
2094
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

PAPER

Empirical Evaluation of Mimic Software Project Data Sets for
Software Effort Estimation

Maohua GAN†, Zeynep YÜCEL†, Nonmembers, Akito MONDEN†a), Member,
and Kentaro SASAKI††, Nonmember

SUMMARY To conduct empirical research on industry software devel-
opment, it is necessary to obtain data of real software projects from in-
dustry. However, only few such industry data sets are publicly available;
and unfortunately, most of them are very old. In addition, most of today’s
software companies cannot make their data open, because software devel-
opment involves many stakeholders, and thus, its data confidentiality must
be strongly preserved. To that end, this study proposes a method for ar-
tificially generating a “mimic” software project data set, whose character-
istics (such as average, standard deviation and correlation coefficients) are
very similar to a given confidential data set. Instead of using the original
(confidential) data set, researchers are expected to use the mimic data set
to produce similar results as the original data set. The proposed method
uses the Box-Muller transform for generating normally distributed random
numbers; and exponential transformation and number reordering for data
mimicry. To evaluate the efficacy of the proposed method, effort estimation
is considered as potential application domain for employing mimic data.
Estimation models are built from 8 reference data sets and their concerning
mimic data. Our experiments confirmed that models built from mimic data
sets show similar effort estimation performance as the models built from
original data sets, which indicate the capability of the proposed method in
generating representative samples.
key words: empirical software engineering, data confidentiality, data min-
ing

1. Introduction and Motivation

Empirical software engineering relies to a great extent on
real software development data. Namely, it is highly desir-
able to use data collected from industry software develop-
ment projects. However, there exist only very few industry
data sets, which are publicly available [1]. In addition, these
data sets are quite old and have a small sample size, which
pose a great problem in ensuring the validity and reliability
of the research [2]–[5].

As a matter of fact, most companies measure and ac-
cumulate data relating their own (recent) software develop-
ment projects on an independent basis. However, companies
cannot release any part of this (real) data due to two princi-
pal reasons. Namely, they need to comply to various data
protection/privacy laws and standards. In addition, due to
the large number of stakeholders involved, they are required

Manuscript received June 3, 2019.
Manuscript revised October 30, 2019.
Manuscript publicized July 3, 2020.
†The authors are with Okayama University, Okayama-shi,

700–8530 Japan.
††The author was with Okayama University, Okayama-shi,

700–8530 Japan.
a) E-mail: monden@okayama-u.ac.jp

DOI: 10.1587/transinf.2019EDP7150

to strictly preserve data confidentiality.
In this respect, this study proposes a method for arti-

ficially creating a data set with similar characteristics to a
given industry data set. Namely, instead of releasing the
original (confidential) data set, the companies may provide
only several statistical values of their data, such that a com-
pletely anonymous data set is automatically generated with
similar characteristics.

From a practical point of view, such a method is benefi-
cial to several parties. First of all, academic researchers can
work on recent and realistic information. For instance, for
studies on software development effort (henceforth, referred
simply as effort) estimation, the proposed method is ex-
pected to be very helpful in assessment of stability, which in-
herently requires numerous industry data sets [6]. Thereby,
validity and reliability of new effort estimation methods can
better be assured. The proposed method is potentially use-
ful also for the practitioners. Namely, companies may want
to compare their software development performance metrics
(such as productivity and defect density) with other com-
panies. The proposed method enables comparison of per-
formance through artificially generated data sets replicating
statistical features of authentic data. We expect the proposed
approach to encourage the companies to share the statis-
tics of their data, once the researchers release their findings,
which potentially involve beneficial information ready to be
transferred to industry applications.

The principals of the proposed method are as follows.
Regarding a real industry software project data set, we con-
sider certain (authentic) variables (e.g. software metrics) and
measure their statistics as well as pairwise correlation re-
lations. Next, to generate synthetic variables, we use the
Box-Muller transform [7] and obtain a set of normally dis-
tributed random numbers. Subsequently, we apply exponen-
tial transformation on those and transfigure the resulting val-
ues such that their (value) distribution emulates that of the
authentic variables. After obtaining all such synthetic vari-
ables, number reordering is applied to achieve similar pair-
wise correlation relation to that within the authentic vari-
ables. In this respect, we assume that certain statistical infor-
mation regarding an industrial data set (i.e. mean, standard
deviation and correlation coefficient matrix) are not confi-
dential and we expect to receive them as inputs to generate a
mimic data set. Nevertheless, this assumption does not jeop-
ardize confidentiality of the -input- data set, since the pro-
posed method prevents identification of any specific project

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

GAN et al.: EMPIRICAL EVALUATION OF MIMIC SOFTWARE PROJECT DATA SETS FOR SOFTWARE EFFORT ESTIMATION
2095

in this set, as it is a common requirement in data anonymiza-
tion studies.

This paper extends our previous work [8] with exten-
sive empirical evaluation carried out on 8 industry data sets.
In addition, we confirm the predictive ability of mimic data
sets by illustrating the efficacy of synthetic variables for the
particular purpose of effort estimation.

