SRF (USRF)
and trusted SRF (TSRF). Furthermore, RRF are also divided
into untrusted RRF (URRF) and trusted RRF (TRRF). In our
scheme, there are new designed features and the features
based on the ones of the previous scheme. The features of
TSRF and TRRF listed in Table 3 are new designed fea-
tures. Meanwhile, the features of USRF and URRF listed
in Table 3 are based on the ones in the previous scheme.
They are selected from the features of the previous scheme
in accordance with the manner whether the reliability of
a destination server can be associated with the features.
For example, HTTP based features are used in the previ-
ous scheme. This type of feature is adopted in our scheme
because we can associate Unknown servers with the fea-
tures by confirming that any SSL server certificate is not
introduced to them. Although the previous scheme also
utilizes DNS based features, they are not adopted in our
scheme. This is because DNS is not related to the relia-
bility of destination servers. Furthermore, since required

Table 3 SRF and RRF used in our scheme.

Category Protocol Features

SRF

USRF

HTTP

1.GET/POST request count,
2.GET/POST interval,

3.GET/POST destination count,
4.HTTP source port count

All

5.Sent bytes size,
6.Sent packet count,

7.Average sent packet length,
8.Destination IP count

TSRF
All 9.Ratio of sending to trusted servers

HTTPS
10.Ratio of HTTPS sending

to trusted servers

RRF

URRF
HTTP

11.Average received packet length,
12.Received bytes size,

13.Received packet count

TCP
14.Number of TCP packet

with RST bit

TRRF
All

15.Ratio of receiving
from trusted servers

HTTPS
16.Ratio of HTTPS receiving

from trusted servers

DP based weight is applied to the proposed features, the
values of them are completely different from those of the
features in the previous scheme. USRF are based on un-
trusted communication. SRDP based weight is assigned to
only USRF. This is because only the correlation between DP
and untrusted communication can be malicious evidence.
Suppose a malware sends device information to untrusted
attackers’ servers and requires READ PHONE STATE and
WRITE EXTERNAL STORAGE. In this case, USRF and
READ PHONE STATE in SRDP can be useful for de-
tecting this malware. Meanwhile, WRITE EXTERNAL
STORAGE in RRDP is not related to the malicious sending.
Hence, only READ PHONE STATE based weight should
be assigned to USRF. Similarly, the RRDP based weight is
applied to URRF. By doing this, our scheme can properly
assign required DP based weight to SSL features.

TSRF are based on trusted communication with EV
and OV servers. TSRF consists of “9.Ratio of sending to
trusted servers” and “10.Ratio of HTTPS sending to trusted
servers”. “9.Ratio of sending to trusted servers” is the ra-
tio of sending to trusted servers to all sending. This fea-
ture is calculated on the basis of packet sending by not
only HTTP but also all communication protocols includ-
ing TCP and IP and so on. Since apps inevitably commu-
nicate with servers by other protocols such as TCP before
HTTP or HTTPS communication, we consider all protocols.
A trusted server can also perform HTTP communication in
principle. In the case where HTTP communication is sup-
ported in trusted server setting, and it receives HTTP re-
quests, it can deal with HTTP communication. However, a
trusted server seldom performs HTTP communication be-
cause it does not have to intentionally support HTTP com-
munication. On the other hand, “10.Ratio of HTTPS send-
ing to trusted servers” is the ratio of HTTPS sending to
trusted servers to all HTTPS sending. We also calculated
features of TRRF by same strategy used for TSRF. Finally,
our features in Table 3 are used for detection by machine
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learning classifier.

3.1 Algorithm

In this section, the algorithm for extracting our features
is explained. The algorithm consists of four procedures,
namely 1) network traffic collection, 2) the level of SSL
server certificate identification, 3) SSL features calculation,
and 4) weighting feature. The procedures are repeatedly
conducted for every app in APPall = {ai|1 ≤ i ≤ nall},
where nall is the number of all apps. Let Mtrain, Btrain,Mtest,
and Btest denote the training dataset of malwares, that of
benign apps, test dataset of malwares and that of benign
apps, respectively. We can also represent APPall as APPall =

Mtrain ∪ Btrain ∪ Mtest ∪ Btest.

