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PAPER

Combining CNN and Broad Learning for Music Classification

Huan TANG†, Nonmember and Ning CHEN†a), Member

SUMMARY Music classification has been inspired by the remarkable
success of deep learning. To enhance efficiency and ensure high perfor-
mance at the same time, a hybrid architecture that combines deep learn-
ing and Broad Learning (BL) is proposed for music classification tasks.
At the feature extraction stage, the Random CNN (RCNN) is adopted to
analyze the Mel-spectrogram of the input music sound. Compared with
conventional CNN, RCNN has more flexible structure to adapt to the vari-
ance contained in different types of music. At the prediction stage, the
BL technique is introduced to enhance the prediction accuracy and re-
duce the training time as well. Experimental results on three benchmark
datasets (GTZAN, Ballroom, and Emotion) demonstrate that: i) The pro-
posed scheme achieves higher classification accuracy than the deep learn-
ing based one, which combines CNN and LSTM, on all three benchmark
datasets. ii) Both RCNN and BL contribute to the performance improve-
ment of the proposed scheme. iii) The introduction of BL also helps to
enhance the prediction efficiency of the proposed scheme.
key words: deep learning, broad learning, random convolutional neural
network (RCNN), music classification

1. Introduction

Digital music and online streaming have become very pop-
ular these days due to the increase in the number of users.
As a result, how to help the users find valuable data, such as
trends, popular genres and artists, has become a great chal-
lenge. Automatic music classification technique can help
to solve this problem. It has become a hot research topic
within the field of Music Information Retrieval (MIR) in the
past two decades.

It has been verified in [1]–[3], [5] that compared with
the conventional hand-crafted feature extraction strategies,
deep learning-based ones have their superiorities: i) The
nonlinear mapping strategy in deep architecture helps to
describe the prominent time-varying nonlinear property of
music, precisely. ii) The hierarchical architecture of the
deep architecture can represent the time (onset, rhythm) and
frequency (note,chord)-based hierarchical nature contained
in the music. iii) The Recurrent Neural Network (RNN)-
based deep learning architecture (e.g. LSTM) can grasp the
prominent long-term dependency based properties, such as
recurrent harmonics and music structure contained in the
music. These are the possible reasons why deep learning
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architecture based schemes have achieved tremendous suc-
cess in various MIR tasks, such as onset detection [6], emo-
tion recognition [7], chord estimation [8], rhythm stimuli
recognition [9], source separation [10], music recommenda-
tion [11] and auto-tagging [4], [12], [14], [15].

For music classification tasks, CNN and RNN are the
two most adopted deep learning architectures. In most
cases, CNN is adopted to analyze the spectrogram image
of the music sound to learn the high-level descriptors of it.
In [4], [5], [17], the influence of the filter shape of CNN on
the performance of music feature extraction was studied. It
was verified that different shapes of filters may be fit for ex-
tracting different features of music sound. For example, the
wider and higher filters may learn longer temporal depen-
dency and more spreader timbral features, respectively [17].
In [16], the problem that if randomly weighted CNNs can
obtain equivalent classification accuracy as trained CNN
was studied. It was believed that the former is close to
matching the accuracies obtained by the latter. However,
as shown in [17], CNNs may be good at modeling the lo-
cal context (such as instrument timbre or musical units), but
not the long-term dependencies (such as music structure or
recurrent harmonies). To solve this problem, RNN-based
schemes are studied for music classification tasks. For ex-
ample, in [18], LSTM was adopted to analyze the MFCC
feature sequences for classification. However, since the tem-
poral modeling is performed on the linear feature, it is dif-
ficult to disentangle underlying factors of variation with the
input. Also, since there is no intermediate nonlinear hidden
layer in LSTM, the history of previous inputs may not be
summarized, efficiently.