This paper is organized as follows. We elaborate on
the background and relevant studies in Sect. 2. Section 3
first gives an outline of the proposed method and then de-
tails each stage, whereas Sect. 4 provides a demonstration of
the procedure on a commonly used data set. Subsequently,
Sect. 5 considers effort estimation as one of the potential
many application domains of mimic data; and evaluates and
compares estimation performance obtained from authentic
data and mimic data. Section 6 provides a discussion on the
experimental validation, whereas Sect. 7 concludes the pa-
per summarizing our main results, contributions and future
work.

2. Background and Related Work

Some of the most popular industry data sets employed
in empirical software engineering studies such as Deshar-
nais [2], Coc81-dem [5], Kemerer [3], and Albrecht [4], are
available at [1]. These data sets are all recorded in the
1980’s. In this respect, the development environments and
processes greatly differ from modern software development.
In addition, the sample size is often very small, e.g. Kemerer
has only 15 projects, whereas Albrecht has 24 projects. Sur-
prisingly, although these data sets are old and small, they are
still actively used in various recent studies appearing in top
journals (e.g. [6], [9], [10]) due to the lack of more recent
industry data sets.

On the other hand, there exist also a few self-contained
studies based on recent software development data. How-
ever, they only report the analysis results and do not disclose
any of the data itself. For example, the white paper on soft-
ware development data in 2018-2019 [11] provides various
analysis results of 4564 software development projects car-
ried out by 34 Japanese software development companies.
But it does not release the data set.

To mitigate the problems due to use of outdated or
small sets, it is proposed to apply anonymization on recent
software data sets. Data anonymization aims removing any
identifying information from the original data such that the
source or its private characteristics cannot be determined.
Conventional data anonymizing methods for software engi-
neering data employ data mutation techniques to gain data
privacy [12], [13]. Since data mutation keeps the one-to-one
mapping of data points between the anonymized data set and
the original data set, threats of breaking the anonymity can-
not be perfectly prevented. Moreover, since strong data mu-
tation yields change of data characteristics, balancing pri-
vacy and utility is a big challenge [13].

In [12], Peters and Menzies proposed a data
anonymization method called MORPH to solve privacy is-

sues in software development organizations. They target de-
fect prediction research and try to anonymize the defect data
set that consists of various software metrics measured for
each source file of a software product. They use data muta-
tion techniques, which add small amount of changes to each
value to make it difficult to identify a specific source file in
a data set. They further propose a method called CLIFF,
which allows to eliminate some data points that are not nec-
essary for the defect prediction. Combining CLIFF with
MORPH, they try to balance privacy and utility of defect
data sets [13].

Since their approach is specifically proposed for a bi-
nary classification problem (i.e. distinguishing defect-prone
and not-defect-prone files in a defect data set), it cannot be
applied to general purpose data sets such as software project
data sets as we target in this paper.

3. Proposed Method

Software project data sets typically involve various variables
including software size metrics (e.g. function point, source
lines of code), as well as project duration, and effort. As
an example for a software project data set, Table 1 depicts
an excerpt from the Desharnais data set [2], which is one
of the commonly used software project data sets in effort
estimation studies.

As it can clearly be seen in Table 1, the variables can be
measured at varying scales. Namely, for the specific case of
[1], language emerges as a nominal variable, whereas team
experience and project manager experience are ordinal. On
the other hand, quantitative variables involve such ratio scale
variables as function point, effort and duration.

Many software companies record such data sets con-
sisting of project features similar to those listed in Table 1†.
Henceforth, we refer to such an authentic confidential data
set as “source data set” or as simply “source data”, whereas
the synthetic data emulating the characteristics of the source
data is referred as “mimic data set” or “mimic data”.

Section 3.1 introduces the outline of the proposed
method in a nutshell, whereas the details of the procedure
are elaborated on in Sects. 3.2, 3.3 and 3.4.

3.1 Outline

For generating mimic variables, we exploit the fact that
probability distributions of the quantitative variables in soft-
ware project data sets roughly follow a log-normal distribu-
tion [14]. From this viewpoint, we approximate their (value)
distribution with a log-normal distribution.

We initially generate a set of variables based on log-
normal distribution assumption and obtain any number n
of artificial values with a similar distribution to that of the
corresponding values in source data. At this point, we are
clearly required to follow a different approach for variables

†In this study, we assume that there is no missing value in a
data set.

2096
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

Table 1 An example of software project data set (excerpt from Desharnais data set [2].

TeamExp ManagerExp Duration Transactions Entities PointsAdjust Lang2 Lang3 Effort
(years) (years) (months) (person-hours)

1 1 5 78 99 177 0 0 2520
4 7 13 69 74 143 0 0 1603
1 3 8 194 97 291 1 0 3626
1 3 10 42 31 73 1 0 1267
0 4 6 97 42 139 0 1 546
4 5 26 482 227 709 1 0 9100

of different scale (i.e. nominal, ordinal, ratio and interval
scale), which will be distinguished in Sect. 3.2 and Sect. 3.3.

Subsequent to obtaining a set of randomly generated
values, we compute the correlation between each pair of
variables and build the correlation matrix. Comparing it to
the correlation matrix relating the source data, we try to em-
ulate similar pairwise relations. To that end, we keep swap-
ping the positions of the variables such that the correlation
matrix of the mimic data resembles enough to that of the
source data.

