
800
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

PAPER

Model Checking of Real-Time Properties for Embedded Assembly
Program Using Real-Time Temporal Logic RTCTL and Its
Application to Real Microcontroller Software

Yajun WU†, Nonmember and Satoshi YAMANE†a), Member

SUMMARY For embedded systems, verifying both real-time proper-
ties and logical validity are important. The embedded system is not only re-
quired to the accurate operation but also required to strictly real-time prop-
erties. To verify real-time properties is a key problem in model checking.
In order to verify real-time properties of assembly program, we develop
the simulator to propose the model checking method for verifying assembly
programs. Simultaneously, we propose a timed Kripke structure and imple-
ment the simulator of the robot’s processor to be verified. We propose the
timed Kripke structure including the execution time which extends Kripke
structure. For the input assembly program, the simulator generates timed
Kripke structure by dynamic program analysis. Also, we implement model
checker after generating timed Kripke structure in order to verify whether
timed Kripke structure satisfies RTCTL formulas. Finally, to evaluate a
proposed method, we conduct experiments with the implementation of the
verification system. To solve the real problem, we have experimented with
real microcontroller software.
key words: RTCTL, model checking, dynamic program analysis, timed
Kripke structure, embedded system

1. Introduction

In recent years, embedded systems have been widely used in
autonomous car, national defense, medical equipment and
IoT (Internet of Things). It is important to verify real-time
properties for embedded systems, not only the logical valid-
ity. The real-time property of embedded system has to be
tested extensively and validated because errors may lead to
severe or even fatal events, as in the brake instructions of
the autonomous car to the execution time are very important
and must be executed within the deadline. Therefore, to ver-
ify the real-time properties is the key problem for the design
of embedded real-time systems.

Recently software model checking [1] and program
verification [2] have received widespread attention. S.
Yamane and others have developed a verification system [3]
for verifying embedded assembly programs. They gener-
ate Kripke structure by simulator (dynamic program analy-
sis) and verifies stack overflow by CTL (Computational Tree
Logic) model checking.

This paper mainly focuses on proposed the algorithm

Manuscript received June 20, 2019.
Manuscript revised September 11, 2019.
Manuscript publicized January 6, 2020.
†The authors are with Graduate School of Natural Science

and Technology, Kanazawa University, Kanazawa-shi, 920–1192
Japan.

a) E-mail: syamane@is.t.kanazawa-u.ac.jp
DOI: 10.1587/transinf.2019EDP7172

of verifying real-time properties, further the implementation
of RTCTL model checker and experiments on real micro-
controller software. To verify real-time properties of em-
bedded systems, we verify assembly program rather than c
program. First of all, interrupt processing can be performed
for each one instruction. Second, the interface part with
the hardware has the assembly description part. Then, it
is possible to compute the execution time accurately. In this
paper, we can verify real-time properties by proposing the
timed Kripke structure. We develop the simulator to gen-
erate timed Kripke structure from assembly program and
implement the simulator of the robot’s processor to be ver-
ified. In our approach, to verify the real-time property of
assembly program, we propose the timed Kripke structure
which extends Kripke structure by includes the execution
time. The property to be verified is described by RTCTL.
We will describe model checking using RTCTL (Real-Time
CTL) in order to verify whether the timed Kripke struc-
ture satisfies real-time properties. In this paper, we propose
RTCTL model checking algorithm after generating timed
Kripke structure. Also, we implement a model checker in
order to verify whether the timed Kripke structure satisfies
real-time properties. In our study, to evaluate our proposed
method, we conducted experiments with the implementa-
tion of the verification system and we have experimented
with real microcontroller software. To our knowledge, the
model checker that developed this research is the first in the
world to verify the real-time property of assembly program.

The paper is organized as follows: Section 2 provides
related works about model checking. Section 3 provides a
computational model of embedded assembly program used
in this paper. Section 4 provides some details of the used
temporal logic of Real-Time temporal logic (RTCTL), while
Sect. 5 describes the proposed verification system based on
the concepts introduced in the previous sections. Finally,
Sect. 6 presents experiments with the implementation of
the verification system to evaluate a proposed method, and
Sect. 7 presents the conclusion of this work, pointing to the
next step toward a better description of the model checker
while generating timed Kripke structure in order to verify
whether timed Kripke structure satisfies RTCTL formulas.

2. Related Works

B. Schlich studied model checking by using static program

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

WU and YAMANE: MODEL CHECKING OF REAL-TIME PROPERTIES FOR EMBEDDED ASSEMBLY PROGRAM USING REAL-TIME TEMPORAL LOGIC RTCTL
801

analysis to verify assembly program, but real-time proper-
ties are not verified. B. Schlich can verify the hardware
dependency problem by using the assembly program [4].
Jumpei Kobashi and others [5] proposed model checking the
assembly code using SMT-Based BMC (Bounded Model
Checking). And they proposed the parser and model con-
verter for the assembly code. But the same with B. Schlich
the real-time properties are not verified. Matthew Kuo and
others [6] efficiently compute the WCRT using reachabil-
ity to analysis the assembly code. However, the model is
different from our study, Matthew Kuo and others generate
TCCFG (Timed Concurrent Control Flow Graph) by static
analysis from each assembly code, but our study proposes
the timed Kripke structure and the purpose of our study is
to verify the real-time property of computing the execution
time of each assembly code. Matthew Kuo and others have
not performed the model checking.

E. A. Emerson and others proposed RTCTL, and also
developed the model checking algorithm for RTCTL [7].
But our semantics of RTCTL is quite different from E. A.
Emerson’s semantics. In E. A. Emerson’s semantics, all
transitions happen in one time unit. On the other hand, in
our study, the execution time of each assembly instruction
is assigned to each state. E. A. Emerson points out that the
minor extension of the method can be applied to the Kripke
structure in the case of nonnegative inter transition times,
but differs from this paper in the following points.

• We show the concrete algorithm of expansion.
• We have implemented the algorithm.
• We have experimented with real microcontroller soft-

ware.

R. Alur and D. L. Dill studied timed automata [8].
Timed automaton is an extension of a finite state automa-
ton and is a model that describes the system by both discrete
event and continuous time-lapse according to state transi-
tions. On the other hand, in this study, we develop discrete-
time timed Kripke structure for the execution time of assem-
bly program. Our study is different from timed automata.
The proposed structure deals with discrete time in our study,
and we combine the execution time of each instruction of the
assembly program to each state. Therefore, it is possible to
verify the real-time property by model checking. Bouyer, P
and others [9] have surveyed model checking the real-time
systems by using time automaton. Previous studies using
automata guarantees safety through the reachability analy-
sis of real-time systems, but does not aim to verify the real-
time property. And the benefit of our study for the discrete
real-time system is that to check whether the system can be
satisfies the real-time property. In our study, we proposed
the discrete model of timed Kripke structure can be gener-
ated using dynamic analysis and the execution time of each
assembly instruction code can be accurately computed by
the dynamic analysis.