To take full advantage of the complementarity be-
tween CNN and RNN in representing different aspects of
music sound, some researchers proposed to construct hy-
brid architectures of CNN and RNN for music classifica-
tion [2], [4], [12], [13]. In [13], a hybrid architecture con-
sisting of the paralleling CNN and Bi-RNN blocks was pro-
posed. CNN and Bi-RNN were adopted to extract spatial
feature and temporal frame orders, respectively. Finally, the
outputs of CNN and Bi-RNN are fused to obtain the whole
feature, which was then used for classification. It was ver-
ified that the Bi-RNN block was an excellent complement
to CNNs. In [4], three channels of CNNs with different
shapes of filters were applied on the spectrogram image of
the music sound, respectively, to extract its pitch-, tempo-
and bass-relevant descriptors, respectively. Then, the out-
puts of each CNN channel were concatenated and put into
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an LSTM to extract the long-term dependency-based prop-
erty contained in the concatenated feature sequence. It was
shown that the adding of the LSTM layer helps to enhance
classification accuracy, greatly, especially for the emotion
classification task. The possible reason is that the detection
of emotion is more dependent on the long-term dependency-
based property, which can be grasped by LSTM, precisely.
Despite the high performances achieved by the hybrid archi-
tecture proposed in [4], it has some shortcomings: i) Since
the probability distributions of the features (such as pitch,
tempo, or bass) may vary, greatly, among different music
datasets (GTZAN, Ballroom, or Emotion), it may be impos-
sible to find a fixed size of the filter for each CNN channel to
make them fit for different music datasets. ii) For each CNN
channel, only one hidden layer is included, thus the hierar-
chical feature of the sound may not be grasped, precisely.
In addition, the shapes and the number of the filters in the
hidden layer should be set manually in advance, which re-
duces its flexibility, greatly. iii) The training of the LSTM
architecture takes too much time, which is not desired in real
applications.

To solve these problems, a hybrid architecture-based
music classification scheme, which takes full advantage of
the merits of RCNN [19] in representing the nonlinear prop-
erty and inherent hierarchical nature of music, and that of
Broad Learning (BL) in ensuring training efficiency [20],
is proposed in this paper. On the one hand, since RCNN
can set the number of hidden layers and that of filters in
each layer, flexibly, according to the property of the input,
it may be robust to the variance contained in different music
datasets well. On the other hand, since sparse autoencoder
is adopted in the training procedure of BL, it can overcome
the randomness nature of the input feature matrix. Also, due
to the high training efficiency of BL, the proposed scheme
may be fit for real applications. Experimental results on
three benchmark datasets demonstrate that: i) The proposed
model, denoted as RCNNBL, performs better than the hy-
brid deep learning architecture-based one [4]. ii) Compared
with Multi-Channel CNN (MCC)-based feature extraction
scheme [4], RCNN-based one achieves higher classification
accuracy. iii) Compared with the LSTM-based prediction
strategy in [4], the BL-based one achieves much lower train-
ing time and a little bit higher classification accuracy.

2. Proposed Scheme

As shown in Fig. 1, the proposed scheme is composed of
three RCNNBL architectures, which are represented as red,
green, and purple, respectively. The final predicted tag is ob-
tained by applying the majority voting on the predicted ones
achieved by the above three architectures. Each architec-
ture comprises 4 steps: preprocessing, RCNN-based feature
extraction, BL-based tag prediction, and majority voting.

2.1 Preprocessing

First, the original music sound, whose sampling rate is 44.1

Fig. 1 The block diagram of the proposed RCNNBL model.

kHz, is segmented into frames of 2048 samples (50% over-
lap) with the Blackman-harris window. Then, Discrete-
Time Fourier Transform (DTFT) is applied on each frame
to obtain the spectrum, which is further filtered by a Mel
filter bank that is composed of k1 filters to generate the Mel-
spectrogram. Finally, the whole Mel-spectrogram sequence
is split into L chunks of k2 frames, which are denoted as
Iq, q = 1, . . . , L, along the time axis. Thus, the size of each
chunk is k1 × k2.

2.2 RCNN-Based Feature Extraction

In the hybrid deep architecture-based classification scheme
proposed in [4], three CNN channels, which are composed
of different shapes of (vertical bar, horizontal bar, and rect-
angular) of filters, were adopted to extract pitch-, tempo-
and bass-based feature from the Mel-spectrogram, respec-
tively. The outputs of each CNN channel are concatenated
to obtain the combined feature. However, as shown in
Figs. 2 (a), (b) and (c), it has been verified that for each
CNN channel, different sizes of filters are set to obtain the
best performance on different datasets (GTZAN, Ballroom,
and Emotion). As a result, it is quite difficult to obtain a
filter size combination that makes all three CNN channels
perform the best on different datasets. In addition, in each
CNN channel of in [4], there is only one hidden layer, so the
hierarchical nature of the input sound may not be grasped,
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Fig. 2 Classification accuracy obtained by CNN channels with different filter shapes (a) vertical bar,
(b) horizontal bar, and (c) rectangle at different sizes on three benchmark datasets. The red mark corre-
sponds to the highest classification accuracy.

precisely. Last and most importantly, in [4], the number of
filters in the hidden layer needs to be set in advance, which
is inflexible and unreasonable.