In relation to the above procedure, we would like to
point out to two particular advantages. First of all, the pro-
posed method supports any number of data points to gener-
ate. For example, we can generate mimic data with a sample
size of n = 1000 from a source data of much smaller sam-
ple size, e.g. n = 30. Relying on this property, our second
advantage is recognized as the lack of one-to-one correspon-
dence between the projects of the authentic data set and the
values in the mimic data set. Thanks to this, data privacy
and confidentiality are suggested to be effectively protected,
even if the mimic data set is made open.

3.2 Generation of Ratio Scale Variables

Suppose that a certain quantitative variable in the source
data set has a mean of m and a standard deviation of σ2.
Further, assume that after log-transforming it, the resulting
distribution has a mean and standard deviation of m̂ and σ̂ 2,
respectively. Clearly, there exist the following relations be-
tween these pairs (see [15] for a detailed explanation),

m = ln

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
m̂√
σ̂ 2

m̂ 2 + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

σ2 = ln

⎛⎜⎜⎜⎜⎝ σ̂
2

m̂ 2
+ 1

⎞⎟⎟⎟⎟⎠ .
(1)

For generating mimic values emulating the characteris-
tics of the log-transformed quantitative (i.e. ratio scale and
interval scale) variables, this paper employs the Box-Muller
transform [7], which is a pseudo-random number sampling
method.

Essentially, Box-Muller transform generates a pair of
independent and normally distributed random numbers from
a given set of uniformly distributed random numbers. Let R1

and R2 be two independent random variables drawn from

a uniform distribution in the interval (0,1)†. Box-Muller
method, transforms these values into independent random
variables N1 and N2 as follows,

N1 = σ
∗√−2 log R1 cos 2πR2 + m∗,

N2 = σ
∗√−2 log R1 sin 2πR2 + m∗,

(2)

where m∗ and σ∗ denote the desired mean and standard de-
viation of N1 and N2. Note that this procedure can be used
also for interval scale variables.

In our specific application, since we target generating
values emulating the log-transformed distribution, we use
m∗= m̂ and σ∗= σ̂. Moreover, this study utilizes only N1.

As mentioned in Sect. 3.1, we assume that quantitative
variables follow a log-normal distribution. Therefore, we
apply exponential transformation on N1 and obtain the mim-
icking values of the variables.

Figure 1 gives a demonstrating example of this process
depicted on the effort variable concerning Desharnais data
set. The distribution is illustrated both in terms of a his-
togram and a kernel density estimate (KDE). Figure 1-(a)
relates the source data, whereas Fig. 1-(b) illustrates its log-
transform††. We use the mean value m and standard devi-
ation σ of the authentic effort values to obtain the desired
statistics of the log-transformed distribution using Eq. (1)
and generate the mimic data using Eq. (2). Figure 1-(c)
shows the outcome of this operation in terms of the his-
togram of the mimic variables and relating KDE. Finally,
Fig. 1-(d) shows the result of exponential transformation ap-
plied on the mimic variables. Although values in Fig. 1-(d)
are derived artificially, we see that the distributions are well
in line with those of the source data presented in Fig. 1-(b).

For realizing the above procedure, a company that
owns a (confidential) software development data set, needs
to provide only m and σ, which are directly computed from
the source data.

3.3 Generation of Ordinal and Nominal Scale Variables

For each ordinal scale or nominal scale variable in the source
data, we generate a set of artificial values so that the percent-
age of cases in each bin is same as the source data.

†R1 and R2 can easily be generated in many programming lan-
guages, e.g. by using rand() function in C programming lan-
guage.
††Figure 1-(b) confirms that log-transformed values roughly fol-

low the normal distribution.

GAN et al.: EMPIRICAL EVALUATION OF MIMIC SOFTWARE PROJECT DATA SETS FOR SOFTWARE EFFORT ESTIMATION
2097

Fig. 1 Histogram and kernel density estimates regarding (a) raw and (b) log-transformed values of
effort of Desharnais data set; and (c) mimic data after exponential transformation and (d) the mimic
data.

For instance, consider that we have an ordinal scale
variable as “requirement clarity”, which has four ranks (or
bins) as “1. very clear”, “2. clear”, “3. unclear”, “4. very
unclear”.

Suppose that the percentage of values belonging to
each bin are 20% for “1. very clear”, 25% for “2. clear”,
40% for “3. unclear” and 15% for “4. very unclear”, respec-
tively. In order to generate mimic data, which represents the
characteristics of the authentic distribution, we simply gen-
erate an artificial mimic sample, whose percentage of cases
corresponding to each bin is same as that of the source data.

3.4 Mimicking Pairwise Relationships of the Variables

Between every pair of variables in the source data, there
exist a certain relationship, which we opt to capture via a
correlation matrix χ. Specifically, we use Spearman’s rank
correlation coefficient instead of the common practice based
on Pearson correlation coefficient (see Algorithm 1†). This
choice is due to the existence of outliers in the source data.

Based on the correlation matrix, we emulate a simi-
lar pairwise relation between every possible mimic variable
pair to that of the authentic variable pairs. To that end, we
apply number reordering to the array of the mimic data.

†In Algorithm 1, cov stands for covariance, σ stands for stan-
dard deviation, and T stands for number of project variables.

Algorithm 1: Computation of correlation matrix
based on Spearman’s rank correlation coefficient.