3.1.1 Network Traffic Collection

Let trafficai denote traffic data of ai captured during the exe-
cution time. For the following procedures, trafficai is saved
in this step.

3.1.2 The Level of SSL Server Certificate Identification

This step extracts IPai which is the set of IP addresses from
trafficai . In order to obtain SSL server certificate of extracted
IP address, we use “openssl” command. Specifically, we ac-
cessed each IP address in IPai by giving command “openssl
s client -connect [IP address]:443” and obtained SSL cer-
tificate of the server that corresponds to each IP address in
IPai . After obtaining SSL server certificate, the level of SSL
server certificate can be identified as follows: (A) in the EV
and OV certificates, detailed geographic information of or-
ganizations is included, (B) a DV certificate does not include
such information, and (C) an Unknown server is identified
in the case where refusing access to the server or timeout
errors occur. Accordingly, the set of IP addresses of EV and
OV servers, and the set of IP addresses of DV and Unknown
servers are created. We denote them as IPT

ai
and IPU

ai
, where

T and U denote the labels of trusted and that of untrusted.

3.1.3 SSL Feature Calculation

Here, we only describe the features related to sending,
namely USRF and TSRF. URRF and TRRF can be created
by the same procedure. From trafficai with IPT

ai
and IPU

ai
,

the features are counted or calculated. We denote the set of
USRF and that of TSRF as US RFai = { f j,ai |1 ≤ j ≤ nUSRF}
and TS RFai = { f ′k,ai

|1 ≤ k ≤ nTSRF}, where nUSRF and nTSRF

are the number of types of USRF and that of TSRF, respec-
tively. Furthermore, when the above procedures are done in
all apps, from Mtrain, US RFmedian = { f median

j |1 ≤ j ≤ nUSRF}
which denotes the set of median of USRF is created.

3.1.4 Weighting Feature

Here, we only describe the weighting procedure for USRF.

Weighting procedure for URRF can be represented by re-
placing “SRDP” and “USRF” appearing in following pa-
rameters to “RRDP” and “URRF”, respectively. Let the set
of SRDP denote S RDP = {pl|1 ≤ l ≤ nSRDP}, where nSRDP

denotes the number of types of SRDP. S RDPai which de-
notes the set of existence of SRDP required by ai is created
as

S RDPai = {pl,ai |1 ≤ l ≤ nSRDP}, (1)

where pl,ai is 1 in the case where ai requires pl, otherwise
it is 0. The required SRDP based weight WSRDP

ai
for ai is

calculated as

WSRDP
ai

= nSRDP
ai

+ wSRDP
ai
, (2)

where nSRDP
ai

denotes the number of pl,ai which is 1. The
larger nSRDP

ai
is, the more ai has the capability to perform

malicious action. wSRDP
ai

is calculated as

wSRDP
ai

=

nSRDP
ai∑

h=1

Pmalicious(ph,ai ) −
nSRDP

ai∑

h=1

Pbenign(ph,ai ), (3)

where Pmalicious(ph,ai ) is the function that returns probability
of malwares requiring ph ∈ S RDP. Pmalicious(ph,ai ) is calcu-
lated as

Pmalicious(ph,ai ) =

⎧⎪⎪⎨⎪⎪⎩
nmalicious

ph

nmalicious
train

(ph,ai = 1),

0 (ph,ai = 0),
(4)

where nmalicious
ph

and nmalicious
train denotes the number of mal-

wares requiring ph and that of malwares in Mtrain, respec-
tively. Similarly, the function Pbenign(ph,ai ) which returns the
probability regarding benign apps can also be represented by
replacing “malicious” in Eq. (4) to “benign”.