Mahshid Helali Moghadam and others [10] proposed
WCRT (worst-case response time) analysis using simula-
tion, but the experiment is not performed. On the ohter hand,

it is different than computing the execution time of C code
or assembly code. In our study, the execution time can be
computed for each single assembly code by using dynamic
analysis. The study of Mahshid Helali Moghadam and oth-
ers is different from our study, where their study is estimated
of the execution scenarios leading to the WCRT using rein-
forcement learning, but model checking is not performed.

Béchennec and others studied real-time model check-
ing by using the model checker UPPAAL to compute the
WCET, and analyze binary program based on an automatic
method to compute a CFG [11]. Computing the WCET is
reduced to a reachability problem, but in our study, we can
verify various properties. On the other hand, computing the
WCET does not assume interrupt handling, our study con-
siders the interrupt handling.

S. Yamane and others have developed a verification
system. The simulator generates Kripke structure, and
model checker verifies CTL formulas. The simulator in-
cludes clock cycles while generating models, but real-time
properties and execution time are not taken into considera-
tion. S. Yamane and others have developed abstraction tech-
niques by using DND (Delayed NonDeterminism) of the bit
level. Our proposed method is quite different from [3] as fol-
lows: (1) Generating timed Kripke structure including exe-
cution time. (2) Using RTCTL formulas to verify real-time
properties. (3) Proposing RTCTL model checking algorithm
after generating timed Kripke structure.

We improve the simulator developed by S. Yamane and
others. The simulator computes execution time and gener-
ates timed Kripke structure by the exhaustive breadth-first
search of assembly program with dynamic program analy-
sis. We implement the simulator based on the robot’s pro-
cessor to be verified and we implement to check the real-
time property by RTCTL model checking.

3. Computational Model of Embedded Assembly Pro-
gram

Kripke structure is often used in order to exhaustively search
the state space of the model expressing the system when
model checking is performed.

In our study, as a computation model, we define a
timed Kripke structure which extends Kripke structure [12]
by time function. This is different from E. A. Emerson’s
model.

Definition 1 (Timed Kripke structure): Timed Kripke struc-
ture is M = (S, S0, R, L, TM).

(1) A set of states S
(2) A set of initial states S0 ⊆ S
(3) A transition relation R ⊆ S × S
(4) A labelling function L: S → 2AP. L is a function

which assigns to each state a set of atomic propositions. AP
is atomic proposition.

(5) A time function TM: S→ N. TM is a function that
assigns the execution time of each instruction to each state.
Here N is any natural number.

802
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

Fig. 1 An example of timed Kripke structure

Fig. 2 An example of timed Kripke structure of assembly code

By adding the time function, it becomes possible to
handle the execution time when modeling the assembly pro-
gram. In order to compute accurate execution time, which
enables verification of real-time property, it is not targeted
for C program but for assembly program. First of all, inter-
rupt processing can be performed for each one instruction.
Second, the interface part with the hardware has the assem-
bly description part. Then, it is possible to compute the ex-
ecution time accurately. For example, the robot needs strict
real-time properties between the sensor and the microcom-
puter. For C program, since the value of the sensor is written
to the register of the microcomputer in real time, it is diffi-
cult to verify the real time property of the value of the sensor
is written to the register. If it is an assembly program it can
be accurately calculated every instruction. Figure 1 shows
a typical microcontroller C program that identify black and
white by sensor. Figure 2 shows an assembly program cor-
responding to the C program. The program is one of the
programs used in the case study described in Sect. 6.

The C program in Fig. 1 that acquires values from the

Fig. 3 A state of timed Kripke structure

sensor. When converting the program into an assembly pro-
gram, it becomes an assembly program in Fig. 1. From the
value of the register of the microcontroller, in order to verify
whether or not the value of the sensor has been acquired in
real time, it can not be verified with C program, but it can
be verified with assembly program. It is possible to com-
pute accurate execution time from the number of execution
states where there is the number of execution states for each
assembly instruction. For example, PUSH.L ER6 execution
states is 8.

Then, the assembly program generates a timed Kripke
structure as shown in Fig. 2 and a state of timed Kripke
structure as shown in Fig. 3. At the top of right is the timed
Kripke structure of the initial state in Fig. 2. Then the first
instruction PUSH.L ER6 generates as a state, and the timed
Kripke structure is updated.

4. RTCTL

In our study, RTCTL model checking inputs verification
properties with real-time temporal logic RTCTL and per-
forms model checking on timed Kripke structure generated
by the simulator.

RTCTL (Real-Time Computational Tree Logic) is an
extension of Computational Tree Logic (CTL), it enables
inference about the time-critical accuracy of the program.
Since RTCTL is an extension of CTL, the path is branched
like a tree structure like CTL, and properties related to mul-
tiple paths can be described. The RTCTL formulas are de-
scribed from temporal operators, path quantifiers, logical
operators and a time constraint k. Temporal operators and
path quantifiers are as follows.

• Temporal operator

– Xp is mean that p holds at the next state. (Next
state)

– Fp is mean that p eventually holds. (In the future
state)

– Gp is mean that p holds on the entire subsequent
path. (Globally)

– pUq is mean that q holds at the current or a future
state, and p has to hold until that state. (Until)

WU and YAMANE: MODEL CHECKING OF REAL-TIME PROPERTIES FOR EMBEDDED ASSEMBLY PROGRAM USING REAL-TIME TEMPORAL LOGIC RTCTL
803

• Path quantifier

– Ap is mean that p holds on all paths starting from
the current state.

– Ep is mean that there exists at least one path start-
ing from the current state where p holds.

For model checking of real-time properties, we de-
fine Real-Time temporal logic (RTCTL). We define RTCTL
based on that developed by E. A. Emerson [7].

Definition 2 (Syntax of RTCTL): Syntax of RTCTL for-
mulas is defined as follows:

(1) Each atomic proposition AP is a RTCTL formula.
(2) If p, q are RTCTL formulas, p ∧ q and ¬p are

RTCTL formulas.
(3) If p, q are RTCTL formulas, E(p U q), A(p U q) and

EXp are RTCTL formulas.
(4) If p, q are RTCTL formulas and k is any natural

number for execution time, E(p U≤k q) and A(p U≤k q) are
RTCTL formulas.

Some other RTCTL formulas are defined as follows:
AF≤k q = A(true U≤k q) EF≤k q = E(true U≤k q)
AG≤k p = ¬EF≤k¬p EG≤k p = ¬AF≤k¬p

We propose the semantics of RTCTL as follows:

Definition 3 (Semantics of RTCTL): In the semantics of
E(p U≤k q) and A(p U≤k q) is defined over timed Kripke
structure M = (S, S0, R, L, TM).