Input: Values of project variables
−→
V i, ∀i ∈ [1,T]

Output: Correlation matrix χ
1 for i← 1 : T do

2 Set F to size of
−→
V i

3 Set
−→
S i to ranked array of

−→
V i

4 for i← 1 : F do
5 for j← 1 : F do

6 χ(i, j) =
cov(S i ,S j)
σS iσS j

Namely, we swap random values, which obviously does not
have any effect on the distribution of that variable. Specif-
ically, we employ the procedure presented in Algorithm 2,
which evaluates similarity of the correlation matrices χ and
χ′ concerning source and mimic data in terms of sum of
squared differences ε††.

Subsequently, we make mimic data visually more sim-
ilar to source data by rounding-off to a suitable precision.
Namely, mimicking values of the quantitative variables are
generated from random numbers, and thus their significant

††Here, convergence is judged in terms of the number of suc-
cessive iterations which do not lead to an improvement.

2098
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

Algorithm 2: Mimicking pairwise relations.

Input: Values of mimic variables
−→
V ′i ∀i ∈ [1,T]

Correlation matrix of source data χ // See Alg. 1

Output: Reordered values of mimic variables
−→
V ′i , ∀i ∈ [1,T]

1 Set S ′ to size of any array
−→
V ′i

2 Set ε0 = ∞ // Previous value of ε
3 do

/* Reorder by swapping arbitrary values */

4 Get a pair of arbitrary indices 1 < p, q < S ′ , i � j

5
−→
V ′i (p)↔ −→V ′i (q) // Swap

6 Get χ′ relating reordered mimic data // See Alg. 1

/* Similarity of correlation matrices ε is
expressed in terms of sum of squared

differences. */

7 Set ε =
∑T

i, j=1 (χ(i, j) − χ′(i, j))2

8 if ε < ε0 then // There is improvement

9

10 ε0 = ε
11 else // There is no improvement

12

13
−→
V ′i (p)↔ −→V ′i (q) // Swap back

14 while ε converging

figures are different from those in the source data. There-
fore, each mimicking value should be rounded off to an ap-
propriate precision according to the significant figure in the
source data. For instance, Function Point variable is an in-
teger in the source data, and as such, it is rounded off to
integer.

4. Case Study on the Desharnais Data Set

In order to demonstrate the operation of the procedure intro-
duced in Sect. 3, we present a case study carried out on the
Desharnais data set [2], which is one of the most frequently
used data sets in effort estimation research [14].

Desharnais data set contains 77 projects without miss-
ing values. Here, we generate mimic data with a sample size
of n = 100. Besides, mimic data composes of 5 quantitative
variables as Duration, Transactions, Entities, PointsAdjust,
and Effort; and 3 qualitative variables as TeamExp, Man-
agerExp, and Lang. Here, TeamExp and ManagerExp are
ordinal scale variables, where TeamExp ranges from 0 to 4,
and the ManagerExp ranges from 0 to 7. In addition, the
variable Lang is divided into two binary variables as Lang2
and Lang3.

4.1 Characteristics of Quantitative Variables

For an arbitrary quantitative (i.e. ratio or interval scale) vari-
able r, we denote the mean value, standard deviation, min-
imum and maximum with m, σ, rmin and rmax, respectively.
Table 2 illustrates these values for the source data set, while
Table 3 presents similar values relating mimic data, which
are represented with m̃, σ̃, r̃min and r̃max.

In addition, in Table 4 we present the relative differ-
ences of the statistics given in Tables 2 and 3. For instance

Table 2 Statistics of source data.

m σ rmin rmax

Duration 11.30 6.74 1 36
Transactions 177.47 145.13 9 886
Entities 120.55 85.55 7 387
PointsAdjust 298.01 181.08 73 1127
Effort 4833.91 4160.90 546 23940

Table 3 Statistics of mimic data.

m̂ v̂ r̂min r̂max

Duration 11.571 7.172 3 42
Transactions 180.078 139.485 39 822
Entities 123.208 91.018 29 534
PointsAdjust 300.299 168.783 99 986
Effort 4913.26 4246.176 893 25365

Table 4 Relative difference of statistics.

Δm Δσ Δrmin Δrmax

Duration 0.02 0.03 0.5 0.14
Transactions 0.03 0.16 0.44 0.37
Entities 0.02 0.07 0.41 0.04
PointsAdjust 0.03 0.14 0.32 0.34
Effort 0.04 0.13 0.39 0.30

for mean value, relative difference is defined as,

Δm =
|m − m̃|

max(m, m̃)
. (3)

From these results, we see that the absolute difference
of mean value, standard deviation and minimum value be-
tween two data sets are very small, which indicates effec-
tiveness of the proposed method. Note that, the relative dif-
ference values relating the minimum are higher than those
relating the maximum. However, it is sufficient to check the
values in Tables 2 and 3 to realize that they are inflated due
to the inherently small values of rmin and the distributions
still attain very similar minimums. On the other hand, the
maximum values turn out to be not very similar, principally
because source data set contains outliers.

