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Neural Behavior-Based Approach for Neural Network Pruning

Koji KAMMA†a), Yuki ISODA†, Sarimu INOUE†, and Toshikazu WADA†, Nonmembers

SUMMARY This paper presents a method for reducing the redundancy
in both fully connected layers and convolutional layers of trained neural
network models. The proposed method consists of two steps, 1) Neuro-
Coding: to encode the behavior of each neuron by a vector composed of its
outputs corresponding to actual inputs and 2) Neuro-Unification: to unify
the neurons having the similar behavioral vectors. Instead of just pruning
one of the similar neurons, the proposed method let the remaining neuron
emulate the behavior of the pruned one. Therefore, the proposed method
can reduce the number of neurons with small sacrifice of accuracy with-
out retraining. Our method can be applied for compressing convolutional
layers as well. In the convolutional layers, the behavior of each channel
is encoded by its output feature maps, and channels whose behaviors can
be well emulated by other channels are pruned and update the remaining
weights. Through several experiments, we comfirmed that the proposed
method performs better than the existing methods.
key words: neuro-coding, neuro-unification

1. Introduction

Deep neural networks (DNNs) have been showing dominant
performances in the machine learning tasks. The key is the
scale of the models. In fact, all the state-of-the-art models
have a great number of parameters. Although, those mod-
els are too large for most of the applications where they are
desired. Therefore, it is important to make the DNN models
smaller without degrading their performances.

A major approach for producing a small and accurate
model is to compress a large pretrained model and retrain
the compressed model to maintain the accuracy. Although,
this retraining is a challenge, because it is computationally
expensive, and one often needs cumbersome trials and errors
for tuning hyperparameters.

In this paper, we propose a novel pruning method to
compress and accelerate the convolutional neural network
models while preserving the model performances, which
will significantly save one’s efforts on retraining the pruned
models.

Our method consists of two steps: 1) Neuro-Coding:
to encode the behavior of each neuron and 2) Neuro-
Unification: to unify the neurons which behave similarly.
Each neuron outputs a scalar value corresponding to each
input data. By recording those outputs, we create a behav-
ioral vector for each neuron. If some neurons have simi-
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lar behavioral vectors, we can unify those neurons, because
they are redundant. Unifying a pair of neurons is, in other
words, pruning one of them and letting the remaning one
emulate the behavior of the pruned one by transferring the
outgoing weights from the pruned one to the remaining one.
Therefore, we can unify the neurons with small impact to
the model accuracy.

Neuro-Coding and Neuro-Unification can be applied to
the convolutional layers as well. In the convolutional layers,
we reshape the feature maps so that the siliding window op-
eration can be described as a simple matrix multiplication,
then we conduct the channel-level behavior encoding and
unification.

It is worth noting that compressing fully connected lay-
ers results in saving memory consumption and that com-
pressing convolutional layers results in reducing the com-
putational complexity required for inference. For instance,
VGG16 [13] has about 90% of the parameters in fully con-
nected layers, and the convolutional layers account for about
99% of the floating point operations. The proposed method
can contribute to reducing both the memory consumption
and the computational complexity.

We conducted some experiments with VGG16s on Im-
ageNet. The results demonstrate that the proposed method
can compress both the fully connected layers and the convo-
lutional layers with small sacrifice of accuracy compared to
the existing methods.

2. Related Works

We categorize the existing researches about DNN model
compression into 4 groups: 1) Pruning, 2) Low-rank approx-
imation, 3) Sparsification, and 4) Quantization.
Pruning. The idea of pruning is to compute the saliency
of each neuron or weight and to remove the least salient
one. Optimal Brain Damage [8] is the pioneering pruning
method which uses second derivative information of the cost
function to calculate the saliency. There are also some other
pruning methods for fully connected layers and/or convolu-
tional layers [3], [4], [6], [9], [11], [19], [22]. Some pruning
methods not only prune but also execute “surgery” to com-
pensate the impact of pruning so that the model needs to be
retrained less frequently. Data-free Parameter Pruning [17]
evaluates similarity of the neurons based on their incoming
weights and “wires the similar neurons together”. Optmal
Brain Surgeon [5] is also a pruning method which executes
surgery based on the Hessian of the cost function.
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Low rank approximation. Xue et. al. suggested a method
using low-rank approximation [18]. They apply singular
value decomposition to large weight matrix, and approxi-
mate it by the product of small matrices by discarding the
components with small singular values. This results in re-
ducing the parameters with small sacrifice of accuracy. For
example, assume that a m× n matrix is approximated by the
product of a m × o matrix and a o × n matrix. if o � m, n,
the number of parameters reduces from mn to (m+ n)o. The
drawback is that the number of weight matrices doubles and
the model structure becomes more complicated.
Sparcification. The idea of sparsification is to make the
weight matrices sparse by fine-tuning the models with L1
regularization. Liu et. al. suggested Sparse Convolutional
Neural Networks [10]. There are other methods to sparsify
the weights such as [1]. Although, L1 regularization shifts
the global minimum of the cost function and sacrifices ac-
curacy. Besides, in order to take the advantage of the spar-
sified models, one needs the special hardwares and libraries
for executing the computions on only non-zero elements.
Quantization. Quantization is a different approach from
the above 5 approaches. The methods in this group reduce
the redundancy of each bitwise operation, e.g. changing the
floating point precision from 32-bit to 8-bit. Similarly with
sparsification, the special hardwares are required to deploy
the quantized models. The methods proposed in [2], [3] take
this approach.