(1) E(p U≤k q)
For a state sequence s0, s1, . . ., s j, . . ., si, . . . in M, ∃i

0 ≤ i, si |= q and
∑i
α=0TM(sα) ≤ k and ∀ j 0 ≤ j < i, s j |= p.

(2) A(p U≤k q)
For all state sequence s0, s1, . . ., s j, . . ., si, . . . in M, ∃i

0 ≤ i, si |= q and
∑i
α=0 TM(sα) ≤ k and ∀ j 0 ≤ j < i, s j |= p.

It is different from E. A. Emerson and others that the
constraint time k is a fixed value, every transition takes one
unit time for execution. But our study generates a state for
each instruction in the assembly program and not only con-
verts easily unit time to execution time for each state. It is
necessary to concretize the execution time of each state in
order to verify the real-time property by backward.

The challenge of our study to verify real-time proper-
ties accurately computing the execution time of each state.
Therefore, our study uses dynamic program analysis to gen-
erate a timed Kripke structure that includes accurate execu-
tion time. We show our proposed algorithm in Sect. 5. It is
different from E. A. Emerson and others that the execution
time is computed backward in the algorithm and it is veri-
fied whether the time constraint is satisfied. The point that
verification stops when time constraint k becomes less than
0 during verification is also different.

5. Verification System

The verification system is shown in Fig. 4.
First, we propose simulation and verification algorithm

Fig. 4 Verification system

Algorithm 1 Algorithm of simulation and verification sys-
tem

1 f(k) // Property(RTCTL formula)
2 S := {s0} // set of initial state
3 TM := ∅ // set of states time function
4 time(s0) //execution time of state
5 funtion Main
6 while !end flag do
7 s← generated new state ∈ S
8 if decidable interrupt exist
9 INTERRUPTHANDLING(s) // generate state
10 else
11 EXECUTEINSTRUCTION(s) // generate state
12 end if
13 end while
14 ModelCheck(f(k)) //perform model checking
15 end function
16
17 function INTERRUPTHANDLING(s)
18 for all i ∈ Interrupts do
19 if i is interruptible then
20 PCi = VectorTable[i] // get vector address
21 s’.PC = PCi // set PCi to PC of s’
22 EXECUTEINSTRUCTION(s’) // generate state
23 GlobalMaskBits′ ← true //mask s’
24 InterruptFlags′ ← false // clear flag of s’
25
26 function EXECUTEINSTRUCTION(s)
27 if s is the last state
28 then end flag← true
29 else
30 operation← memory[s.PC] // get operation accroding to PC
31 s’← execute(s, operation) // generate a new state
32 ADDNEWSTATE (s, s’)
33 end function
34
35 function ADDNEWSTATE(s, s’)
36 S := S ∪ {s’} // add new state to S
37 R := R ∪ {(s, s’)} // add new transition from s to s’
38 TM(s’):= TM(s’) ∪ {time(s’)} // add execution time of s’ to TM(s’)
39 end function

as shown in Algorithm 1. Algorithm 1 is defined based on
the verification algorithm of S. Yamane and others [3]. The
difference is as follows.

• The model checking is performed after generating the
timed Kripke structure of simulator.

• Using RTCTL formulas to perform model checking of
real-time properties.

The model checking algorithm of RTCTL formulas
(e.g. E(p U≤k q)) after generating the timed Kripke struc-

804
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

ture is defined in Algorithm 2. In general, as timed Kripke
structure has finite states, our approach is effective. But gen-
eration of timed Kripke structure does not stop for infinite
state. It can not be verified in the infinite state. The verifi-
cation system inputs assembly program. We generate states
for the verification target and output a timed Kripke struc-
ture by the simulator. Simultaneously, model checking is
performed by inputting RTCTL formula and timed Kripke
structure.

5.1 Simulator

We extend the simulator developed by S. Yamane and oth-
ers [3]. The simulator computes execution time and gener-
ates timed Kripke structure by the exhaustive breadth-first
search of an assembly program with dynamic program anal-
ysis. The simulator parses program (assembly program),
and stores each one in memory, and simulates it.

• First, if the current state is the last state, the end flag is
set to true.

• And if it is not the last state, the simulator can not exe-
cute interrupt processing when GlobalMaskBit is true.
Interrupt Flag becomes true when interrupt processing
occurs.

• When an interrupt occurs, interrupt processing is
started, and the program counter (PC) at the top of the
interrupt processing is obtained from the VectorTable.

• And an instruction is ececuted. Then the Global-
MaskBit is set to true and the Interrupt Flag is set to
false.

• If there is no interrupt processing, execute the instruc-
tion as it is. When executing an instruction, if the gen-
erated state is the last state, end flag is set to true.

The feature of our study is that the execution time of
each instruction can be computed, and the timed Kripke
structure is automatically generated considering the execu-
tion time. The state explosion is one of the challenges of
model checking. In our study number of states can be re-
duced by using undefined values based on DND (Delayed
NonDeterminism) proposed by B. Schlich and others [4].

DND processes non-deterministic values as they are
(eg. External environment input values) or, if they can not
do so, concretize them with fewer branches. The undefined
values are used in our study will only concretize the neces-
sary bits when concretizing. Unnecessary bits are abstracted
as symbols, and branches can be greatly reduced. The occur-
rence of branching also occurs when concretizing undefined
values. When register initialization or an input value from
the external environment and so on does not know which
value is 0 or 1 for a bit.

On the other hand, when it is necessary to calculate an
abstracted value using undefined values (such as addition
and subtraction) and the branching occurs when concretiz-
ing abstracted value. For example (Fig. 5), in the initial state
of CCR (Condition code register indicates the internal state
of the CPU), only the interrupt mask bit is 1 and the remain-

Fig. 5 The initial state of CCR

ing 7 bits are undefined. Therefore, there are 128 patterns
if the undefined values are not used, but there is only 1 pat-
tern if the undefined values are used. The occurrence of an
interrupt is also one of the causes of branching.

Next, the main function (simulator) of Algorithm 1 is
explained as follows.

(1) First, we determine whether the interrupt handling
is present (line 9). When the executable interrupt handling
exists, interrupt handling is executed (line 10). After that,
when interrupt handling is executed, the state is generated
(line 23).

(2) Next, if the executable interrupt handling does not
exist, the instruction is executed, then a state is generated
(line 12).

(3) Then RTCTL model checker is performed after all
the states are generated (line 16).

5.2 RTCTL Model Checking

We describe the RTCTL model checking procedures in Al-
gorithm 2 as the follows:

• First, we verify from the subformula f of length 1 to the
length of the RTCTL formula f0. Subformula p ∧ q, ¬
p and EX p is the same as E. A. Emerson [7], but A(p
U≤k q) and E(p U≤k q) are different.