For f j,ai ∈ US RFai , a weighted feature f weighted
j,ai

is cal-
culated as

f weighted
j,ai

=
1

1 + exp{−αai ( f j,ai −
f median

j

2 )}
. (5)

We introduce sigmoid function for calculating f weighted
j,ai

since
the probability that ai is a malware can be represented.
f weighted

j,ai
takes the value between 0 and 1. The closer f weighted

j,ai

gets to 1, the more malicious ai is. αai is gradient of sigmoid
function and changes in accordance with the proportion of
untrusted communication. αai is computed as

αai = (1 +
sUSRF

ai

sUSRF
total

) × (1 +
hUSRF

ai

hUSRF
total

) ×WSRDP
ai
, (6)

where sUSRF
ai

and sUSRF
total are the frequency of sending to

untrusted servers and that of total sending by ai, respec-
tively. Similarly, hUSRF

ai
and hUSRF

ai
denote same meaning

regarding HTTPS communication, respectively. Finally,
US RFweighted

ai
= { f weighted

j,ai
|1 ≤ j ≤ nUSRF} which denotes

the set of weighted USRF is obtained.
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4. Evaluation

In order to demonstrate the effectiveness of our scheme, we
evaluate Accuracy (ACC), True Positive Rate (TPR), and
False Positive Rate (FPR) with real dataset. ACC, TPR, FPR
are calculated as

ACC =
TP + TN

TP + TN + FP + FN
, (7)

TPR =
TP

TP + FN
, (8)

FPR =
FP

FP + TN
, (9)

where TP, TN, FP, and FN denote the number of True Pos-
itive (malwares are regarded as malwares), True Negative
(benign apps are regarded as benign ones), False Positive
(benign apps are regarded as malwares), and False Negative
(malwares are regarded as benign apps), respectively. Ta-
ble 4 shows the schemes used in the evaluation. We mainly
compare two our schemes with the previous scheme and
simple DP based scheme (SDPBS). Prop.1 is our scheme
using SSL features to which required DP based weight is
assigned. Prop.2 is also our scheme without required DP
based weight. Prev. is the previous scheme, and SDPBS uti-
lizes only binary features regarding the presence of DP. If an
app has a permission in DP, the feature is 1. Otherwise the
feature is zero.

4.1 Simulation

Table 5 shows our dataset. In order to obtain recent trend
regarding the difference of characteristic between benign
apps and malwares, we used latest dataset. Benign apps
and repackaged malwares were obtained from Androzoo
dataset. Each of benign apps has been analysed by Virus-
Total [20] which is an antivirus service with over 60 an-
tivirus scanners. Thus, we regard the apps for which no
antivirus scanners raise any alarm as benign ones. We got
latest benign apps and repackaged malwares as of Febru-
ary 2018. Furthermore, the other malwares were obtained
from VirusShare dataset [13] which is a repository of mal-
ware samples for security researchers in February 2018. In

Table 4 The schemes used for the evaluation.

Schemes
The name of parameters used in our evaluation

SSL Weight Previous
DP

features assignment features

Prop.1 � � �
Prop.2 �
Prev. �

SDPBS �

Table 5 Our dataset.

Malwares Benign apps

Source
Androzoo [12]

Androzoo
VirusShare [13]

The number of apps 884 801

order to use the obtained apps as our dataset, we must ob-
tain traffic data by running them. Table 6 shows environ-
ment and tools used for 20 minutes traffic data collection.
Each app is run on an Android emulator [14]. We use the
Android tool called Monkey [15] in order to trigger mali-
cious actions. The Monkey tool can randomly send events to
the Android device when the app is running. Tcpdump [16]
command is used to collect traffic data. However, running
all of the obtained apps is not realistic since there exist a
huge number of apps including benign apps and malwares.
Thus, we randomly selected 1,000 malwares from the ob-
tained ones because about 1,000 malwares are utilized for
the evaluation in the paper of the previous scheme. Further-
more, in order to keep the proportion of benign apps and
malwares in our dataset 1:1, 1,000 benign apps were also
randomly selected. Selected apps were run on an Android
emulator to obtain network traffic data. However, there exist
the apps which do not generate network traffic data due to a
failure of installing or clash during running them. Such apps
were excluded from our dataset. We adopted only the apps
which successfully run on an emulator and generate network
traffic during 20 minutes packet monitoring as our dataset.
Hence, because our dataset construction spent a lot of time,
constructing large dataset was very difficult. Finally, our
dataset consists of 801 benign apps and 884 malwares.

