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PAPER

Tensor Factor Analysis for Arbitrary Speaker Conversion

Daisuke SAITO†a), Nobuaki MINEMATSU†, Members, and Keikichi HIROSE†∗, Fellow

SUMMARY This paper describes a novel approach to flexible control
of speaker characteristics using tensor representation of multiple Gaussian
mixture models (GMM). In voice conversion studies, realization of conver-
sion from/to an arbitrary speaker’s voice is one of the important objectives.
For this purpose, eigenvoice conversion (EVC) based on an eigenvoice
GMM (EV-GMM) was proposed. In the EVC, a speaker space is con-
structed based on GMM supervectors which are high-dimensional vectors
derived by concatenating the mean vectors of each of the speaker GMMs.
In the speaker space, each speaker is represented by a small number of
weight parameters of eigen-supervectors. In this paper, we revisit con-
struction of the speaker space by introducing the tensor factor analysis of
training data set. In our approach, each speaker is represented as a matrix
of which the row and the column respectively correspond to the dimen-
sion of the mean vector and the Gaussian component. The speaker space
is derived by the tensor factor analysis of the set of the matrices. Our ap-
proach can solve an inherent problem of supervector representation, and it
improves the performance of voice conversion. In addition, in this paper,
effects of speaker adaptive training before factorization are also investi-
gated. Experimental results of one-to-many voice conversion demonstrate
the effectiveness of the proposed approach.
key words: voice conversion, Gaussian mixture models, eigenvoice, tensor
factor analysis, Tucker decomposition

1. Introduction

Voice conversion (VC), or speaker conversion is a technique
to partly transform an input utterance of a speaker to an-
other utterance that sounds like another speaker while its
linguistic content is preserved [1]. VC can be regarded as
a framework of modification between two feature spaces,
not limited to speaker spaces. Hence VC techniques can
apply to various kinds of applications, including the mod-
ification of speaker identity in Text-to-Speech (TTS) sys-
tems [2], speech enhancement [3], hand motion to speech
conversion [4], and so on. Statistical approaches have of-
ten been used for implementing the conversion from source
features to target ones [1], [2], [5], [6]. Among these ap-
proaches, GMM-based approaches have been widely used
in particular because GMMs have good properties of flexi-
bility and solid theoretical background.

To construct the conversion model, however, these
methods require a training corpus, which contains plenty of
utterances with the same linguistic content from both the
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source and target speakers. In addition, application of the
conversion model is limited to this specific pair of speak-
ers. Namely, flexible control of speaker characteristics for
VC framework is an important objective. For this purpose,
it is effective to utilize voices of other speakers as prior
knowledge. There have been several proposed approaches
which do not require a large parallel corpus but use other
non-parallel data. Mouchtaris et al. proposed an unsuper-
vised training method based on maximum likelihood con-
strained adaptation of the GMM trained with an existing
parallel data set of a different speaker pair [7]. Lee et al.
proposed another approach based on maximum a posteriori
(MAP) adaptation [8]. They are inspired by speaker adap-
tation techniques in speech recognition studies. Saito et
al. proposed a voice conversion framework based on noisy
channel model to effectively integratethe the speaker GMM
with the joint density GMM [9]. Non-parallel data can be
utilized through the speaker GMM. To use prior knowledge
from many other speakers more effectively, Toda et al. pro-
posed eigenvoice conversion (EVC) based on the eigenvoice
technique in speech recognition [11]. In the EVC, eigen-
voice GMM (EV-GMM) is trained with multiple parallel
data sets consisting of utterance pairs of a single speaker,
which is called the pivot speaker henceforth, and many pre-
stored speakers. Based on joint density models of the pivot
and the pre-stored speakers, the speaker GMMs of the pre-
stored speakers can be extracted.

From the help of the feature space of the pivot speaker,
Components of Gaussian in GMM are aligned. Hence a
speaker space can be constructed based on GMM supervec-
tors which are high-dimensional vectors derived by concate-
nating all the mean vectors of each of the speaker GMMs.
Similarly to speaker recognition studies [12], an arbitrary
speaker is represented as a vector of this speaker space.
Hence the joint density GMM of the pivot and the target
speaker is flexibly developed by estimating a small number
of weight parameters for the bases of the space. Inspired
by speaker recognition studies, Wu et al. also proposed a
voice conversion method utilizing mixture of factor analyz-
ers, where the factor analysis of GMM supervectors was em-
bedded in mean vectors of the joint density GMM [13]. This
work is free from a pivot speaker to construct the speaker
space, and aims for mitigating the problem of the sparse par-
allel data for the joint density model.