To solve the above problems contained in the scheme
proposed in [4], the RCNN is adopted in the proposed model
to extract features from the Mel-spectrogram. As shown in
Fig. 1, the RCNN-based feature extraction stage of the pro-
posed scheme is composed of two stacks of RCNN. First,
each of the Mel-spectrogram chunk, Iq, q = 1, . . . , L, is
passed through the first stack of RCNN, which is composed
of two convolutional layers. Each layer comprises a random
number (128 ∼ 384) of 3 × 3 filters. 3 × 3 filter shape is
chosen because it is the smallest size to capture the notion of
left/right or up/down center [22]. Second, the output of the
first stack of RCNN is put into the second stack of RCNN,
which is composed of a random number (3 ∼ 5) of CNN
blocks. Each CNN block is made up of the convolutional
layer, the max-pooling layer, and the dropout layer. Specif-
ically, each convolutional layer includes a random number
(128 ∼ 384) of 3 × 3 filters, and the convolution stride
is fixed to 2 pixels. Third, the output of the second stack
of RCNN is passed through a Fully Connected (FC) layer,
which is composed of P nodes. Finally, the outputs of the
FC layer for all Mel-spectrogram chunks are concatenated
to obtain the whole feature of the input music sound. It
should be noted that to train the RCNN architecture, for each
convolutional layer the ReLU activation function and 30%
dropout is chosen, and for each stack, the batch size of 128
and 80 epoches are used. In addition, the Adam [23] with
the learning rate of 1e-3 is adopted for learning rate control,
and the cross-entropy is used as the loss function.

2.3 BL-Based Tag Prediction

Assuming that the feature of the s-th song is xs, s =
1, . . . , S , where S is the number of music songs contained in
the music collection, the feature matrix of the whole music

dataset can be denoted as X = [x1, x2, . . . , xs].
First, the original feature matrix X is linearly projected

to N mapped feature matrices, which are denoted as Zi, i =
1, . . . ,N, with Eq. (1)

Zi = φ(XWei + βei
), i = 1, . . . ,N (1)

where, φ is a linear function, Wei and βei
are the random

weights with proper dimension.
Next, all the obtained mapped features are concate-

nated with Eq. (2) to obtain the linear-combined feature, de-
noted as Z.

Z = [Z1, Z2, . . . , ZN] (2)

Then, M nonlinear mappings (see Eq. (3)) are per-
formed on Z to obtain the nonlinear feature matrices, de-
noted as H j, j = 1, . . . ,M

H j = ξ(ZWh j + βh j
), j = 1, . . . ,M (3)

where ξ is tansig function, Wh j and βh j
are the random

weights with proper dimension.
Finally, all the obtained nonlinear feature matrices

H j, j = 1, . . . ,M are concatenated to obtain the non-linear
combined feature matrix, denoted as H, with Eq. (4). The
number of enhancement nodes is Q.

H = [H1,H2, . . . ,HM] (4)

Assuming that the true labels of the songs in the whole
training set are Y = {ys|s = 1, . . . , S }, then, the broad learn-
ing can be represented as Eq. (5)

Y = [Z|H] W (5)

where W is the connecting weights for the broad structure
and it can be obtained through the ridge regression approxi-
mation shown in Eq. (6)

W = [Z|H]+ Y (6)
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So, the training of the BL structure is quite efficient. Then,
at the testing stage, the predicted tags of the songs in the
whole testing set Ŷ can be calculated with Eq. (7)

Ŷ = X̂W (7)

where X̂ is the feature matrix of the testing set.