• Then, for example, function ModelCheck E(p U≤k

q)(p, q, k, f(k)). The simulator generates last state s
that satisfies q, add it to S and f(k) is added in L(s).
Then we initialize N and H.

• Until T is empty, we select state s from T and remove
it from T at the same time. Then we update N with H.

• Next, for all state t such that satisfies R(t, s) (line 65),
R(t, s) means state s with transition relation source state
t. Then, in case of p added in L(t) and f(k) added in
L(t), time constraint is satisfied (line 66). After that H
is updated by calculating the execution time of N and
state s, and update N (line 67). Next, we add state t to
S (line 69) and f(H) added in L(t) (line 68).

• When the time constraint is not satisfied but S is not
empty (line 70), it still another path which has not been
checked. After that acquire H from the added label f(H)
(line 72).

• Then R(t, s) is empty and S is not empty (line 76). It
also still has another path which has not been checked.

• Otherwise, there is no transition from source state s
(line 80) and S is empty. Therefore, H is updated by

WU and YAMANE: MODEL CHECKING OF REAL-TIME PROPERTIES FOR EMBEDDED ASSEMBLY PROGRAM USING REAL-TIME TEMPORAL LOGIC RTCTL
805

Algorithm 2 Algorithm of RTCTL Model Checking
1 p, q // Formula
2 f(k) // Property(RTCTL formula)
3 S := {s0} // set of initial state
4 R := ∅ // set of relations between states
5 TM := ∅ // set of states time function
6 function ModelCheck(f(k))
7 N := k H := k // initialize N and H
8 for i := 1 to length(f0) do begin
9 for each subformula f of f0 of length i do begin
10 case struture of f is of the form
11 p ∧ q : for each s ∈ S do
12 if p ∈ L(s) and q ∈ L(s) then add p ∧ q to L(s)
13 ¬ p :for each s ∈ S do
14 if p � L(s) then add ¬p to L(s)
15 EX p : for each s ∈ S do
16 if p ∈ L(w) for some R-successor w of s then add EX p to
L(s)
17 A(p U≤k q) : ModelCheck A(p U≤k q)(p, q, k, A(p U≤k q))
18 E(p U≤k q) : ModelCheck E(p U≤k q)(p, q, k, E(p U≤k q))
19 end case
20 end for
21 end for
22 if f0 ∈ L(s) for some s ∈ S and f(H) ∈ L(s0) and N ≥ 0
23 then Output(S, R, true)
24 else Output(S, R, false)
25 end if
26 function ModelCheck A(p U≤k q)(p, q, k, f(k))
27 S := { s | q ∈ L(s) }
28 for s ∈ S do L(s) := L(s) ∪ f(k)
29 while S � ∅ do
30 choose s ∈ S
31 S := S \ {s} // remove s from S
32 N := H // update N by H
33 for all t such that R(t, s) do
34 if f(k) � L(t) and N ≥ 0 and p ∈ L(t) then
35 H := N - TM(s) // update H
36 L(t) := L(t) ∪ {f(H)}
37 S := S ∪ {t} // add t to S
38 else if q ∈ L(t) and S � ∅ then
39 break
40 else L(s0) := ∅
41 goto OUT
42 end for all
43 if S � ∅ and R(t, s) = ∅ then //s is last state on some
44 choose y ∈ S // path, and other path has not checked
45 choose f(H) from L(y)
46 H := k // updata H by f(k)
47 else if S = ∅ and R(t, s) = ∅
48 H := N - TM(s) // s is last state and all path has checked
49 if H ≥ 0 then
50 L(s) := L(s) ∪ f(H)
51 break
52 end if
53 end if
54 end while
55 OUT :
56 N := H // update N by H
57 end function

calculating the execution time of N and state s (line
81). Then in the case of H ≥ 0, we add f(H) to L(s) and
leave the loop (line 84).

• Finally, we update N with H (line 88). Subsequently,
if f(H) is added in L(s0) and time constraint is satisfied
(line 22), then verification result is true (line 23).

// continue with Algorithm 2
58 function ModelCheck E(p U≤k q)(p, q, k, f(k))
59 S := { s | q ∈ L(s) }
60 for s ∈ S do L(s) := L(s) ∪ f(k)
61 while S � ∅ do
62 choose s ∈ S
63 S := S \ {s} // remove s from S
64 N := H // update N by H
65 for all t such that R(t, s) do
66 if f(k) � L(t) and N ≥ 0 and p ∈ L(t) then
67 H := N - TM(s) // update H
68 L(t) := L(t) ∪ {f(H)}
69 S := S ∪ {t} // add t to S
70 else if N < 0 and S � ∅ then
71 choose y ∈ S // other path has not checked
72 choose f(H) from L(y)
73 H := k // updata H by f(k)
74 end if
75 end for all
76 if S � ∅ and R(t, s) = ∅ then //s is last state on some
77 choose y ∈ S // path, and other path has not checked
78 choose f(H) from L(y)
79 H := k // updata H by f(k)
80 else if S = ∅ and R(t, s) = ∅
81 H := N - TM(s) // s is last state and all path has checked
82 if H ≥ 0 then
83 L(s) := L(s) ∪ f(H)
84 break
85 end if
86 end if
87 end while
88 N := H // update N by H
89 end function

We use |f| to denote the length of RTCTL formula f(k)
(f(k) is the RTCTL formula, like E(p U≤k q)). The calcula-
tion of |f| is the same as that of E. A. Emerson and others [7].
When |f′| is the length of the CTL formula f′ obtained from
f by deleting time constraint, |f| = |f′| + c and c is the sum
of the lengths of the bit strings representing in binary the
time constraint of f. Thus, we see that the complexity of ex-
ecuting the entire procedure f(k) model check is O(|f| (|S| +
|R|)).

As shown in the following example, if the state t transi-
tion to the state s is exists, where E(pU≤kq)state s holds true
at the state s and it can be expressed by mean of a fixpoint
as follows:

E(pU≤kq)state s = qstate s ∨ (p ∧ EXE(pU≤kq))state t

As shown in Fig. 6, verification is performed by back-
ward according to the algorithm. The pre-state t of state s
can be labeled and the real-time property can be verified by
computing the execution time to the state t. Using Tarski
fixpoint theorem [13] we can prove the correctness of the
proposed algorithm.

Definition 4 (Tarski fixpoint theorem): Let state sets of
functional τ: 2S → 2S be given. Then we say that τ(Y)
is monotonic provided that P ⊆ Q implies τ(P) ⊆ τ(Q). We
identify a predicate with the set of states which make it true.
Thus, false, which corresponds to the empty set, is the bot-
tom element, true, which correspond to S is the top element.