However, the representation of GMM supervector it-
self has an inherent problem that multiple factors of acoustic
variations are included in the same space. Namely, Gaus-
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sian component of GMM and the dimension of the mean
vector are treated interdependently, and the speaker space
becomes a high-dimensional vector space. In this paper,
for more tractable treatment of the VC framework, we pro-
pose a method to construct the speaker space based on ten-
sor factor analysis. In our approach, an arbitrary speaker
is not represented as a supervector, but a matrix whose row
and column respectively correspond to the dimension of the
mean vector and the component of GMM. Based on this
representation, the data set of the pre-stored speakers was
expressed as a third-order tensor, and the tensor factor anal-
ysis is introduced to obtain the speaker space. Since the
tensor analysis can treat multiple factors of variations prop-
erly [14], it will be expected to improve the performance
of VC. The approach was first proposed in [15]. This pa-
per provides detailed investigation for tensor factor analy-
sis in the proposed framework, and it provides generalized
viewpoints for eigenvoice-based approaches. In addition, it
also introduces a new strategy for speaker adaptive training
which keeps orthogonalities of multiple factors. Although
we tackle the task of one-to-many VC in this paper, our pro-
posed method can also apply to many-to-one VC, or tasks of
speaker recognition. Because our approach mainly focuses
on the representation of the speaker space, there still exists
the flexibility to integrate our method with other effective
methods such as mixture of factor analyzers [13], or non-
parallel training for many-to-many EVC [17]. Although this
paper mainly focuses on GMM-based voice conversion, the
proposed factor analysis itself can be utilized for neural-
network-based approaches [18].

The remainder of this paper is organized as follows.
Section 2 describes the basic EVC approach. Then, our pro-
posed approach using the tensor factor analysis to construct
the speaker space is described in Sect. 3. Section 4 describes
a new strategy for speaker adaptive training to keep both the
performance and flexibility. In Sect. 5, experimental evalua-
tions are described. Finally, Sect. 6 concludes the paper.

2. Eigenvoice Conversion (EVC)

2.1 Eigenvoice GMM (EV-GMM)

In this section, one-to-many EVC [19] is described. Let
Xt = [x�t ,Δx�t ]� and Y(s)

t = [y(s)�
t ,Δy

(s)�
t ]� be D-

dimensional vectors of the pivot speaker and the s-th tar-
get speaker, respectively. They consist of D/2-dimensional
static and dynamic features. The notation (·)� denotes trans-
pose of a vector. The joint probability density of the pivot
and the target vectors is modeled by an EV-GMM as fol-
lows:

P(Xt,Y
(s)
t |λ(EV),w(s))

=

M∑
m=1

αmN([X�t ,Y
(s)�
t ]�;μ(Z)

m (w(s)),Σ(Z)
m ) , (1)

μ(Z)
m (w(s)) =

[
μ(X)

m

Bmw
(s)+b(0)

m

]
,Σ(Z)

m =

[
Σ

(XX)
m Σ

(XY)
m

Σ
(YX)
m Σ

(YY)
m

]
, (2)

where N(x;μ,Σ) denotes the normal distribution with a
mean vector μ and a covariance matrix Σ. λ(EV) denotes
model parameters of EV-GMM; αm, μ(X)

m , Bm, b(0)
m , and Σ(Z)

m .
The weight of the m-th component is denoted by αm, and the
number of mixture components is M. In EV-GMM, when
we use the S pre-stored speakers, the target mean vector μ(Y)

m

is represented as a linear combination of the bias vector b(0)
m

and the K representative vectors Bm =
[
b(1)

m , b
(2)
m , . . . , b

(K)
m

]
,

where K≤S − 1. In EV-GMM, the speaker individuality of
the target is controlled with the K-dimensional vector w(s).
Namely, a speaker space is constructed by K bases of su-
pervectors B = [B�1 , B

�
2 , . . . , B

�
m]� ∈ RDM×K and the bias

supervector b =
[
b(0)�

1 , b
(0)�
2 , . . . , b

(0)�
m

]� ∈ RDM×1.

2.2 Construction of the Speaker Space for EVC

When we employ EV-GMM based on principal component
analysis (PCA), to construct the speaker space for EVC,
first, a target independent joint density GMM (TI-GMM)
is trained using all of the multiple parallel data sets simulta-
neously. Let Zt = [X�t ,Y

�
t ]� be the joint vector of the pivot

and the target speakers, and Yt denotes a vector from a pre-
stored speaker. The probability of TI-GMM is as follows:

P(Zt |λ(T I)) =
M∑

m=1

αmN(Zt;μ
(Z)
m ,Σ

(Z)
m ), (3)

μ(Z)
m =

[
μ(X)

m

μ(Y)
m

]
,Σ(Z)

m =

[
Σ

(XX)
m Σ

(XY)
m

Σ
(YX)
m Σ

(YY)
m

]
, (4)

where λ(T I) denotes model parameters of TI-GMM; αm, μ(Z)
m ,

and Σ(Z)
m . In the case of one-to-many conversion, μ(Y)

m is in-
ferred from multiple target speakers.