2.4 Majority Voting

To ensure the robustness and generalization, three RCNNBL
architectures, which are represented as red, green and pur-
ple, respectively, in Fig. 1, are combined in the proposed
model. Then, the majority voting is applied to the outputs
of the above three RCNNBL architectures to obtain the final
prediction of the tag. Specifically, assuming that the out-
put obtained with the t-th architecture for the s-th song is
ŷst, t = 1, . . . ,T, s = 1, . . . , S , the predicted label of the s-th
song, denoted as ŷs, can be obtained with Eq. (8)

ŷs = arg max
t

[
so f tmax(̂yst)

]
(8)

3. Experiments

To evaluate the effectiveness and efficiency of the proposed
classification model in comparison with the deep learning-
based ones [4], [17], three benchmark datasets that are com-
posed of different types of music are included in the experi-
ments. To make a fair comparison, 10-fold cross validation
is performed for each scheme to obtain the classification ac-
curacy. Each dataset is randomly split into training, vali-
dation, and testing sets with the proportion of 8:1:1. The
parameters of the proposed scheme are listed in Table 1,
and those of the 3-channel (MCC-3)-based scheme and MC-
CLSTM scheme are set as shown in [17] and [4], respec-
tively. All the experiments are carried out on NVIDIA TI-
TAN Xp GPU with 12 GB memory.

3.1 Datasets

• GTZAN dataset [24]: This dataset and Ballroom
dataset are adopted to test the performance of the pro-
posed scheme in genre classification. The 1000 songs
in this dataset are classified into 10 genres (classical,
country, disco, hiphop, jazz, rock, blues, reggae, pop,

Table 1 Parameters for the proposed model.

Steps Parameters

Preprocessing

k1 = 40

k2 = 40 (GTZAN), 80 (Ballroom,
Emotion)

RCNN-based feature
extraction

P = 256

BL-based tag prediction
Nε{10, 11}

Qε{100, 110, 120, 130, 140}
MV T = 3

and metal). For each genre, there are 100 songs. The
length, sampling rate, and quantization precision are 30
seconds, 22050 Hz, and 16-bits/sample, respectively.
• Ballroom dataset [25]: This dataset consists of 698

songs of ballroom dance music. All the songs (each
lasts 30 seconds) are divided into 8 genres, such as cha-
cha-cha (111), jive (60), quickstep (82), rumba (98),
samba (86), tango (86), viennese valtz (65), and slow
waltz (110).
• Emotion dataset [26]: This dataset, which is composed

of 2906 songs, is included to test the performance of
the proposed scheme in emotion classification. Com-
pared with GTZAN and Ballroom, the size of this
dataset is much larger. The tracks of this dataset are
classified into 4 classes (angry 639, happy 753, relax
750, and sad 764). The length of the tracks varies from
30 seconds to 60 seconds. In the experiment, only the
first 30 seconds of each track are used.

3.2 Effectiveness of RCNN-Based Feature Extraction

In this experiment, to verify the superiority of RCNN in
feature extraction over MCC-3, the output of RCNN in the
proposed model and that of MCC-3 in [4] are directly used
for classification, which is performed by softmax function
and majority voting. The comparison results shown in Ta-
ble 2 demonstrate that the RCNN-based feature extraction
method performs much better than the MCC-3-based one
on all three datasets. The RCNN-based one even achieves
higher performance than the whole scheme proposed in [4],
which is based on the combination of CNN and LSTM and
is denoted as MCCLSTM in this paper. In addition, un-
like the MCC-3-based one, which needs to set the size and
the number of filters in advance manually, in RCNN, the
shape of the filter is fixed as 3 × 3 and the number of the
filters is randomly chosen between 128 and 384 according
to the input, automatically. Thus, the RCNN-based feature
extraction method is more convenient and flexible. Consid-
ering that the block size of the RCNN architecture in the
proposed model is between 3 and 5, and the number of con-
volutional layers is between 128 and 384, the performances
of RCNN and those of the Fixed CNN (FCNN) architectures
with 3 blocks and 128 convolutional layers, or 5 blocks and
384 convolutional layers, are compared on Ballroom dataset
(see Fig. 3). It can be seen that when compared with FCNN,
the accuracy of RCNN is a little bit lower. But, when BL
is combined, the proposed scheme performs better than the
combination of FCNN and BL.

Table 2 Effectiveness of RCNN in feature extraction in comparison with
deep learning-based schemes [4].