4.2 Characteristics of the Correlation Matrix

Parts of the correlation matrices regarding source data and
mimic data are shown in Table 5 and Table 6. In addition,
Table 7 presents the absolute value of element-wise differ-
ences of Table 5 and Table 6. From Table 7, it can be ob-
served that the maximum difference is attained for a par-
ticular pair of variables, namely of Lang2 and Lang3. This
maximum difference of 0.023 is considered to be sufficiently
small. Therefore, the relationship between any two variables
is regarded to be effectively reproduced.

In addition, Fig. 2 shows the convergence of the sum
of squared differences ε of rank correlation coefficients for
increasing number of updates (i.e. successful swapping of
variables). As shown in the figure, ε becomes very close to
zero for growing number of iterations (e.g. 0.20495 at 1000
iterations and 0.000216 at 10000 iterations).

GAN et al.: EMPIRICAL EVALUATION OF MIMIC SOFTWARE PROJECT DATA SETS FOR SOFTWARE EFFORT ESTIMATION
2099

Table 5 Correlation matrix for the source data.

TeamExp ManagerExp Duration Transactions Entities PointsAdjust Lang2 Lang3 Effort

TeamExp 1.000
ManagerExp 0.388 1.000
Duration 0.365 0.233 1.000
Transactions 0.088 0.109 0.382 1.000
Entities 0.319 0.170 0.533 0.265 1.000
PointsAdjust 0.266 0.189 0.592 0.744 0.778 1.000
Lang2 −0.072 0.157 0.147 −0.129 0.045 −0.039 1.000
Lang3 −0.078 0.180 −0.106 0.248 −0.120 0.077 −0.247 1.000
Effort 0.252 0.086 0.572 0.467 0.647 0.688 0.022 −0.428 1.000

Table 6 Correlation matrix for the mimic data.

TeamExp ManagerExp Duration Transactions Entities PointsAdjust Lang2 Lang3 Effort

TeamExp 1.000
ManagerExp 0.389 1.000
Duration 0.365 0.235 1.000
Transactions 0.088 0.109 0.381 1.000
Entities 0.319 0.170 0.532 0.265 1.000
PointsAdjust 0.266 0.189 0.591 0.742 0.776 1.000
Lang2 −0.071 0.165 0.145 −0.128 0.045 −0.039 1.000
Lang3 −0.067 0.187 −0.106 0.248 −0.120 0.077 −0.224 1.000
Effort 0.252 0.086 0.572 0.466 0.647 0.690 0.022 −0.427 1.000

Table 7 Absolute value of difference of correlation matrices.

TeamExp ManagerExp Duration Transactions Entities PointsAdjust Lang2 Lang3 Effort

TeamExp 0
ManagerExp 0.001 0
Duration 0.002 0 0
Transactions 0 0 0.001 0
Entities 0 0 0.001 0 0
PointsAdjust 0 0 0.001 0.002 0.002 0
Lang2 0.001 0.008 0.002 0.001 0 0 0
Lang3 0.011 0.007 0 0 0 0 0.023 0
Effort 0 0 0 0.001 0 0.002 0 0.001 0

Fig. 2 Convergence of sum of squared differences ε of rank correlation
coefficients.

5. Evaluation Based on Effort Estimation Performance

To evaluate utility of the mimic data set, we consider ef-
fort estimation as a representative application domain for
employing mimic data. Namely, we consider a source data
set with a set of variables composed of effort and several

others. From this source data set, we generate mimic data
regarding the variables other than effort. Based on this arti-
ficially generated set, we carry out effort estimation. On the
other hand, we estimate effort based on the authentic vari-
ables in the source data set. We compare both estimations
to the true values of effort. Effort estimation performance
obtained using the authentic variables (i.e. source data set)
is considered as benchmark performance. We compare this
to the performance rates obtained using mimic data to inves-
tigate whether estimation performance based on mimic data
is similar to the performance of the benchmark estimation
obtained using authentic data.

To that end, in our experiments we employ as source
data 8 data sets (henceforth, noted as reference data sets)
introduced in Table 8. All data sets used in this study are
publicly available [1].

5.1 Effort Estimation Model

As mentioned above, we consider effort estimation to be one
of the many possible areas of deployment of mimic data.
On this basis, we carry out the effort estimation method de-

2100
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

Table 8 Reference data sets employed in the experiments.

Data set Number of Number of Number of
categorical continuous projects

variables variables

Albrecht [4] 0 7 24
China [1] 1 11 499
Coc81-dem [5] 14 4 63
Desharnais [2] 4 5 77
Kemerer [3] 2 5 15
Maxwell [16] 22 4 62
Miyazaki94 [17] 0 8 48
Nasa93 [1] 24 2 93

scribed below.
Specifically, this study performs effort estimation (in

person-months or person-hours) based on linear regression
modeling. Generally speaking, a linear regression model is
described as follows:

Ŷ =
n∑

j=1

k jN j +C (4)

Ŷ : Estimated value of the objective variable
Nj : Predictor variables
k j : Partial regression coefficients
C : A constant

For our specific case, the linear regression model em-
ploys effort as the objective variable and remaining variables
as (potential) predictor variables.

As mentioned in Sect. 3.1 and illustrated in Fig. 1, log-
arithmic transformation of project variables yields a more
similar distribution to normal distribution. Although lin-
ear regression does not explicitly require neither the ob-
jective variable nor the predictor variables to come from
a normal distribution†, as pointed out by Kitchenham and
Mendes [14], their logarithmic transformation is empirically
shown to help improving estimation results obtained by lin-
ear regression. Thus, it is a commonly used preprocess-
ing operation in linear regression model construction, which
also we opt to follow in this study.