Next, each target dependent GMM λ(s) (TD-GMM) is
trained by updating only the target mean vectors (μ(s)

m ) us-
ing each of the corresponding parallel data set. μ(Y)

m are used
for initial values for μ(s)

m . Because this process is achieved
before PCA-based factorization, w(s) is not included in the
parameter set λ(s). Note that αm, μ(X)

m , and Σ(Z)
m are not up-

dated. μ(s)
m is updated by EM algorithm as follows:

μ̂(s)
m = Y

(s)
m − Σ(YX)

m Σ(XX)−1
m

(
X

(s)
m − μ(X)

m

)
, (5)

X
(s)
m =

1

γ(s)
m

Ts∑
ts=1

γ(s)
m,ts

X(s)
ts
,Y

(s)
m =

1

γ(s)
m

Ts∑
ts=1

γ(s)
m,ts

Y(s)
ts

(6)

γ(s)
m,ts
=P
(
m|Z(s)

ts
, λ(s)
)
, γ(s)

m =

Ts∑
ts=1

γ(s)
m,ts
. (7)

In Eq. (5), the second term corresponds to the effect that μ(X)
m

is fixed among all the TD-GMMs. As a feature vector of
the speaker space, a supervector for each pre-stored target
speaker is constructed by concatenating the mean vectors of
the TD-GMM. The bias vector b and representative vectors
B are determined with PCA for all the supervectors of the
target speakers.
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2.3 Adaptation of EV-GMM

The EV-GMM is adapted for arbitrary speakers by estimat-
ing the weight vector w for given their speech samples based
on maximum likelihood criterion [10]. Let Y(tar) be a se-
quence of the target features. w is estimated as follows:

ŵ = argmax
w

∫
P(X,Y(tar)|λ(EV),w)dX. (8)

Using EM algorithm for the estimation, we can derive the
following updating equations for ŵ:

ŵ=

⎧⎪⎪⎨⎪⎪⎩
M∑

m=1

γ(tar)
m B�mΣ

(YY)−1

m Bm

⎫⎪⎪⎬⎪⎪⎭
−1 M∑

m=1

B�mΣ
(YY)−1

m Y
(tar)
m , (9)

γ(tar)
m =

T∑
t=1

γm,t,Y
(tar)
m =

T∑
t=1

γm,t(Y
(tar)
t − b(0)

m ), (10)

γm,t=P(m|Y(tar)
t , λ(EV),w). (11)

Equation (9) approximately means the calculation of the
projection weights of the target for each basis of the speaker
space. TI-GMM is used for the initialization for Eq. (11).
After adaptation, the step of parameter generation is the
same as [20].

3. Tensor Factor Analysis for the Speaker Space

3.1 Multilinear Algebra

In this section, construction of the speaker space based on
the tensor analysis is described. First, we introduce some of
the multilinear algebra related to our approach [21]. Tensor
is a multidimensional array which generalizes matrix repre-
sentation. Each dimension in tensor is called “mode.” Let
A ∈ RI1×I2×I3 be a third-order tensor. Generally, a high-
order tensor can be expressed as a matrix using a mode-n
flattening, which slices a tensor A along the mode-n axis
and splices the sliced matrices to one matrix A(n) as shown
in Fig. 1. Using this flattening operation, the product of a
tensor and a matrix is defined. The expression A = G ×n B
denotes the mode-n product of a tensor G with a matrix B,
and it is performed by using the mode-n flattened matrices
as A(n) = B · G(n).

One of the most important operations of matrix algebra
is Singular Value Decomposition (SVD). Since a matrix can
be viewed as a second-order tensor, SVD of matrix A can
be represented as the following mode-n products:

A = USV� = S ×1 U ×2 V. (12)

Expanding SVD in the case of second-order tensors to that
of high-order ones, we can derive the following decomposi-
tion:

A = S ×1 U1 ×2 U2 ×3 U3. (13)

When U1, U2, and U3 are orthogonal and the tensor S is

Fig. 1 Flattening of the (I1 × I2 × I3)-tensor A to the flattened matrices
A(1), A(2) and A(3).

dense, i.e. not diagonal as the case of second-order, the de-
composition of Eq. (13) is called high-order SVD, or Tucker
decomposition [21], [22]. Since PCA can be regarded as
SVD of a data matrix, the construction of the space can also
be expanded by Tucker decomposition when we introduce a
data tensor.