806
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

Fig. 6 verfication transition

(1) least fixpoints define:

μY.τ(Y) = ∩{Y : τ(Y) = Y} = ∩{Y : τ(Y) ⊆ Y}.
(2) greatest fixpoints define:

νY.τ(Y) = ∪{Y : τ(Y) = Y} = ∪{Y : τ(Y) ⊇ Y}.
(3) least fixpoints calculation:

μY.τ(Y) = ∪iτ
i (false). i is at most |S |.

(4) greatest fixpoints calculation:

νY.τ(Y) = ∩iτ
i (true). i is at most |S |.

Next, RTCTL formulas are represented as fixpoints.

Definition 5: (Fixpoints representation of RTCTL formu-
las) Fixpoints representation of E(pU≤kq) and A(pU≤kq) de-
fined by timed Kripke structure M = (S, S 0, R, L, TM).

(1) Fixpoints representation of E(p U≤k q):
For E(pU≤kq)state s = μZ.q ∨ (p ∧ EXZ)state t, the fol-

lowing equation holds true, E(pU≤kq)state s = qstate s ∨ (p ∧
EXE(pU≤kq))state t

Here, p ∧ EXE(p U≤k q) = E(p U≤r q), where r = k -
TM(sq) and state sq is satisfied q.

(2) Fixpoints representation of A(p U≤k q):
For A(pU≤kq)state s = μZ.q ∨ (p ∧ AXZ)state t, the fol-

lowing equation holds true, A(pU≤kq)state s = qstate s ∨ (p ∧
AXA(pU≤kq))state t

Here, p ∧ AXA(p U≤k q) = A(p U≤r q), where r = k -
TM(sq) and state sq is satisfied q.

There are least fixpoints, and it is verified backward
according to the algorithm, and it is verified that real-time
property can not be satisfied if the time constraint k becomes
less than 0, and the algorithm terminates. The model check-
ing algorithm of E(p U≤k q) and A(p U≤k q) are correct ac-
cording to fixpoints. The proof of E(p U≤k q) is as follows.
The proof of A(p U≤k q) is the same as E(p U≤k q) and is
omitted here.

Theorem 1: Let M = (S, S 0, R, L, TM) be a structure and
s ∈ S, Then M,s |= E(p U≤k q) iff there exists a path (s0, s1,
. . ., s j, . . ., si, . . .) from s0 to si such that M,s j |= p until M,s j

|= q in time constraints k.

proof. (Only if:) Suppose M,s |= E(p U≤k q). Then there
is an infinite path (s0, s1, . . ., s j, . . ., si, . . .) in M and a state
si ∈ S for infinitely many distinct i, such that

(1) si is a successor of s j (0 ≤ j < i)

Fig. 7 Generating timed Kripke structure

(2) M,si |= q
(3) M,s j |= p
(4)
∑i
α=0TM(sα) ≤ k

If in the infinite path (s0, s1, . . ., s j, . . ., si, . . .), time
constrains k -

∑i
α=0TM(sα) ≥ 0 according to the fixpoint.

(If:) if there is an infinite path (s0, s1, . . ., s j, . . ., si,
. . .) according to the algorithm. Since M,si |= q and M,s j |=
p, then backward to compute execution time such that time
constraints k -

∑i
α=0TM(sα) ≥ 0. So M,s |= E(p U≤k q).

5.3 Example

We will give an example in order to explain Algorithm 1 and
Algorithm 2.

We specify verification property by RTCTL as follows.

E(p U≤10 q)

We verify whether timed Kripke structure satisfies E(p
U≤10 q) according to Algorithm 1and Algorithm 2 as fol-
lows.
S = {s1, s2, s3, s4, s5, s6, s7} S0 = {s1}
R = {(s1, s2), (s1, s3), (s1, s5), (s2, s4), (s3, s4), (s4, s7), (s5,
s6), (s6, s7)}
L(s1) = {p} L(s2) = {p}
L(s3) = {} L(s4) = {q}
L(s5) = {p} L(s6) = {p}
L(s7) = {q} TM(s1) = 1
TM(s2) = 1 TM(s3) = 1
TM(s4) = 1 TM(s5) = 100
TM(s6) = 1 TM(s7) = 1

Generating timed Kripke structure and model checking

WU and YAMANE: MODEL CHECKING OF REAL-TIME PROPERTIES FOR EMBEDDED ASSEMBLY PROGRAM USING REAL-TIME TEMPORAL LOGIC RTCTL
807

Fig. 8 Model checking (first step of labelling)

Fig. 9 Model checking (second step of labelling)

are shown in Fig. 7, Fig. 8, Fig. 9, Fig. 10. Timed Kripke
structure is generated in the order of 1©, 2©, 3©, 4©, 5©, 6©, 7©.
Incidentally, this formula is obviously satisfied since there

Fig. 10 Model checking (third and last step of labelling)

is a path s1 → s2 → s4

To verify RTCTL formula, Algorithm 1 generated
timed Kripke structure as Fig. 7. Figure 8, Fig. 9 and Fig. 10
give snapshots of Algorithm 2 in operation on the timed
Kripke structure for the labeling function.

The first, add a label to the state that satisfies q as
shown in Fig. 7. Next, add a label to the previous state of the
state that satisfies q after compute the execution time. And
verify it backward as shown in Fig. 8 and Fig. 9 and add a
label to that state after compute the execution time. Com-
pute the initial state of one some path and label it. Then it
has been labeled and satisfied the time constraints k. So, the
result becomes true and the verification result becomes true.

6. Experiments

We used five programs written from H8/3687 microcon-
troller [14], [15].

The execution time is obtained from the execution state
number of the assembly instruction. Since the operating fre-
quency of H8/3687 microcontroller is 20 MHz, the execu-
tion time per state is as follows.

1 / 20Mhz = 0.05μs

Therefore, we assume the unit time of time constraint
k is 0.05μs.

The experiment was conducted on a laptop as follows:

• CPU: Intel(R) Core(TM) i7-7700HQ processors run-
ning at 2.80GHz

• Memory: 16GB main memory

808
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

Table 1 The results of verifying Program 1

Totalled states relations verification execution result
time (s) time (ms)

10 1005 890 19.858 0.1571 true
50 2205 1770 49.381 0.2016 true
100 3705 2870 85.066 0.5576 true
199 6675 5048 162.548 0.9981 true
200 6705 5070 162.592 1.0025 false
300 9705 7270 247.373 1.4476 false

• OS: windows 10
• Simulator is written in a combination of Java and Scala,

and Model Checker is written in Scala as follows.
• Java 1.8.0 121, 15000 lines
• Scala 2.11.8, 6000 lines
• Tools: JFlex [16], Jacc [17]

6.1 Program 1

LED program lights up one LED by a sensor of the micro-
controller outputs. The sensor can identify black and white.
When the sensor of the microcontroller detects white, it out-
puts 1 and LED lights up.