Table 7 shows tools used for generating features.
T-shark [17] command is used for generating the pro-
posed features and the features of the previous scheme.
OpenSSL [18] command is used for obtaining SSL server
certificate.

Table 8 shows a classifier and a validation method used
in our simulation. We utilize Random Forest classifier [19]
for our evaluation because it is used in the previous scheme.
Our evaluation is conducted using ten-fold cross validation
to guarantee the validity of the analysis in our simulation.

4.2 Comparison with the Previous Scheme

First, in order to show the effectiveness of our scheme, we
compare Prop.1 with Prev. and the scheme combining Prev.

Table 6 Environment and tools used for 20 minutes traffic data collec-
tion.

Purpose Tool

Environment for running apps Android emulator [14]
Malicious action trigger Monkey Tool [15]
Traffic data collection Tcpdump [16]

Table 7 Tools used for generating features.

Purpose Tool

Extracting features T-shark [17]
Obtaining SSL server certificate OpenSSL [18]

Table 8 Classifier and validation method used in our simulation.

Name
Classifier Random Forest [19]
Validation ten-fold cross validation
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Table 9 Evaluation result.

Scheme ACC (%) TPR (%) FPR (%)

Prop.1 92.7 93.8 8.48
Prop.2 91.9 96.1 12.6
Prev. 88.2 88.2 11.7

SDPBS 84.1 79.1 10.3
Prev. & SDPBS 91.1 90.1 7.74

Prop.1
93.9 94.3 6.49

& Prev. & SDPBS

Fig. 2 The important previous features and their average values in mal-
wares detected only by Prop.1, all benign apps, and all malwares.

and SDPBS. Table 9 shows the result of our evaluation for
each scheme. As shown in Table 9, Prop.1 achieves the best
ACC and TPR among three schemes. In particular, in com-
parison to Prev., TPR is improved up to 5.6%, and Prop.1
detects the 89 malwares not detected by Prev. Although
FPR of Prop.1 is 0.74% higher than the scheme combining
Prev. and SDPBS, it is minor difference. In order to more
study, we inspect the malwares detected by Prop.1 and not
detected by Prev. We calculate the importance of the pre-
vious features by using the Random Forest classifier which
can express the importance of features as numerical value.
We regard the top five previous features to which high im-
portance is assigned as the important previous features. Fig-
ure 2 shows the important previous features and their aver-
age values in malwares detected only by Prop.1, all benign
apps, and all malwares. As shown in Fig. 2, these features of
the malwares detected only by Prop.1 are similar to the be-
nign apps. Thus, it is natural that Prev. cannot detect them.
Meanwhile, Prop.1 can detect such malwares because ma-
licious traffic can be identified by focusing on SSL server
certificate. We manually check SSL server certificate and
traffic data of them. After that, we found the malwares that
communicate with an Unknown server and send device in-
formation to the server. This result means that our scheme
is applicable to the malwares which encrypt malicious pay-
loads because the malwares can be detected without packet
inspection. Accordingly, we conclude that Prop.1 can deal
with the shortcoming of the previous scheme and encrypted
data.

Furthermore, we evaluate the scheme combining
Prop.1, Prev. and SDPBS. As show in Table 9, the scheme
“Prop.1 & Prev. & SDPBS” achieves best performance.

Hence, we conclude that a hybrid scheme can more improve
detection performance.

4.3 Capability for Detecting the Malwares with Extremely
Low Communication Frequency

Our scheme can detect the malwares with extremely low
communication frequency. In such a case, the communica-
tion with attacker’s untrusted server accounts for a large part
of the communication since it must establish malicious ac-
tions with a few attempts. Due to a low amount of communi-
cation traffic, the features regarding the communication fre-
quency might not indicate malicious evidence. However, the
ratio of trusted communication to all communication tends
to be low due to little trusted communication. On the other
hand, such ratio of benign apps tends to be high. This dif-
ference enables to detect malwares with extremely low com-
munication frequency. In fact, we detected the malware with
low communication frequency. This malware only sent 3
HTTP POST requests and a HTTP GET request although
the average of HTTP requests by malwares is 235 requests.
Although the HTTP communication frequency of this mal-
ware is low, it is detected by our scheme. This is because
the ratio of trusted communication to all communication is
about 0.6, which is small ratio compared with benign apps
of 0.9. Thus, we conclude that our scheme can detect the
malware with extremely low communication frequency by
using the ratio based features (These features are listed in
TSRF and TRRF of Table 3 in Sect. 3). As defined in our at-
tack model, in the case where malwares communicate with
attacker’s servers by HTTP and HTTPS, our scheme can
deal with such malwares.