3.2 Proposed Construction of the Speaker Space

To construct the speaker space based on Tucker decomposi-
tion, each speaker in the pre-stored data sets is expressed
as an D × M matrix [23], where D is the dimension of
the feature, and M is the number of mixtures. First, the
bias matrix b′ =

[
b(0)

1 , b
(0)
2 , . . . , b

(0)
m

]
is subtracted from each

speaker matrix in advance. When we have the S pre-stored
speakers, the training data sets are represented as the tensor
M ∈ RD×M×S . Then,M can be represented as follows:

M = GD×M×S ×1 U(D) ×2 U(M) ×3 U(S ), (14)

where U(D) ∈ RD×D, U(M) ∈ RM×M , and U(S ) ∈ RS×S . These
matrices separately capture the effects from dimensions of
the mean vector, GMM components, and speaker indices,
respectively, and the tensor G puts them together. The ten-
sor G is called core tensor. Fixing the index of the third
mode (us = U(S )(n, :)), we obtain the matrix representing
the speaker n as

μ(n) = G ×1 U(D) ×2 U(M) ×3 us, (15)

For efficient representation, truncated matrices and tensor
are considered, namely G ∈ RKD×KM×KS , U(D) ∈RD×KD (KD ≤
D), U(M) ∈ RM×KM (KM ≤ M), and us ∈ R1×Ks . We call
this factorization as tensor factor analysis (TFA) henceforth.
There are several candidates for TFA. In the previous pa-
per [15], U(M) becomes the bases, and the others become
weights as similar to [23]. In this paper, the other factor-
izations are comprehensively investigated. Table 1 shows
several kinds of groupings investigated in the paper. Hence-
forth, for readability, several subscripts are omitted and
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Table 1 Kinds of tensor factor analysis.

method Base Weight Footprint # of parameters for adaptation
Eigenvoice (EV) G ×1 U(D) ×2 U(M) us DMKs Ks

truncated EV G ×1 U(D) ×2 U(M) us KDKM Ks Ks

TFA-mix U(M) G ×1 U(D) ×3 us MKM DKM

TFA-feat U(D) G ×2 U(M) ×3 us DKD MKD

TFA-bilinear U(D),U(M) G ×3 us DKD + MKM KDKM

some variables are repeatedly used.

3.2.1 Eigenvoice (EV)

When only us is regarded as a weight, bases of the factor-
ization are G ×1 U(D) ×2 U(M) ∈ RD×M×Ks . When D = KD

and M = KM , this factorization is identical to Eigenvoice
(EV). That is to say, Eigenvoice can be viewed as a spe-
cial case of the proposed factorization. In this factorization,
the number of parameters which should be estimated for a
new speaker is quite small, while the footprint of the stored
model is large.

3.2.2 Truncated EV

In order to reduce the footprint of EV-based adaptation, the
number of base vectors has been reduced. On the other
hand, in the case of TFA, different modes can be indepen-
dently truncated, i.e. the feature space and GMM compo-
nents. When the EV bases are truncated in advance by TFA,
the footprint of EV can be reduced to KDKMKS from DMKS

while the number of parameters for adaptation is kept.

3.2.3 TFA-Mix

When the truncation of mixture information is focused on,
U(M) is selected as the bases. Taking the bias matrix b′ into
account, we obtain the matrix μ for a new speaker as

μ =WU(M)� + b′, (16)

where W ∈ RD×KM is a weight matrix. Hence, in this factor-
ization, parameters to be estimated become a D×KM matrix,
while the footprint of the model is MKM .

In [23], the equation for adaptation is derived based
on minimum mean square error. On the other hand, in this
paper, for adaptation data Y(tar), we derive the following up-
dating equations based on maximum likelihood criterion:

vec(W) =

⎡⎢⎢⎢⎢⎢⎣
M∑

m=1

γ(tar)
m U�mUm ⊗ Σ(YY)−1

m

⎤⎥⎥⎥⎥⎥⎦
−1

vec(C), (17)

C =
T∑

t=1

M∑
m=1

γm,tΣ
(YY)−1

m (Y(tar)
t − b(0)

m )Um, (18)

Um = U(M)(m, :) ∈ R1×KM , (19)

where vec() is the vec-operator that stacks the columns of
a matrix into a vector. Compared with Eq. (9), Eq. (17) has
a similar form, but it estimates D × KM parameters rather

than K (or Ks) parameters in Eq. (9). This means that our
proposed method might be more flexible to adapt for the
data. We verify it by the experiments.