When it detects black, it outputs 0 and LED turn off.
Furthermore, we preset the sensor always detected white
and it turns off immediately after the LED lights up. For
example, Totalled times LED lights up by Totalled times the
sensor outputs.

We specify timing constraints by RTCTL for this ex-
periment as follows:

EF≤k(Totalled = n) = E(trueU≤k(Totalled = n))

(RTCT L 1)

Totalled denotes the total number of lights up times.
The n is the number of lights up times, indicated by the value
of the register R0 in state. The formula intuitively means
that LED lights up Totalled times happen at some state on
some path from initial states within the timing constraint k.
Besides we preset the specific LED light up number while
timing constraint k is limited within one millisecond (k =
20000).

The experimental results are shown in Table 1. The
first column presents the total number of lights up times.
The second column gives the number of states. The third
column indicates the number of relations. The fourth col-
umn presents the total time of simulator and model check-
ing. The fifth column presents execution time of assembly
program for some path satisfies Totalled times lights up LED
or the execution time of assembly program for a certain path
is only not satisfied time constraint. The last column shows
the result which shows satisfiability of RTCTL formula. Ex-
ecution time is obtained from the total execution time of exe-
cuted states. The execution time of each state is an execution
time of assembly instruction executed in each state.

The experimental results showed the effectiveness of
the proposed approach. We implement model checker in
order to verify whether timed Kripke structure satisfies

Fig. 11 The results of states in constrast Totalled

RTCTL formulas. These resulting data show that it can be
verified whether or not lights up Totalled times within the
time constraint k. Moreover, as a result, we showed that the
maximum number of LED lights up within the time con-
straint k. As shown in Table 1, if Totalled increases, the num-
ber of states polynomially increases (it is shown in Fig. 11),
and RTCTL formula becomes false.

6.2 Program 2

Program 2 (target motor) controls the two motors on the left
and right of the robot by acquires the values of three sensors.
The sensor is the same as the sensor in Program 1. After
timer initialization, when timer overflow interrupt of timer
b1 occurs, acquire sensor value and set new target current
value. When a timer overflow interrupt occurs in the timer v,
PID control is performed from the current target value and
the measured current value, and the value is output to the
motor. The robot controls the motor speed as shown in Ta-
ble 2 by three sensor values. Obviously, when the robot is in
the straight state (such that M3), it can be done by speed con-
trol such as going straight ahead. In the same way, the robot
turns to the left from the situation inclination right(M1). The
robot only increases motorL speed from 30% to 60%. The
robot will be the situation slightly inclination.

In order to verify the real-time property of the DC (di-
rect current) motor speed control, we prepared the following
programs for verification. By the speed control of the DC
motor, the robot turns to the left from the situation of incli-
nation right(M1), further the robot turns to the left a little
from the situation of slight inclination right(M2), then the
robot goes straight ahead(M3), subsequently the robot turns
to the right a little from the situation of slight inclination
left(M4), then the robot turns to the right from the situa-
tion of inclination left(M5), the final the robot goes straight
ahead(M6). Simultaneously, six RTCTL formulas were pre-
pared and experimented as Table 3.

Incidentally, M1 - M6 in RTCTL 2 - 7 shows the target
value of the rotational speed of the motor as shown in Ta-
ble 2. The speed denotes the rotational speed of the motor,
indicated by the value of the register ER1. Furthermore, in
RTCTL 2, the rotational speed of the motor satisfies the tar-

WU and YAMANE: MODEL CHECKING OF REAL-TIME PROPERTIES FOR EMBEDDED ASSEMBLY PROGRAM USING REAL-TIME TEMPORAL LOGIC RTCTL
809

Table 2 The situation of speed control

motor (state) sensor motorL motorR robot’s situation
M1 100 30% 90% inclination right
M2 110 60% 90% slightly inclination right
M3 010 100% 100% straight
M4 001 90% 30% slightly inclination left
M5 011 90% 60% inclination left
M6 010 100% 100% straight

Table 3 RTCTL formulas of Program 2

RTCTL formula
RTCTL 2 EF≤k1 (M1 = speed) = E(true U≤k1 (M1 = speed)
RTCTL 3 RTCTL 2 ∧ E(true U≤k2 ((M2 = speed)
RTCTL 4 RTCTL 3 ∧ E(true U≤k3 ((M3 = speed)
RTCTL 5 RTCTL 4 ∧ E(true U≤k4 ((M4 = speed)
RTCTL 6 RTCTL 5 ∧ E(true U≤k5 ((M5 = speed)
RTCTL 7 RTCTL 6 ∧ E(true U≤k6 ((M6 = speed)

get value within the time constraint k1 in some path. RTCTL
3 satisfies the target value for the rotation speed of the mo-
tor within the time constraint k1 within some path and the
rotation speed of the motor satisfies the second target value
within the time constraint k2 in some path. RTCTL 4 - 7 is
similar and will be omitted in here.

In this experiment, when an interrupt is occurred by
timer b1 every 1024μs, timer v occurs an interrupt every
400μs. Set the target current value for speed control of the
motor when an interrupt occurs in timer b1. Thereafter,
when timer v occurs an interrupt, PID control is performed
from the target value and the measured current value, and
the value is output to the motor. Therefore, set the time con-
straint value of this time as follows.

k1 = k2 = k3 = k4 = k5 = k6 = 30000 (1500μs)

The experimental results are shown in Table 4. The
first column presents the RTCTL formula. The second col-
umn gives the number of states. The third column indicates
the number of relations. The fourth column presents the to-
tal time of simulator and model checking. The fifth column
presents execution time of assembly program for some path
satisfies RTCTL formula or the execution time of assembly
program for a certain path is only not satisfied time con-
straint. The last column shows the result which shows sat-
isfiability of RTCTL formula. In the case of false, RTCTL
3 was created by adding a delay code when generating the
second time timer b1 interrupt in Program 2. According to
this experiment, RTCTL 2 - 7 of the verification properties
increases the total number of states as the number of motor
speed control increases. Since the initialization of the mi-
crocontroller the number of relations is less than the num-
ber of states. Finally, from the example that becomes false
for RTCTL 3, it was possible to verify whether the rotation
speed of the motor satisfies the target value within the time
constraint. This experiment succeeded in verification of the
real-time property of DC motor speed control.

Table 4 The results of verifying Program 2

RTCTL states relations verification execution result
time (s) time (ms) (ms)

RTCTL 2 7249 7077 238.2 1.3062 true
RTCTL 3 13402 13172 625.7 2.6186 true
RTCTL 4 17570 17283 866.7 3.5312 true
RTCTL 5 23725 23380 1245.3 4.8438 true
RTCTL 6 29878 29475 1838.0 6.1565 true
RTCTL 7 34047 33587 2274.2 7.0687 true
RTCTL 3 16146 15852 754.0 3.0551 false

6.3 Program 3

Program (target timer) acquires the values of sensors and
controls the motors to operate the robot. Lights or extin-
guishes LED same as Program 1. The microcontroller’s ini-
tialization simultaneously obtains the sensor’s value. When
timer overflow interrupt of timer b1 occurs, from the ac-
quired sensor value to set new target current value and to
lights up the LED. On the other hand, when a timer overflow
interrupt occurs in the timer v, PID control is performed
from the current target value and the measured current value,
and the value is output to the motor.