Schemes
Classification accuracy: mean(%)±std(%)

GTZAN Ballroom Emotion

MCC-3 [4] 82.90 ± 2.11 89.45 ± 2.18 52.96 ± 2.78

MCCLSTM [4] 84.69 ± 1.76 91.90 ± 2.33 56.33 ± 2.15

RCNN 88.20 ± 2.67 92.27 ± 2.22 56.59 ± 2.53
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3.3 Efficiency of BL-Based Prediction

To verify the training efficiency of the BL-based prediction
model adopted in the proposed scheme in comparison with
the LSTM-based one adopted in [4], BL and LSTM are
adopted to make prediction based on the feature extracted
by MCC-3 and RCNN schemes, respectively. For the same
feature (MCC-3 or RCNN), the training time, which is ob-
tained as the mean value of the training time for the 10-fold
cross validation, needed by the BL-based model and LSTM-
based one is compared in Table 3. It is obvious that: i) The
training efficiency of the BL-based model is much higher
than that of LSTM-based one, especially on the Emotion
dataset. ii) Unlike the LSTM-based model, whose training
time changes greatly with the size of the datasets, the train-
ing time of BL-based one remains stable among the three
datasets. iii) When RCNN-based feature is considered, on
the largest dataset included, Emotion, the BL-based predic-
tion model will save about 9 minutes than LSTM-based one.
While, in real application, the music collection may include

Fig. 3 Classification accuracy comparison between the FCNN-based and
RCNN-based schemes on the Ballroom dataset.

Fig. 4 Comparison of the classification accuracy distribution obtained with 10-cross-validation by
different schemes on (a) GTZAN, (b) ballroom, and (c) emotion dataset.

more than 200,000 songs. In such case, the BL-based model
will save more than 10 hours’ training time. In addition,
the training speed of BL and that of three-layer MLP when
equivalent classification accuracies (95.71% and 94.56%,
respectively) are achieved is compared on Ballroom. The
result is that the training time of three-layer MLP, which is
135.39s, is much larger than that of BL, which is 49.48s.

3.4 Effectiveness of BL-Based Prediction

To verify the effectiveness of the BL-based prediction
scheme in comparison with LSTM-based one [4], BL and
LSTM are adopted to make tag prediction based on the same
feature (MCC-3 or RCNN), respectively. From the experi-
mental results shown in Table 4, it can be seen that, in most
cases, for the same input feature (MCC-3 or RCNN), BL-
based prediction model can achieve a little bit higher classi-
fication accuracy than LSTM-based one, which means that

Table 3 Training efficiency comparison between BL-based prediction
model and LSTM-based one [4].

Schemes
Training time (seconds)

GTZAN Ballroom Emotion

MCCLSTM [4] 95.63 73.84 247.96

MCCBL 32.96 32.94 40.66

RCNNLSTM 260.28 179.18 615.57

RCNNBL 76.84 49.48 55.74

Table 4 Effectiveness of BL-based prediction model in comparison with
LSTM-based one [4].

Schemes
Classification accuracy: mean(%)±std(%)

GTZAN Ballroom Emotion

MCCLSTM [4] 84.69 ± 1.76 91.90 ± 2.33 56.33 ± 2.15

MCCBL 85.24 ± 1.42 93.21 ± 2.12 55.81 ± 2.64

RCNNLSTM 89.50 ± 1.96 93.84 ± 2.21 57.33 ± 3.03

RCNNBL 90.50 ± 1.69 95.71 ± 2.03 59.56 ± 2.16
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the BL-based prediction strategy may help to enhance clas-
sification accuracy as well. The only abnormal case occurs
on the Emotion dataset when the MCC-based feature is con-
sidered.

3.5 Performance Comparison with State-of-the-Art
Schemes

In Fig. 4, the distributions of the classification accuracy (ob-
tained by 10-cross-validation) achieved by different mod-
els (MCC-2 [17], MCC-3 [4], MCCLSTM [4], RCNN, RC-
NNLSTM, and RCNNBL) are compared on three datasets.
The horizontal red line in each box is the median of the clas-
sification accuracies obtained by 10-cross-validation. The
lower and upper horizontal block lines of the box indi-
cate the 25- and 75-percentiles, respectively. The horizon-
tal black lines further above or below represent the furthest
points not considered outlines. Points beyond this range are
depicted as red plus signs.

It can be observed in Fig. 4 that: i) The proposed
model achieves higher median classification accuracy than
the other 5 schemes on all three datasets. ii) The lowest
classification accuracy obtained by the proposed scheme
is equal to or higher than those of the other 5 schemes
on all three datasets. iii) When compared with the hybrid
deep architecture-based scheme MCCLSTM [4], the pro-
posed scheme enhances the classification performance, ob-
viously, on all three datasets. iv) By comparing the per-
formances obtained by MCCLSTM [4], RCNNLSTM and
RCNNBL on each dataset, we may draw the conclusion that
both RCNN and BL contribute to the performance enhance-
ment of the proposed scheme.