3.2.4 TFA-Feat

When the dimensionality reduction for acoustic features is
focused on, U(D) is selected as the bases. The matrix μ for a
new speaker is

μ = U(D)W + b′, (20)

where W ∈ RKD×M is a weight matrix. Similarly to Eq. (17),
the updating equations based on maximum likelihood crite-
rion are derived as

W(:,m) =
[
γ(tar)

m U(D)�Σ(YY)−1

m U(D)
]−1

cm, (21)

cm = U(D)�Σ(YY)−1

m Y
(tar)
m . (22)

In the case of dimensionality reduction for acoustic features,
weight column vectors wm = W(:,m) are independently in-
ferred. That is to say, this inference is sensitive to the occu-
pation count γ(tar)

m for the focused component m. Although
this property is not always effective, in particular, in the case
that the amount of adaptation data is limitted, this truncation
affects the footprint to be small.

3.2.5 TFA-Bilinear

Taking into both the effects from GMM components and
acoustic features, we obtain a bilinear form for represent-
ing a new speaker as follows:

μ = U(D)WU(M)� + b′, (23)

where W ∈ RKD×KM is a weight matrix. Compared with
Eigenvoice, although both the effects from GMM compo-
nents and acoustic features are included in Eq. (23), they can
be separately controlled by row and column of the weight
matrix. The updating equations based on maximum likeli-
hood criterion are derived as

vec(W) = E−1vec(C), (24)

C =
T∑

t=1

M∑
m=1

γm,tU(D)�Σ(YY)−1

m (Y(tar)
t − b(0)

m )Um, (25)

E =
M∑

m=1

γ(tar)
m U�mUm ⊗ U(D)�Σ(YY)−1

m U(D). (26)
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4. Speaker Adaptive Training before Factorization

This section describes a new strategy of speaker adap-
tive training (SAT) for arbitrary speaker conversion. SAT
was introduced for training a canonical speaker-independent
model [24]. The effectiveness of SAT in arbitrary speaker
conversion was shown in [16] and [25]. In SAT, shared
parameters in the canonical model are estimated by maxi-
mizing likelihood of all the models for individual pre-stored
speakers. Usually, mean vectors are factorized, and factor-
ized parameters are regarded as the shared parameters.

One of the largest effects of SAT is compacting vari-
ance. In the process of SAT for the joint density GMM, the
shared covariance matrix are calculated as the mean of the
covariance matrices, each of which corresponds to covari-
ance of a pair of speakers. Hence, shrinkage of the covari-
ance is expected. On the other hand, the shared parameters
obtained from factorization is not essential. On the contrary,
orthogonalities in the factorization are lost in the process of
SAT. Factorization based on orthogonal bases is convenient
to control the complexity of the models. To receive both the
merits of compact variance and orthogonal factorization, we
propose a SAT process before factorization of mean param-
eters.

The proposed process replaces the construction of TD-
GMMs in Sect. 2.2. Compared with Sect. 2.2, αm, μ(X)

m , and
Σ

(Z)
m is not fixed, but shared. Shared parameters in the canon-

ical model are estimated by maximizing likelihood of all the
models for individual pre-stored speakers:

λ̂(1 . . . S ) = argmax
λ

S∏
s=1

Ts∏
ts=1

P(Z(s)
ts
|λ(1 . . . S )), (27)

where Z(s)
ts
= [X�ts

,Y(s)�
ts

]�, and λ(1 . . . S ) denotes a set of all
the TD-GMMs. In SAT, the shared parameters of the canon-
ical model are estimated in a maximum likelihood manner.
To realize it, the following auxiliary function is derived:

Q
(
λ, λ̂
)
=

S∑
s=1

M∑
m=1

γ(s)
m log P

(
Z(s),m|λ̂(Ŵ s)

)
, (28)

γ(s)
m,ts
= P
(
m|Z(s)

ts
, λ(W s)

)
, γ(s)

m =

Ts∑
ts=1

γ(s)
m,ts
. (29)

As mentioned in [16], simultaneous update for all parame-
ters based on Eq. (28) is difficult because of their interdepen-
dency on each other. Hence, the following update scheme
is adopted. (1) Using the current shared parameters and
Eq. (29), γ(s)

m,ts
and γ(s)

m are calculated. (2) Using γ(s)
m,ts

, γ(s)
m and

the current shared parameters, each target dependent mean
vector μ(s)

m of the pre-stored speakers is updated. (3) Using
the results of the previous steps, the shared weight parame-
ters α̂m and μ(X)

m for GMM are updated. (4) The covariance

matrices Σ̂
(ZZ)
m are updated using the updated parameters in

the previous steps. (5) Step 1 to 4 are repeated until the num-
ber of repetition equals to the preset value. Note that each

step in the update scheme can monotonically increase the
likelihood of the adapted models for individual pre-stored
speakers.