In this respect, as a preprocessing operation, logarith-
mic transformation is applied on both the objective variable
(i.e. effort) and the predictor variables (e.g. function point,
duration etc) prior to model construction. In addition, for
variables containing 0, an offset value (such as 0.5 or 1) is
added before the transformation.

Thereby, the estimation model boils down to a log-log
regression, which is expressed simply as follows:

log Ŷ =
n∑

j=1

k j log Nj +C. (5)

It follows that, by applying exponential transformation on
Eq. (5), the estimated value Ŷ can be obtained as:

†Linear regression assumes normality of residual errors.

Algorithm 3: Selection of predictor variables.
Input: Set of all project variables V = {V1, . . . ,VT }
Output: Set of predictor variables N, k,C

1 Choose an arbitrary i ∈ [1,T]
2 Set N = Vi

3 while True do
/* Insertion of a variable */

4 Choose an arbitrary j ∈ [1,T], V j � N
5 N′ = N ∪ V j

/* Removal of a variable */

6 Choose an arbitrary k ∈ [1,T], Vk ∈ N

7 N
′′
= N \ Vk

/* Difference in AIC */

8 δ′ = AIC(N′) − AIC(N)

9 δ
′′
= AIC(N

′′
) − AIC(N)

10 if δ′ < 0 ‖ δ′′ < 0 then // There is improvement

11

12 if δ′ < δ′′ then
13 N = N′
14 else
15 N = N

′′

16 else // There is no improvement

17

18 break

Ŷ = exp(C)
n∏

j=1

Nj
kj . (6)

5.2 Selection of Predictor Variables

As explained in Sect. 5.1, effort is the objective variable
and remaining variables are potential predictor variables. In
other words, we do not employ all available variables of a
data set in effort estimation and instead eliminate any irrel-
evant or useless variables, which is one of the most crucial
factors acting on estimation performance.

To that end, this study uses an iterative variable se-
lection procedure based on Akaike’s Information Criterion
(AIC) [18] as depicted in Algorithm 3. Namely, we first
build a simple model with a single predictor variable. At
each iteration, we modify the model (i) by inserting an ad-
ditional predictor variable and (ii) by removing a single
predictor variable. This modification yields one extended
model and one simplified model as compared to original
one. Comparing the three AIC values concerning the orig-
inal, extended and simplified models, we choose the best
performing set of variables and update the model. We pur-
sue this procedure until no extension or simplification brings
any performance enhancement (in terms of AIC).

5.3 Evaluation Procedure

For each data set presented in Table 8, we conducted 10 rep-
etitions of the 3-fold cross validation procedure illustrated
in Fig. 3. We expect this series of experiments to mitigate
the effect introduced by the random splitting (of the source
data into test and fit data) on estimation results and provide
an insight to the stability of performance.

GAN et al.: EMPIRICAL EVALUATION OF MIMIC SOFTWARE PROJECT DATA SETS FOR SOFTWARE EFFORT ESTIMATION
2101

Fig. 3 The 3-fold cross validation scheme.

Specifically, we randomly split a source data set into 3
subsets. Then, we conduct three sets of model construction
and model evaluation, each of which employs two subsets
in model construction. In each case, the remaining subset
is used in evaluation. We then construct an effort model for
each original (source) fit subset and mimic data derived from
fit subset.

Evaluation of both models are done using only the test
subset. In other words, we do not produce mimic data for
the test subset, since this experiment aims to evaluate how
mimic data performs in effort estimation of real source data
(i.e. not the mimic data).

To evaluate the effectiveness of our method, we apply
this procedure on each reference data set and evaluate the
performance using the metrics defined in Sect. 5.4.

5.4 Evaluation Criteria

As Ŷ denotes estimated value (see Eq. (6)) and Y denotes
the true value of effort, let absolute error (AE), magnitude
of relative error (MRE), magnitude of error relative to the
estimate (MER), and balanced relative error (BRE) be de-
fined as,

AE = |Y − Ŷ |,

MRE =
|Y − Ŷ |

Y
,

MER =
|Y − Ŷ |

Ŷ
,

BRE =
|Y − Ŷ |

max(Y, Ŷ)
.

(7)

As for evaluation criteria, we use the above values,
namely the relative difference of means between the source-
based and mimic-based effort estimation; the difference of
means between the source-based and mimic-based effort es-
timation relative to the mean of source data set, relative to

Table 9 Evaluation results.

Data set Δm(AE) Δm(MRE) Δm(MER) Δm(BRE)

Albrecht 0.63 0.02 0.30 0.01
China 0.02 0.01 0.03 0.01
Coc81-dem 0.10 0.05 0.17 0.08
Desharnais 0.02 0.05 0.02 0.02
Kemerer 0.33 0.53 0.44 0.18
Maxwell 0.04 0.03 0.08 0.02
miyazaki94 0.04 0.11 0.09 0.07
nasa93 0.04 0.02 0.30 0.08

the mean of mimic data set and relative the larger one of
mean of source and mimic data sets. Let m(·) and σ(·)
stand for functions returning mean and standard deviation,
respectively. Consider relative difference is defined as in
Eq. (3). Then, our evaluation criteria are expressed simply
as Δm(AE), Δm(MRE), Δm(MER), and Δm(BRE).