In this experiment, we verify the real-time property of
timer b1 when interrupting occurred. We specify timing
constraints by RTCTL for this experiment as follows:

EF≤k(timer b1 = true) = E(trueU≤k(timer b1 = true)

(RTCT L 8)

In this experiment, since timer b1 occurs interrupt only
once, acquisition of the sensor value is performed together
with initialization. When timer b1 occurs an interrupt every
fixed time, the timer v occurs an interrupt every 400μs. In
RTCTL 8, an interrupt is occurred within the time constraint
k of timer b1 in a certain path. When timer b1 counts,
timer v may occur interrupt more than once, so time con-
straints k is not satisfied with this experiment.

k = Interrupt occur time of timer b1

The experimental results are shown in Table 5. The first col-
umn presents the timer b1 interrupt time. The second col-
umn gives the number of states. The third column indicates
the number of relations. The fourth column presents the to-
tal time of simulator and model checking. The fifth column
presents execution time of assembly program for some path
satisfies timer b1 interrupt or the execution time of assembly
program for all path are not satisfy RTCTL formula. The six
column shows the time constraint k. The last column shows
the result which shows satisfiability of RTCTL formula.

Due to the influence of the timer v, execution time ex-
ceeds the set interrupt time of the timer b1. All verification
results of this experiment become false, but verification of
real-time property was able to verify conversely. Although
the set interrupts time of the timer b1 increases from 500μs
to 700μs and the execution increases according to it, but the
total number of states does not increase is due to the timer v

810
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

Table 5 The results of verifying Program 3

time b1(k) states relations verification execution result
(ms) time (s) (ms)

0.5024 5615 5374 126.5 0.6138 false
0.6016 5615 5374 138.4 0.7130 false
0.7008 5615 5374 139.4 0.8122 false
0.8064 7938 7650 218.1 1.0295 false
0.9088 7938 7650 226.8 1.1319 false
1.0112 7938 7650 241.4 1.2343 false

interrupt has not occurred second during that time. Since in-
terrupt time of timer v is shorter than timer b1, an interrupt
has occurred first and when executing an interrupt instruc-
tion of timer v, timer b1 is not counting because multiple
interrupts are disabled. Therefore, actual the interrupt oc-
currence time of the timer b1 is more than the setting. In this
experiment, it is not possible to accurately verify the inter-
rupt time of the timer b1 due to the influence of the timer v,
and for verification accurately, two verification target pro-
grams (PROGRAM 4 and PROGRAM 5) were prepared.

6.4 PROGRAM 4

Program (target timer b1) acquires the values of sensors and
controls the motors to operate the robot same as Program 2.
Lights or extinguishes LED same as Program 1. The mi-
crocontroller’s initialization simultaneously obtains the sen-
sor’s value. When timer overflow interrupt of timer b1 oc-
curs, from the acquired sensor value to set new target cur-
rent value and to lights up the LED. After that PID control
is performed from the current target value and the measured
current value, and the value is output to the motor.

In this experiment, we verify the real-time property of
timer b1 when interrupting occurred like PROGRAM 3 and
we eliminate the influence of the timer v. We specify tim-
ing constraints by RTCTL for this experiment as same as
RTCTL 8.

This experiment only deals with timer b1. Eliminate
the influence of timer v and verify more accurately whether
timer b1 occurs an interrupt within the time constraint. The
experimental results are shown in Table 6. The columns are
similaryl with Table 5. The number of states increases when
increasing the interrupt time set by timer b1. The execution
time is 502.35 μs for the set time 502.4 μs, so the verifica-
tion result is true. As shown in Table 6, when the execution
time is less than the time constraint k, the verification result
becomes true. And for false examples change PROGRAM 4
(target timer b1) as follows:

(1) When initializing timer b1, set the initial count
value TB1.TCB1 = 99 which becomes 502.4 μs to TB1.
TCB1 = 89.

(2) At the time of initialization, set interrupt enable to
false, and main will enter an infinite loop, interrupt will not
occur. Then, a state explosion occurs and it can not be veri-
fied.

In order to exclude the influence of timer v, model
checking was carried out with the program handling only
timer b1 as the verification target in this experiment. Since

Table 6 The results of verifying Program 4

timer b1 states relations verification execution result
(ms) time (s) time (ms) (ms)

0.5024 4030 3837 93.4 0.50235 true
0.6016 4526 4333 109.9 0.60155 true
0.7008 5022 4829 128.0 0.70075 true
0.8064 5550 5357 156.3 0.0.80635 true
0.9088 6062 5869 177.1 0.90875 true
1.0112 6574 6381 186.9 1.01115 true
0.5024 4190 3997 100.1 0.53435 false
0.5024 - - - - false

Table 7 The results of verifying Program 5

timer v states relations verification execution result
(ms) time (s) time (ms) (ms)

0.4032 3482 3305 80.2 0.40285 true
0.5056 3994 3817 97.4 0.50205 true
0.6016 4474 4297 99.6 0.60125 true
0.7040 4986 4809 119.6 0.70365 true
0.8000 5466 5289 134.6 0.79965 true
0.9024 5978 5801 158.5 0.90205 true
1.0048 6490 6313 172.7 1.00445 true
1.0048 6586 6409 175.6 1.02365 false
1.0048 - - - - false

the influence of timer v was eliminated, it was possible to
verify more accurately whether or not the interrupt time of
timer b1 satisfies the time constraint. Then the real-time
property of timer b1 was verified.

6.5 PROGRAM 5

Program (target timer v) acquires the values of sensors and
controls the motors to operate the robot same as Program 2.
Lights or extinguishes LED same as Program 1. The mi-
crocontroller’s initialization simultaneously obtains the sen-
sor’s value. When timer overflow interrupt of timer v oc-
curs, from the acquired sensor value to set new target cur-
rent value and to lights up the LED. After that PID control
is performed from the current target value and the measured
current value, and the value is output to the motor.