In Step 2, Eq. (5) is used to update μ(s)
m . In Steps 3 and

4, the shared parameters are updated as follows:

μ(X)
m =

1∑S
s=1 γ

(s)
m

S∑
s=1

Ts∑
ts=1

γ(s)
m,ts

Xts (30)

α̂m=

∑S
s=1 γ

(s)
m∑M

m=1
∑S

s=1 γ
(s)
m

, (31)

Σ(ZZ)
m =

1∑S
s=1 γ

(s)
m

S∑
s=1

σm,s, (32)

σm,s=V
(s)
m +γ

(s)
m μ̂

(s)
m μ̂

(s)�
m −

(
μ̂(s)

m Z
(s)�
m +Z

(s)�
m μ̂(s)

m

)
, (33)

V
(s)
m =

T∑
ts=1

γ(s)
m,ts

Z(s)
ts

Z(s)�
ts
, (34)

μ̂(s)
m =

[
μ̂(X)

m

μ̂(s)
m

]
, (35)

Compared with the update equations in [16], Eqs. (31) to
(34) have the same forms. That is to say, updating the
shared parameters is carried out in the same manner as [16].
In Eqs. (32), (33) and (34), the shared covariance matrix
is calculated as the mean of the covariance matrices, each
of which corresponds to covariances of a pair of speakers.
Hence, it is expected that the proposed SAT protocol also
affects for compacting variations as well as SAT for EVC.
On the other hand, construction of the mean vectors is based
on Eq. (5). Hence, any factorization can be carried out in the
same manner as that in Sect. 2.2. Finally orthogonal proper-
ties of bases in the factorization are preserved theoretically.

5. Experimental Evaluation

5.1 Experimental Conditions

To evaluate the performance of our proposed method, one-
to-many voice conversion experiments were carried out.
We used one male speaker as the pivot speaker from ATR
Japanese speech database B-set [26], and 256 pre-stored
speakers including 127 male and 129 female speakers [27].
50 sentences were uttered from each pre-stored speaker,
which were included in one of nine subsets. The pivot
speaker uttered all of the nine subsets and an additional sub-
sets used for evaluation. In the evaluation, we selected new
10 speakers of 5 male and 5 female speakers, which were
not included in the pre-stored speakers. We used 1 to 32
utterances for adaptation, and other 21 utterances for evalu-
ation.

We used 24-dimensional mel-cepstrum vectors for
spectrum representation. Finally D=48 because both static
and dynamic features were included. These were derived by
STRAIGHT analysis [28]. The number of mixture compo-
nents (M) was fixed to 128. Aperiodic components, which
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Fig. 2 Mean of variances for target features; TI-GMM, EVSAT, and the
proposed protocol.

are features to construct STRAIGHT mixed excitation, were
not converted in this study, and they were parameterized
by 5-dimensional banded aperiodicity components (bap).
Prosodic features, the power coefficient and the fundamen-
tal frequency were converted in a simple manner that only
considers the mean and the standard deviation of the param-
eters. Global variance models were constructed for each test
speaker [20]. They were used only for subjective evalua-
tions.

We investigated the effectiveness of the proposed ten-
sor factor analysis in Table 1 on one-to-many VC. As objec-
tive evaluation, the conversion performance was evaluated
by using mel-cepstral distortion between the converted vec-
tors and the vectors of the targets.

5.2 Effectiveness of the Proposed Protocol for SAT

In this section, the effectiveness of the proposed protocol for
SAT was verified. Eigenvoice was used for factorization.
The number of bases was fixed to K = 255. We compared
diagonal components of the target covariance matrices Σ(YY)

m

of TI-GMM, EVC-based model after SAT [16], and the con-
structed model after the proposed SAT. Figure 2 shows the
mean of variances for target features in individual Gaussian
components of these methods. Values of diagonal compo-
nents of TI-GMM are relatively larger than those of EVSAT,
and the proposed protocol. Compared the proposed proto-
col with EV-based SAT, there is no significant differences
between values of diagonal components of them. This re-
sult shows the effects of the proposed method. In addition,
since the proposed approach is carried out before factoriza-
tion, orthogonality of the bases is guaranteed.

Figure 3 shows the results of conversion by three kinds
of adaptive training. Compared the proposed protocol with
EV-based SAT, achieved mel-cepstral distortions is not sig-
nificantly different. It can be said that the proposed protocol
effectively captures the essence of speaker adaptive training,
i.e. shrikage of variances of Gaussian components. Hence-
forth, the speaker space constructed by the proposed SAT

Fig. 3 Results of conversion by three kinds of adaptive training.

protocol was investigated.