For the two effort estimation procedures (one being
based on source data and the other being based on mimic
data), if the above-mentioned mean values are similar, the
proposed method is concluded to be effective in effort esti-
mation.

5.5 Evaluation Results

Table 9 presents estimation performance based on the cri-
teria presented in Sect. 5.4. Obviously, most of the values
are quite low, indicating that similar AE, MRE, MER and
BRE values are achieved by effort estimation using source
data and mimic data. However, there are a few individ-
ual cases, which stand out. For instance, the values of
Δm(AE) relating Kemerer and Albrecht data sets are quite
high (0.33 ∼ 0.63). This is primarily due to limited number
of samples in these data sets (see Table 8). This disadvan-
tage of Kemerer and Albrecht data sets can be observed also
in terms of the other performance metrics. Namely, for Ke-
merer, MRE, MER and BRE are all significantly higher
compared to other data sets, whereas for Albrecht MER
sticks out as usually large.

In addition, we notice that in general MER is larger
than MRE. This is possibly due to the fact that it is hard
to mimic the projects, whose variables belong to the tails of
the distributions. Therefore, since the proposed method has
a tendency to produce mimic data resembling the bulk of
the distribution, the estimated value Ŷ is likely to be lower,
which in turn increases MER (see Eq. (7)). On the other
hand, BRE introduces better (i.e. lower) rates, since it con-
siders a larger value in the denominator (see Eq. (7)).

6. Threats to Validity

We provide a discussion on the validity of the proposed
method in terms of three commonly adopted experimental
validation approaches, i.e. internal validity, external validity
and construct validity.

Internal validity refers to the extent by which the ob-
served effect is a consequence of the presumed cause. In

2102
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

our case, internal validity questions whether or not differ-
ent conclusions can be drawn with regard to the different
settings in the experiment. To ensure internal validity, we
conducted 10 repetitions in the validation process to pro-
duce stable results. However, there are several possible is-
sues of internal validity in this study. One issue is the sin-
gle sampling method (3-fold cross validation) we used. Our
important future work is to employ other method such as
leave-one-out cross validation to increase the validity of the
result. Second issue is the single modeling method we used.
We chose log-log regression model with stepwise variable
selection, which is one of the most commonly used model-
ing techniques in software effort estimation. It is our future
work to employ other modeling methods.

External validity refers to the generalization of the re-
sults. In this study, we address external validity by using
8 reference data sets with diverse characteristics. Namely,
they vary in size (i.e. number of projects), and project vari-
ables, as well as origin (i.e. recording organization) and
recording period. We believe that a diversity of data sets
can produce generalized findings.

Construct validity refers to the relevance and capabil-
ity of the observations and measurements in evaluating the
posed hypothesis. In this study, we address construct valid-
ity by using both absolute error and relative error in the eval-
uating the effort estimation performance. However, since
there are other measures of estimation error such as bal-
anced relative error, it is our future work to employ such
measures to increase the validity of our work.

7. Conclusions

This study proposes a method for building a mimic data
set replicating the statistical properties of a (confidential)
source data set. Software development companies, which
cannot release data sets, can provide only a couple of data
statistics (i.e. mean and standard deviation), which enable
generating a mimic data set of any desired size with similar
characteristics to the authentic data, by complying to legal
requirements on privacy as well as meeting the demands of
the stakeholders.

Based on our case study, we demonstrated that the
mimic data set follows the characteristics of the source data
set with considerable similarity. As for a potential appli-
cation domain for utilizing mimic data, we consider effort
estimation. By experimentally evaluating the effort estima-
tion performance of mimic data sets derived from 8 different
reference data sets, which are commonly used in effort esti-
mation studies, we proved that performance rates achieved
by mimic data are quite similar to those achieved by source
data, provided that the data set has a sufficient number of
samples (i.e. projects).

Based on these results, we claim that data anonymiza-
tion is achieved effectively and the proposed method is a
superior alternative to data mutation. Specifically, since
all data points are artificially produced from randomly pro-
duced normal distribution values without referring to data

points in the source data set, and the number of data points
in the mimic data set can be set to any desired value, one
cannot find one-to-one data mapping between source data
and mimic data. We expect these results to be encourag-
ing reasons for the companies to release statistics of their
data for generation of mimic data sets; and both the research
community and the industrial partners to profit from the out-
comes of this study.

As future work, we consider applying various other
data analysis techniques such as clustering and association
rule mining for mimic data to evaluate the utility of the
proposed method. In addition, we will try to improve our
method by mimicking other characteristics of source data
(in addition to mean and standard deviation), such as out-
liers, skewness and kurtosis.

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant
number 17K00102.

References

[1] T. Menzies, R. Krishna, and D. Pryor, “The seacraft repository of
empirical software engineering data,” https://zenodo.org/
communities/seacraft, 2017.

[2] J. Desharnais, “Analyse statistique de la productivitie des projects
informatique a partie de la technique des point des function,” Mas-
ters Thesis University of Montreal, 1989.