4.4 Evaluation of DP Based Weight Values

In order to demonstrate whether DP based weight value is
effective, we compare Prop.1, Prop.2 and SDPBS. As shown
in Table 9, in comparison to Prop.1, Prop.2 degrades ACC
and FPR. In particular, FPR of Prop.2 is roughly 4% higher
than Prop.1. This is because Prop.2 misjudges the benign
apps which communicate with DV and Unknown servers as
malwares. Meanwhile, Prop.1 can correctly judge such be-
nign apps by considering required DP because they do not
require DP. Furthermore, the performance of SDPBS is de-
graded in all metrics in comparison to Prop.1. This is be-
cause many benign apps have DP. Hence, this result means
that using only required DP based features is insufficient to
detect malwares since the malwares which have DP required
by benign apps might be misjudged. In particular, it is dif-
ficult for SDPBS to detect repackaged malwares. Because a
repackaged malware is created by injecting malicious codes
into a benign app, its required DP is identical to the DP re-
quired by the benign app. After manually checking the DP
required by the repackaged malwares and original apps, we
confirm that most repackaged malwares have same DP re-
quired by original apps. Accordingly, SDPBS cannot cor-
rectly judge benign apps and repackaged malwares. Prop.1
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Fig. 3 The important proposed features and their average values in all
benign apps, misjudged benign apps, and all malwares.

can also detect such malwares since our features indicate
strong evidence of malwares by combining SSL features and
required DP. Thus, we conclude that DP based weight values
is effective in improving detection performance.

4.5 False Positive Analysis

Prop.1 regards 68 benign apps as malwares (i.e., false pos-
itives). In order to reveal the reason, we inspect our fea-
tures which are important for detection. In order to identify
the useful features, we utilize Random Forest classifier. Ac-
cordingly, from the proposed features in Table 3, we regard
the top five proposed features to which high importance is
assigned as important proposed features. In our simulation,
the proposed features whose numbers are 2, 3, 8, 11 and
15 in Table 3 are regarded as important proposed features.
Figure 3 shows the important proposed features and their
average values in all benign apps, misjudged benign apps,
and all malwares. As shown in Fig. 3, except for “15.Ra-
tio of receiving from trusted servers”, the average values of
misjudged benign apps are larger than that of benign ones.
Moreover, the values regarding “2.GET/POST interval” and
“15.Ratio of receiving from trusted servers” are similar to
the ones of malwares. This result means that misjudged be-
nign apps frequently communicate with untrusted servers
and require DP. Hence, we conclude that Prop.1 regards
such apps as malwares since they communicate with un-
trusted servers.

In the case where benign apps which require DP com-
municate with untrusted servers, it is difficult for Prop.1 to
correctly judge them as benign apps. However, there exist
complementary improvement schemes which are promising
for preventing FP in some cases. In the case where a be-
nign app communicates with untrusted servers by HTTP,
the scheme which conducts packet inspection [7] is useful.
Since that scheme can reveal whether sensitive information
is sent to external servers, it is promising for preventing FP.
If a benign app does not send sensitive information, it can
be correctly judged as benign one. On the other hand, in
the case where a benign app communicates with untrusted
servers by HTTPS, the schemes which focusing on Android
architecture such as ICC [4] and API call [3] are useful. In

order to obtain robust features which are independent of
attacker’s implementation techniques, Prop.1 focuses only
on the understandable characteristic such as network traffic
and permissions. Thus, Android architecture based features
is not considered in Prop.1. In particular, the ICC based
scheme and API call based one are promising for comple-
menting Prop.1 because they are useful to judge whether
an app has malicious functionality. For example, if a be-
nign app does not have the functionality for sending sensi-
tive information, it cannot conduct malicious actions such
as privacy leakage. In this case, even if a benign app com-
municates with untrusted servers, it should not be judged as
malware. Hence, since Android architecture based schemes
can help reduce FP, combining Prop.1 and them is promis-
ing as countermeasures.