5.3 Objective Evaluations

5.3.1 Eigenvoice vs. Truncated EV

By using TFA, the footprint of the Eigenvoice framework
can be reduced effectively. Figure 4 shows the average mel-
cepstral distortion as a function of data compression rate
in the truncated EV method. In the truncated EV method,
the hyperparameters KD, KM were varied before adapta-
tion, and the EV bases were reconstructed by tensor prod-
uct G ×1 U(D) ×2 U(M). In Fig. 4, each point corresponds to
each condition of truncation (KD,KM ,KS ). The data com-
pression rate is defined by KDKMKS /DMS . From Fig. 4 (a),
if the compression rate is ignored, Eigenvoice has achieved
best performance, when the number of adaptation utterances
is N = 2. If the low data compression rate is required,
the original Eigenvoice could not achive the better perfor-
mance without degradation. On the other hand, the pro-
posed framework of truncated EV can flexibly control the
data compression rate while keeping the conversion perfor-
mance. In addition, from Fig. 4 (b), when the number of
adaptation utterances is larger, the proposed framework bal-
ances the conversion performance and the data compression.

5.3.2 Feature Space Truncation in TFA-Feat

Figure 5 shows the result of TFA-feat method. The mel-
cepstral distortion is shown as a function of the number of
column vectors in U(D)(= KD). From Fig. 5, even when
bases matrix U(D) is tructaed to KD = 25, the performance
of conversion was maintained. This effect might be caused
by concatenation of static and dynamic features. In GMM-
based VC, dynamic features are used to capture interframe
correlations. On the other hand, they would not strongly
depend on speakers. The results of truncation in TFA-feat
would reflect these properties.
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Fig. 4 Data compression effects of truncated EV.

Fig. 5 Effect of feature space truncation in TFA-feat. The mel cepstral
distortion is shown as a function of the number of column vectors in U(D).

5.3.3 Mixture Truncation in TFA-Mix

Figure 6 shows the results of TFA-mix method. The mel-
cepstral distortion is shown as a function of the number of
column vectors in U(M)(= KM). From Fig. 6, reducing the
bases matrix U(M) improves the conversion performance.
Although slight reduction of the bases makes worse results

Fig. 6 Effect of feature space truncation in TFA-mix. The mel cepstral
distortion is shown as a function of the number of column vectors in U(M).

of conversion, the proposed TFA-mix would effectively cap-
ture the essence of the speaker space.

5.3.4 Bilinear Adaptation

Figure 7 shows the results of TFA-bilinear method. The
mel-cepstral distortions are depicted as heatmaps in Fig. 7.
The indices in the figure correspond to the number of bases
for mixtures (KM) and that for features (KD), respectively.
From Fig. 7, TFA-bilnear involves both properties of TFA-
mix and TFA-feat. Degradation caused by slight reduction
of U(M) is observed around KM ∈ [100, 120]. Truncation
of U(D) in N = 16 is more sensitive than that in N = 2
when KD ≤ 25. Finally, optimal parameters (KD,KM) were
(30,20) for N = 2 and (48,20) for N = 16, respectively.

5.3.5 Comprehensive Comparison

Figure 8 shows the result of average mel-cepstral for the test
data as a function of the number of adaptation utterances.
For each case, the optimal numbers of the bases parameters
(K∗) were selected. Table 2 shows the optimal numbers for
each of the methods. Compared with Eigenvoice, the perfor-
mances of the TFA approaches are better when the number
of adaptation utterances is larger than 8. This means that
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Table 2 The optimal numbers of the bases parameters for each method.

# of utterances 1 2 4 8 16 32
Eigenvoice (K) 200 255 255 255 255 255
Truncated EV [KD = 25,KM = 20] (Ks) 100 200 255 255 255 255
TFA-mix (KM) 10 20 20 30 30 128
TFA-feat (KD) 15 20 35 40 45 48
TFA-bilinear (KD,KM) (20,20) (30,20) (48,20) (48,20) (48,20) (48,128)

Fig. 7 Results of objective evaluations for TFA-bilinear.