4. Conclusions

In this article, we present a hybrid architecture, which com-
bines RCNN and BL, for music classification tasks. The
proposed model aims to take advantage of the effectiveness
and flexibility of RCNN in representing the music’s non-
linear and hierarchical features, and the model training effi-
ciency of BL to enhance both the effectiveness and the effi-
ciency of music classification tasks. Extensive experimental
results on three benchmark datasets (GTZAN, Ballroom and
Emotion) demonstrate that the proposed hybrid architecture
can enhance both the classification accuracy and prediction
efficiency, greatly.

Acknowledgments

This work was partially supported by the National Natu-
ral Science Foundation of China (No. 61771196, 61671156,
61872143).

References

[1] K. Choi, G. Fazekas, and M. Sandler, “Automatic tagging using deep
convolutional neural networks,” 17th International Society of Music

Information Retrieval (ISMIR), pp.805–811, Aug. 2016.
[2] K. Choi, G. Fazekas, M. Sandler, and K. Cho, “Convolutional re-

current neural networks for music classification,” 16th IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp.2392–2396, March 2017.

[3] E.J. Humphrey, J.P. Bello, and Y. LeCun, “Feature learning and deep
architectures: new directions for music informatics,” Journal of In-
telligent Information Systems, vol.41, no.3, pp.461–481, 2013.

[4] N. Chen and S. Wang, “High-level music descriptor extraction al-
gorithm based on combination of multi-channel CNNs and LSTM,”
18th International Society of Music Information Retrieval (ISMIR),
pp.509–514, Oct. 2017.

[5] J. Pons, O. Nieto, M. Prockup, E.M. Schmidt, A.F. Ehmann, and X.
Serra, “End-to-end learning for music audio tagging at scale,” 19th
International Society for Music Information Retrieval Conference
(ISMIR), pp.637–644, Sept. 2018.

[6] J. Schluter and S. Bock, “Improved musical onset detection with
convolutional neural networks,” IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.6979–6983,
May 2014.

[7] M. Malik, S. Adavanne, K. Drossos, T. Virtanen, D. Ticha, and R.
Jarina, “Stacked convolutional and recurrent neural networks for
music emotion recognition,” Sound and Music Computing (SMC)
Conference, pp.208–214, Oct. 2017.

[8] J. Deng and Y.-K. Kwok, “Large vocabulary automatic chord esti-
mation using bidirectional long short-term memory recurrent neu-
ral network with even chance training,” Journal of New Music Re-
search, vol.47, no.1, pp.53–67, 2017.

[9] S. Stober, D.J. Cameron, and J.A. Grahn, “Using convolutional neu-
ral networks to recognize rhythm stimuli from electroencephalogra-
phy recordings,” Advances in Neural Information Processing Sys-
tems (NIPS), pp.1449–1457, Dec. 2014.

[10] D. Stoller, S. Ewert, and S. Dixon, “Wave-u-net: a multi-scale neu-
ral network for end-to-end audio source separation,” 19th Interna-
tional Society for Music Information Retrieval Conference (ISMIR),
pp.334–340, Sept. 2018.

[11] A. Abdul, J. Chen, H.Y. Liao, and S.H. Chang, “An emotion-aware
personalized music recommendation system using a convolutional
neural networks approach,” Applied Sciences, vol.8, no.7, pp.1–16,
2018.

[12] J. Dai, S. Liang, W. Xue, C.J. Ni, and W.J. Liu, “Long short-term
memory recurrent neural network based segment features for music
genre classification,” International Symposium on Chinese Spoken
Language Processing (ISCSLP), pp.1–5, IEEE, 2016.

[13] L. Feng, S. Liu, and J. Yao, “Music genre classification with
paralleling recurrent convolutional neural network,” arXiv preprint
arXiv:1712.08370, 2017.

[14] R.L. Aguiar, Y.M.G. Costa, and C.N. Silla, “Exploring data aug-
mentation to improve music genre classification with ConvNets,”
2018 International Joint Conference on Neural Networks (IJCNN),
pp.1–8, IEEE, July 2018.