Furthermore, we manually analyze false positives to
demonstrate whether there exist the malwares among them.
After that, we found 2 benign apps sending sensitive infor-
mation such as MAC address and phone number to DV and
Unknown servers. The previous scheme regards these apps
as benign ones. We resent them to VirusTotal in order to
get latest detection results of these benign apps. The detec-
tion results of VirusTotal can be changed since it is updated
and corrected over time. The 2 benign apps had been ex-
tracted from Androzoo in February 2018. After resending
the 2 apps, they are received alarms from at least one of
antivirus scanners in April 2019. Thus, Prop.1 correctly re-
gards them as malwares. Furthermore, we also found the 2
benign apps sending IMEI to Unknown servers and resent
them to VirusTotal in April 2019. Accordingly, all of the 60
antivirus scanners in VirusTotal do not rise any alarms for
them. Although these apps are still regarded as benign ones
by VirusTotal, according to our attack model, the apps may
be malwares. Thus, we regards the 2 apps as potential mal-
wares. From these results, we conclude that our scheme is
promising for detecting new malwares which evade existing
solutions.

4.6 False Negative Analysis

Prop.1 misses 55 malwares. After manually checking the
level of SSL server certificate and traffic data, we discovered
that these malwares do not interact with untrusted servers.
This is because we cannot bring out malicious actions of
malwares. Most of malwares stealthily perform malicious
actions regardless of user’s operations. However, some of
the malicious activities may be triggered by user’s opera-
tions and inputs. In our simulation, such actions cannot be
triggered because we utilize Monkey tool for triggering ma-
licious actions. Thus, our simulation cannot perfectly emu-
late the situation like real usage by users. These results re-
veal the limitation of our simulation. In the future, we must
design the mechanism for emulating user’s operations in or-
der to precisely bring out malicious actions. More accurate
emulation enables to achieve better detection performance.
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Table 10 Malware families of malwares in our dataset and their frequency.

Malware Families Frequency

smsreg 285 cimsci 4 moavt 1 mobisec 1
autoins 29 utilcode 3 coinminer 1 mobidash 1
jiagu 28 hypay 3 domob 1 marsdaemon 1

revmob 25 wapron 3 mobilespy 1 faveav 1
apptrack 18 umpay 3 kyvu 1 coinge 1
shedun 18 droidrooter 3 gcxgz 1 smsagent 1
dnotua 15 dianjin 2 mgyun 1 wajar 1

tencentprotect 9 pornvideo 2 ewind 1 amhw 1
artemis 9 hiddenads 2 openconnection 1 ganlet 1
skymobi 9 piom 2 uupay 1 ghin 1

waps 8 datacollector 2 remco 1 gexin 1
fakeapp 7 mobwin 2 addisplay 1 appcare 1
wapsx 6 highconfidence 2 lotusid 1 eldorado 1
dowgin 6 tocrenu 2 secneo 1 dogwin 1
hiddad 6 sobot 2 cyfin 1 inmobi 1

ginmaster 6 bips 1 igexin 1 carej 1
airpush 5 kingroot 1 lwzsb 1 vpsdrop 1
smspay 4 youku 1 rotexy 1 Unknown Family 298
kyview 4 smsspy 1 systemmonitor 1
rootnik 4 plankton 1 wkload 1
kuguo 4 adwo 1 moplus 1

Fig. 4 The categories of benign apps in our dataset and their frequency.