Fig. 8 Results of objective evaluations by average mel-cepstral distortion
(MCD).

the TFA-based approaches correctly are scaled out for the
increase of the number of adaptation data. Comparing TFA-
mix with TFA-bilinear, we can observe that they achieved

the similar performances to each other. On the other hand,
TFA-feat is much more sensitive to the variation of the num-
ber of adaptation utterances. This would mean that the base
matrix U(M) is more important than the base matrix U(D)

because it captures the correlation of Gaussian components
in GMM. Compared with Eigenvoice, truncated EV also
achieved the similar performance to that of original Eigen-
voice. Note that the data compression rate of the truncated
EV in this comparison is about 3.2% to 8.1%. It can be
said that the proposed scheme balances the conversion per-
formance and the data compression. When the number of
adaptation utterances is small such as 1 or 2, Eigenvoice
achieved better performance. This is caused by the large
footprint as the prior knowledge (DMKs ∼ 1.5 × 106). On
the other hand, in spite of the small footprint of the mod-
els (MKM ∼ 1200, DKD ∼ 700), TFA approaches make
good results. This means that, some important knowledge
could be captured by U(M) and U(D). It might be said that
our proposed approach effectively captures the essence of
the speaker space with the small footprint.

5.4 Subjective Evaluations

5.4.1 Overview

Listening tests were carried out to evaluate the naturalness
of converted speech. To evaluate the naturalness, a paired
comparison was carried out. In this test, pairs of two differ-
ent types of the converted samples were presented to sub-
jects, and then each subject judged which sample sounded
more natural. Each paired test was conducted with at least
25 subjects, which they were collected by a crowdsource
system. The number of sample pairs evaluated by each sub-
ject was 10 in each test. As the samples for the subjective
evaluation, the converted utterances of two target speakers
(one male and one female) were selected. They were se-
lected based on the results of objective evaluations.

5.4.2 Eigenvoice vs. Truncated EV

Figure 9 shows the results of comparison between Eigen-
voice and truncated EV. From Fig. 9, it can be observed
that truncated EV achieved comparable performances to that
achieved by Eigenvoice. In addition, the truncated EV re-
duced the footprint to 8.1% of the original Eigenvoice. It
can be said that TFA effectively captures the essence of the
model.
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Fig. 9 Results of subjective evaluations between Eigenvoice and trun-
cated EV. The number N means the number of adaptation utterances.

Fig. 10 Results of subjective evaluations between TFA-mix and TFA-
bilinear. The number N means the number of adaptation utterances.

5.4.3 TFA-Mix vs. TFA-Bilinear

Figure 10 shows the results of comparison between TFA-
mix and TFA-bilinear. Eigenvoice and truncated EV. From
Fig. 10, TFA-mix and TFA-bilinear were comparable to
each other. According to the results, the base matrix U(M)

would be basically a dominant factor for adaptation. Al-
though the achieved performance by TFA-bilinear was com-
parable to that by TFA-mix, TFA-blinear has possibility to
reduce the number of adaptation parameters from DKM in
TFA-mix to KDKM by considering the base matrix U(D).

5.4.4 Comprehensive Comparison

Following the previous subjective evaluations, we con-
ducted a comprehensive comparison among TFA ap-

Fig. 11 Results of subjective evaluations.

proaches. Although the observed differences are small in
Figs. 9 and 10, one method were selected from each fla-
vor, i.e. an EV flavor and a TFA-mix flavor. Based on
Fig. 9, original EVC was selected as an Eigenvoice-flavored
method. From Fig. 10, TFA-mix was selected as a TFA-mix-
flavored method except for the condition of ‘N = 16 and M
to F’. TFA-bilinear was selected for that condition. In addi-
tion to them, TFA-feat was added as the third competitor.

Figure 11 shows the results. When using two adapta-
tion utterances (Fig. 11 (a)), “EVC” achieved the best per-
formances both in male-to-male and male-to-female con-
version. This would be caused by the effect of the larger
footprint of EVC. Under this condition, “TFA-mix” outper-
formed “TFA-feat”. This might be caused by the limited
amount of occupation counts. When using 16 adaptation ut-
terances (Fig. 11 (b)), performances of TFA-mix and TFA-
feat were totally improved from N = 2. In male-to-male
conversion, TFA-feat achieved a comparable performance
to that of EVC, while the footprint of the methods is quite
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smaller. Both the objective and subjective evaluations sug-
gest that our proposed method works effectively with the
much smaller footprint than that of original EVC.

6. Conclusions

We have proposed a new method for speaker adaptation in
voice conversion which represents the pre-stored data set as
the tensor representation. In our approach, each speaker is
represented as a matrix whose row and vector respectively
correspond to the Gaussian component and the dimension of
the mean vector. The treatment of the data set as the tensor
representation enables the conversion framework to model
the speaker characteristics more flexibly. For further im-
provements of the conversion performance, first, integration
of our method with other effective methods such as non-
parallel training, or mixture of factor analyzers should be
verified. The utilization of the core tensor G without in-
crease of footprints is another further work. We also plan
to apply the proposed scheme to neural-network-based ap-
proaches.
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