In this experiment, we verify the real-time property of
timer v when interrupting occurred like PROGRAM 4 and
we eliminate the influence of the timer b1. We specify tim-
ing constraints by RTCTL for this experiment as follows:

EF≤k(timer v = true) = E(trueU≤k(timer v = true)

(RTCT L 9)

This experiment only deals with timer v. Eliminate the
influence of timer b1 and verify more accurately whether
timer v occurs an interrupt within the time constraint. The
experimental results are shown in Table 7. The columns are
similarly with Table 5. The number of states increases when
increasing the interrupt time set by timer v. The execution
time is 402.85 μs for the set time 403.2 μs, so the verifica-
tion result is true. As shown in Table 7, when the execution
time is less than the time constraint k, the verification result
becomes true. And for false examples change PROGRAM 5
(target timer v) as follows:

WU and YAMANE: MODEL CHECKING OF REAL-TIME PROPERTIES FOR EMBEDDED ASSEMBLY PROGRAM USING REAL-TIME TEMPORAL LOGIC RTCTL
811

(1) When initializing timer v, set the initial count
value TV.TCORA = 157 which becomes 1004.45 μs to
TV.TCORA = 160. On the other hand, the execution time is
1023.65 μs, and the verification result is false.

(2) At the time of initialization, set interrupt enable to
false, and main will enter an infinite loop, interrupt will not
occur. Then, because a state explosion occurs, the simulator
will not stop and it can not be verified.

In this experiment, in contrast to the experiment of
PROGRAM 4 and in order to eliminate the influence of
timer b1, only timer v handles interrupt processing. Since
the influence of timer b1 was eliminated, it was possible to
verify more accurately whether or not the interrupt time of
timer v satisfies the time constraint. Based on the above
verification results of PROGRAM 4 and PROGRAM 5, the
verification system proposed can verify the real-time prop-
erties of the assembly program.

6.6 Summary

From the above experimental results, it can be seen that real-
time model checking can be performed by handling the ex-
ecution time of the target assembly program. In the case
of model checking after generating timed Kripke structure,
when the timed Kripke structure satisfies CTL formula (like
E(p U q)) and does not satisfy the time constraint k (of E(p
U≤k q)), we can figure out the execution time of the path by
computation. For the entered validation property (RTCTL
formula), it is not only performed the model check but also
possible to verify the real-time property. The above exper-
iment showed the effectiveness and usefulness of RTCTL
model checking. If the simulator does not stop or the state
explodes, it was confirmed that model checking may not be
executed in some cases. As all the target programs are finite
state systems, we can verify them, But program is an infinite
system, there may be two situations as follows. (1) The ver-
ification result becomes true while generating timed Kripke
structure. (2) Model checking continues indefinitely. It can
not be verified in the infinite state.

7. Conclusion

In this paper, we have developed a verification system.
RTCTL model checker verifies whether timed Kripke struc-
ture satisfies real-time properties. As future work, we
will develop model checking of embedded systems using
counterexample-guided abstraction refinement (CEGAR).

Beside this, we want to detect other properties in em-
bedded systems. When the real-time model checking result
is false, it also makes it possible to output the reason at the
same time. Then, make it clear whether the real-time prop-
erty is not satisfied or the safety is not satisfied. In this veri-
fication system, the model checking is performed after gen-
erating the timed Kripke structure of simulator, but there is
research of CTL model checking while generating the timed
Kripke structure of simulator. In the future, we will conduct
comparative experiments.

References

[1] R. Jhala and R. Majumdar, “Software model checking,” ACM Com-
puting Surveys (CSUR), vol.41, no.4, 2009.

[2] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” LNCS,
vol.4963, pp.337–340, 2008.

[3] S. Yamane, R. Konoshita, and T. Kato, “Model checking of embed-
ded assembly program based on simulation,” IEICE Trans. Inf. &
Syst., vol.E100-D, no.8, pp.1819–1826, 2017.

[4] B. Schlich, “Model Checking of Software for Microcontrollers,”
ACM Transactions on Embedded Computing Systems, vol.9, no.4,
2010.

[5] J. Kobashi, S. Yamane, and A. Takeshita, “Development of
SMT-Based Bounded Model Checker for embedded assembly pro-
gram,” GCCE 2014, pp.696–698, 2014.

[6] M. Kuo, R. Sinha, and P. Roop, “Efficient WCRT analysis of syn-
chronous programs using reachability,” 48th ACM/EDAC/IEEE De-
sign Automation Conference (DAC), pp.480–485, 2011.

[7] E.A. Emerson, A.K. Mok, A.P. Sistla, and J. Srinivasan, “Quan-
titative Temporal Reasoning,” Real-Time Systems, vol.4, no.4,
pp.331–352, 1992.

[8] R. Alur and D.L. Dill, “A theory of timed automata,” TCS, vol.126,
no.2, pp.183–235, 1994.

[9] P. Bouyer, U. Fahrenberg, K.G. Larsen, N. Markey, J. Ouaknine,
and J. Worrell, “Model checking real-time systems. In Handbook of
Model Checking,” pp.1001–1046, Springer, Cham, 2018.

[10] M.H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin, and B.
Lisper, “Learning-based Response Time Analysis in Real-Time Em-
bedded Systems: A Simulation-based Approach,” ACM/IEEE 1st
International Workshop on Software Qualities and their Dependen-
cies, pp.21–24, 2018.

[11] J.-L. Béchennec and F. Cassez, “Computation of wcet using
program slicing and real-time model-checking.” arXiv preprint
arXiv:1105.1633, 2011.

[12] S.A. Kripke, “Semantical Considerations on Modal Logic,” Acta
Philosophica Fennica, 16, pp.83–94, 1963.

[13] E.M. Clarke and E.A. Emerson, Design and Synthesis of Synchro-
nization Skeletons Using Branching-Time Temporal Logic, LNCS
131, pp.52–71, 1981.

[14] R.E. Corporation, Renesas Electronics, Renesas Electronics Corpo-
ration (online), http://japan.renesas.com/

[15] nuvo WHEEL: ZMP, http://www.zmp.co.jp/products/wheel
[16] G. Klein, JFlex - The Fast Scanner Generator for Java, CSE UNSW

(online), available from (http://jflex.de/)
[17] M.P. Jones, Jacc: just another compiler compiler for Java, De-

partment of Computer Science and Engineering at the OGI School
of Science & Engineering at OHSU (online), available from
(http://jflex.de/)

Yajun Wu received B.S. degrees from
Southwest Minzu Univeristy. M.S degrees from
Kanazawa Univeristy. Now he is a doctor course
second grade student of Kanazawa University.
He is interested in formal verification of real-
time system and deep learning.

http://dx.doi.org/10.1145/1592434.1592438
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1587/transinf.2016edp7452
http://dx.doi.org/10.1145/1721695.1721702
http://dx.doi.org/10.1109/gcce.2014.7031120
http://dx.doi.org/10.1145/2024724.2024837
http://dx.doi.org/10.1007/bf00355298
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1145/3194095.3194097

812
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

Satoshi Yamane received B.S., M.S and
Ph.D. degrees from Kyoto Univeristy. Now he
is a professor of Kanazawa University. He is
interested in formal verification of real-time and
distributed computing.