4.7 Discussion of Dataset Bias

In order to clarify a possibility of dataset bias, we inspected
categories of benign apps and malwares in our dataset. Out
of 801 benign apps, 538 benign ones in our dataset were
collected from Google Play. The categories of apps are di-
vided into the 49 types in Google Play. Therefore, we in-
spected benign apps to clarify the number of categories in
our dataset. The categories of 144 benign apps out of 538
benign ones can be identified. The categories of the others
cannot be identified due to absence of them in Google Play.
Figure 4 shows the categories of benign apps in our dataset
and their frequency. As shown in Fig. 4, our dataset con-
tains 36 types of categories of benign apps. The coverage
rate of the categories in our dataset to all categories is about
73.5%. Thus, our dataset does not contain only a particu-
lar category. From the statistics regarding Google Play cat-
egories by AppBrain [21], we identified the distribution of

Fig. 5 The distribution of categories in Google Play.

categories in Google Play. Figure 5 shows the distribution
of categories in Google Play†. As shown in Fig. 5, categories
such as “Tools”, “Book & Reference” and “Education” are
contained in both the top 10 categories of Google play and
that of our dataset shown in Fig. 4. This result means that
the distribution of categories in our dataset is similar to that
of categories in Google Play. Thus, we concluded that there
seems to be no possibility of dataset bias regarding cate-
gories of benign apps.

On the other hand, Android malwares are classified into
categories called “Malware family”. In order to identify
family name of each malware in our dataset, we used Eu-
phony [22] which is a tool to infer a single family name of
a malware. Table 10 shows the names of malware families
and their frequency in our dataset. As shown in Table 10,
the malwares in our dataset are classified into 80 malware

†Please note that we exclude 13 categories which are not in our
dataset.
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families, and 298 malwares are regarded as “Unknown fam-
ily”. Since Euphony infers malware family on the basis
of the detection result by VirusTotal, it cannot classify the
apps which cannot be detected by VirusTotal. Although our
dataset consists of 80 malware families, “smsreg” accounts
for about 32% of our dataset. “smsreg” is a representative
malware family which silently collects sensitive data from
the device without the user’s knowledge or consent. Accord-
ing to the report by Quick Heal [23], since this family ac-
counted for 18% of top 10 malware families detected in first
quarter (from January to March) of 2018, it was consider-
ably spread. Even if excluded malwares are considered, the
distribution of “smsreg” in our dataset is different from that
by the report of Quick Heal. Furthermore, although about
1,264,860 malwares were detected by Quick Heal in first
quarter of 2018, VirusShare and Androzoo collected only
28,632 malwares and 15,297 repackaged ones, respectively
in 2018. Since the total number of malwares in VirusShare
and Androzoo dataset is only 3.4% of the number of mal-
wares detected by Quick Heal, there exists a possibility of
dataset bias on VirusShare and Androzoo dataset. Thus, be-
cause we obtained malwares from VirusShare and Andro-
zoo in February 2018, it is possible that a particular family
such as “smsreg” concentrates in our dataset to some extent.
However, we argue that our scheme is useful for detecting
malwares because TPR of our scheme is 93.8% as shown in
Table 9. This result indicates that our scheme can detect not
only “smsreg” but also many types of other malware fami-
lies.

4.8 Limitation

Our scheme cannot detect the malware that aims at mali-
cious actions such as data tampering or destruction since it
does not communicate with none of servers. Because such
types of malwares are beyond the scope of our scheme, de-
tecting them by other detection schemes such as API call
based one [3] and ICC based one [4] is useful. Focusing
on API call and ICC is useful since the malwares which
aims at data tampering or destruction must exploit API calls
and ICC to access data in user’s devices. Furthermore, our
scheme cannot also deal with the malware that communi-
cates only with trusted servers such as EV and OV certifi-
cate. In this case, attacker’s server can be trusted one. How-
ever, such situation is rare because EV and OV certificate
cannot be obtained by individual. Therefore, we consider
that it is difficult for attackers to make their servers trusted
ones.

5. Conclusion

In this paper, we have proposed an Android malware detec-
tion scheme based on level of SSL server certificate. We
utilize SSL server certificate based features. In order to ob-
tain more exact malicious features, we introduce required
permission based weight values. The detection performance
of our scheme is better than the previous scheme. Our evalu-

ation results show our scheme can deal with encrypted traf-
fic data and the shortcoming of the previous scheme. After
manually analyzing misjudged benign apps, we found the
apps which send sensitive information to untrusted servers.
The analysis results show that our scheme is promising for
detecting new malwares.
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