[3] C.F. Kemerer, “An empirical validation of software cost estimation
models,” Communications of the ACM, vol.30, no.5, pp.416–429,
May 1987.

[4] A.J. Albrecht and J.E. Gaffney, “Software function, source lines of
code, and development effort prediction: a software science valida-
tion,” IEEE Trans. Softw. Eng., vol.SE-9, no.6, pp.639–648, 1983.

[5] B.W. Boehm, Software Engineering Economics, Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1981.

[6] P. Phannachitta, J. Keung, A. Monden, and K. Matsumoto, “A stabil-
ity assessment of solution adaptation techniques for analogy-based
software effort estimation,” Empirical Software Engineering, vol.22,
no.1, pp.474–504, Feb. 2017.

[7] G.E.P. Box and M.E. Muller, “A note on the generation of random
normal deviates,” Annals of Mathematical Statistics, vol.29, no.2,
pp.610–611, 1958.

[8] M. Gan, K. Sasaki, A. Monden, and Z. Yucel, “Generation of mimic
software project data sets for software engineering research,” QuA-
SoQ 2018, p.34, 2018.

[9] M. Azzeh, “A replicated assessment and comparison of adaptation
techniques for analogy-based effort estimation,” Empirical Software
Engineering, vol.17, no.1-2, pp.90–127, 2012.

[10] E. Kocaguneli, T. Menzies, and J. Keung, “On the value of en-
semble effort estimation,” IEEE Trans. Softw. Eng., vol.38, no.6,
pp.1403–1416, Nov. 2012.

[11] Software Reliability Enhancement Center, White paper on software
development data in 2018-2019, SEC Books, 2018.

[12] F. Peters and T. Menzies, “Privacy and utility for defect prediction:
Experiments with morph,” Proceedings of International Conference
on Software Engineering, ICSE, Piscataway, NJ, USA, pp.189–199,
IEEE Press, 2012.

[13] F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing privacy
and utility in cross-company defect prediction,” IEEE Trans. Softw.
Eng., vol.39, no.8, pp.1054–1068, Aug. 2013.

[14] B. Kitchenham and E. Mendes, “Why comparative effort prediction

http://dx.doi.org/10.1145/22899.22906
http://dx.doi.org/10.1109/tse.1983.235271
http://dx.doi.org/10.1007/s10664-016-9434-8
http://dx.doi.org/10.1214/aoms/1177706645
http://dx.doi.org/10.1007/s10664-011-9176-6
http://dx.doi.org/10.1109/tse.2011.111
http://dx.doi.org/10.1109/tse.2013.6
http://dx.doi.org/10.1145/1540438.1540444

GAN et al.: EMPIRICAL EVALUATION OF MIMIC SOFTWARE PROJECT DATA SETS FOR SOFTWARE EFFORT ESTIMATION
2103

studies may be invalid,” Proceedings of International Conference on
Predictor Models in Software Engineering, PROMISE, New York,
NY, USA, pp.4:1–4:5, ACM, 2009.

[15] Z. Yücel, “Implications of log-transformation on data statistics,”
https://yucelzeynep.github.io/pub/2019 10 appdx ieice gan.pdf,
2019.

[16] K. Maxwell and K. Maxwell, Applied statistics for software man-
agers, Prentice Hall PTR Englewood Cliffs, 2002.

[17] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki, “Robust regres-
sion for developing software estimation models,” Journal of Systems
and Software, vol.27, no.1, pp.3–16, 1994.

[18] H. Akaike, “A new look at the statistical model identification,” in
Selected Papers of Hirotugu Akaike, pp.215–222, Springer, 1974.

Maohua Gan is a master course student in
the Division of Electronic and Information Sys-
tems Engineering, Graduate School of Natural
Science and Technology, Okayama University.
He received the BE degree in software engineer-
ing from Northwestern Polytechnical University
in 2015. His research interests include software
measurement and analytics.

Zeynep Yücel is an assistant professor at
Okayama University, Japan. She obtained her
B.S. degree from Bogazici University, Istanbul,
Turkey, and her M.S. and Ph.D. degrees from
Bilkent University, Ankara, Turkey in 2005 and
2010, all in electrical engineering. She was a
postdoctoral researcher at ATR labs in Kyoto,
Japan for 5 years, before being awarded a JSPS
fellowship in 2016. Her research interests in-
clude robotics, signal processing, computer vi-
sion, and pattern recognition.

Akito Monden is a professor in the Grad-
uate School of Natural Science and Technology
at Okayama University, Japan. He received the
BE degree (1994) in electrical engineering from
Nagoya University, and the M.E. and D.E. de-
grees in information science from Nara Institute
of Science and Technology (NAIST) in 1996
and 1998, respectively. His research interests in-
clude software measurement and analytics, and
software security and protection. He is a mem-
ber of the IEEE, ACM, IEICE, IPSJ and JSSST.

Kentaro Sasaki is an engineer at a software
company in Japan. He received the BE degree
in Information Technology from Okayama Uni-
versity in 2016. His research interests include
empirical software engineering.

http://dx.doi.org/10.1145/1540438.1540444
http://dx.doi.org/10.1016/0164-1212(94)90110-4
http://dx.doi.org/10.1007/978-1-4612-1694-0_16