[15] T. Raissi, A. Tibo, and P. Bientinesi, “Extended pipeline for con-
tent-based feature engineering in music genre recognition,” 43rd In-
ternational Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp.2661–2665, IEEE, April 2018.

[16] J. Pons and X. Serra, “Randomly weighted CNNs for (music) audio
classification,” 44th International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp.336–340, IEEE, May 2019.

[17] J. Pons, T. Lidy, and X. Serra, “Experimenting with musically
motivated convolutional neural networks,” 14th IEEE International
Workshop on Content-Based Multimedia Indexing (CBMI), pp.1–6,
June 2016.

[18] K.H. Wong, C.P. Tang, K.L. Chui, Y.K. Yu, Z.L. Zeng, X. Jiang, G.
Chen, and Z. Chen, “Music genre classification using a hierarchical
long short term memory (LSTM) model,” 3rd International Work-
shop on Pattern Recognition (IWPR), vol.10828, pp.108281B, May
2018.

http://dx.doi.org/10.1109/icassp.2017.7952585
http://dx.doi.org/10.1007/s10844-013-0248-5
http://dx.doi.org/10.1109/icassp.2014.6854953
http://dx.doi.org/10.1080/09298215.2017.1367820
http://dx.doi.org/10.1109/iscslp.2016.7918369
http://dx.doi.org/10.1109/ijcnn.2018.8489166
http://dx.doi.org/10.1109/icassp.2018.8461807
http://dx.doi.org/10.1109/icassp.2019.8682912
http://dx.doi.org/10.1109/cbmi.2016.7500246
http://dx.doi.org/10.1117/12.2501763


TANG and CHEN: COMBINING CNN AND BROAD LEARNING FOR MUSIC CLASSIFICATION
701

[19] K. Kowsari, M. Heidarysafa, D.E. Brown, K.J. Meimandi, and L.E.
Barnes, “RMDL: random multimodel deep learning for classifica-
tion,” International Conference on Information System and Data
Mining (ICISDM), pp.19–28, April 2018.

[20] C.L.P. Chen and Z.L. Liu, “Broad learning system: an effective and
efficient incremental learning system without the need for deep ar-
chitecture,” IEEE Trans. Neural Netw. Learn. Syst., vol.29, no.1,
pp.10–24, 2018.

[21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: a simple way to prevent neural networks
from overfitting,” Journal of Machine Learning Research, vol.15,
no.1, pp.1929–1958, 2014.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 3rd International Conference on
Learning Representations (ICLR), May 2015.

[23] D.P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” The 3rd International Conference for Learning Representa-
tions (ICLR), pp.1–15, May 2015.

[24] G. Tzanetakis and P. Cook, “Musical genre classification of au-
dio signals,” IEEE Transactions on Speech and Audio Processing,
vol.10, no.5, pp.293–302, 2002.

[25] F. Gouyon, S. Dixon, E. Pampalk, and G. Widmer, “Evaluating
rhythmic descriptors for musical genre classification,” 25th Inter-
national Conference on Audio Engineering Society (AES), pp.196–
204, 2004.

[26] V. Kirandziska and N. Ackovska, “Finding important sound fea-
tures for emotion evaluation classification,” European Conference
on Electronics (Eurocon), IEEE, pp.1637–1644, July 2013.

Huan Tang received the B.S. degree
in Photoelectric Information Engineering from
the Changshu Institute of Technology, Suzhou,
China, in 2017. He is currently pursuing the
M.S. degree with the School of Information Sci-
ence and Engineering of East China University
of Science and Technology. His research inter-
ests include audio signal processing and music
information retrieval.

Ning Chen received the Ph.D. degree in
Electronic Engineering from Shanghai Jiaotong
University in 2008. From 2008 to 2010, she
worked as a postdoctoral in Shanghai Univer-
sity. In 2010, she joined the School of Informa-
tion Science and Engineering, East China Uni-
versity of Science and Technology, Shanghai,
P.R. China. Now, she is a professor of signal
processing. Her main research interest include
the analysis and processing of audio and music
signals using techniques, such as matrix factor-

ization, probability theory, and deep learning.

http://dx.doi.org/10.1145/3206098.3206111
http://dx.doi.org/10.1109/tnnls.2017.2716952
http://dx.doi.org/10.1109/tsa.2002.800560
http://dx.doi.org/10.1109/eurocon.2013.6625196