The proposed method in this paper belongs to pruning
group. However, the way it executes the surgery is different
from the existing methods. The proposed method can eval-
uate the behavioral similarity between the neurons or the
channels accurately, which enables us to maintain high level
of the accuracy while compressing the models. Another ad-
vantage of the proposed method is that the pruned model can
be deployed without any special hardwares or libraries.

3. Neural Behavior-Based Pruning

The steps of the proposed method are:

Step1: Encode the behavior of each neuron by its outputs
(Neuro-Coding)

Step2: Unify the neurons based on their behavioral similar-
ity (Neuro-Unification)

Step2 should be repeated while the model is not small
enough. Besides, we may repeat Step1 at certain interval
because the behaviors of some neurons should change after
some unification happen, though it would require additional
computational cost.

In addition, we can optionally conduct extra surgeries
to preserve. In extra surgery, we can let more than one neu-
ron to emulate the behavior of a pruned neuron, which re-
sults in preserving the model performances better.

We first explain the basics of Neuro-Coding and Neuro-
Unification, and then explain the extra surgery. We also
show how to apply our method to the convolutional layers.

Fig. 1 The conceptual drawing of Neuro-Coding. When we input some
samples to a neural network model, each neuron obtains a behavioral vector
composed of their outputs.

3.1 Neuro-Coding

Neuro-Coding is a technique to capture the neuron behav-
iors. Figure 1 is the conceptual drawing. Let z1, · · · , zN

denote the neurons in a certain layer, where N denotes the
number of neurons. For a single input sample into the
model, zi outputs a scalar value. For D input samples, the
output of zi is obtained as a vector xi ∈ RD. We call it a
“behavioral vector” of zi.

3.2 Neuro-Unification

Let z′n denote the nth neuron in the next layer to the target
one, and win denote the weight going from zi to z′n (See
Fig. 2). The forward propagation is described by

yd
n = xd

i win + xd
jw jn +

∑

k�i, j

xd
kwkn, (1)

where xd
i denotes the dth element of xi which is, in other

words, the output of zi corresponding to the dth input sample,
yd

n denotes the inner activation level of z′n.
If xi = αx j holds, we can unify zi and z j without af-

fecting the model performance. As shown in Fig. 2 (b), we
prune zi and let z j emulate the behavior of zi by updating w jn

by

w jn := αwin + w jn, (2)

where := denotes assignment. Then, we can rewrite Eq. (1)
as

yd
n = xd

j

(
αwin + w jn

)
+
∑

k�i, j

xd
kwkn. (3)

Equation (1) and Eq. (3) are equivalent because xi = αx j

holds, which means the inner activation level of z′n is pre-
served. This weight transfer is the surgery step in Neuro-
Unification.

Next, we address the case of unifying the neurons with
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Fig. 2 Unification of neurons. (a) Initial state of the fully connected layers. (b) After merging zi into
z j. If the behavioral vectors of zi and z j are similar, we can unify them with small impact to the inner
activation levels of the neurons in the next layer.

linearly independent behavioral vectors. In this case, we
first approximate xi by a vector which is linearly dependent
with x j:

xi � αx j. (4)

We regard that αx j is the behavioral vector of zi so that we
can unify zi and z j in the same manner with Eq. (2).

Here is a question. How to determine α in Eq. (4)? In
order to preserve the inner activation levels of the neurons
in the next layer, we simultaneously minimize the error of
the inner activation levels of z′1, · · · , z′N′ , where N′ denotes
the number of the neurons in the next layer. This can be
formalized as

α∗i j = argmin
α

N′∑

n=1

D∑

d=1

((
αxd

j − xd
i

)
win

)2
.

= argmin
α

N′∑

n=1

w2
in

D∑

d=1

(
αxd

j − xd
i

)2
(5)

We can omit
∑N′

n=1 w
2
in in Eq. (5) as it is a constant when i is

fixed. Moreover, we obviously have

D∑

d=1

(
αxd

j − xd
i

)2
=
∥∥∥αx j − xi

∥∥∥2 . (6)

Then, Eq. (5) can be rewritten as

α∗i j = argmin
α

∥∥∥αx j − xi

∥∥∥2 . (7)

After all, we have to compute the orthogonal projection of
xi onto x j. Thus, we have

α∗i j =
x�i x j∥∥∥x j

∥∥∥2
. (8)

If the approximation of xi is good enough, z j can emulate
the major proportion of the behavior of zi, and the impact to
the overall model performance caused by the unification is
small.

3.3 Criteria for Selecting the Neurons to Be Unified

We know how to unify the neurons. Although, we have yet
to know how to select the neurons to be unified when we
have many possible neuron pairs.

As already discussed, we should unify the neurons
while minimizing the errors of the inner activation levels in
the next layer. For this purpose, we define the saliency of
(zi, z j) by

r(i, j) =
N′∑

n=1

win
2
∥∥∥α∗i jx j − xi

∥∥∥2 . (9)

In Eq. (9), r(i, j) represents the error in the next layer caused
by merging zi into z j. Note that we cannot ignore

∑N′
n=1 win

2

here as it is not a constant before we fix i.
Let Z denote the set composed of the tuples of the uni-

fied neurons’ indices (e.g. (i, j) ∈ Z means that zi has been
merged into z j). Then, we have to solve the following com-
binatorial optimization problem:

Z∗ = argmin
Z

∥∥∥∥∥∥∥∥

∑

(i, j)∈Z

N′∑

n=1

win

(
α∗i jx j − xi

)
∥∥∥∥∥∥∥∥

2

subject to |Z| = Q,

(10)

where |Z| denotes the order of Z and Q denotes the desired
number of the neurons to be pruned. In order to perform
simplification to Eq. (10), we use the following theorem
(See the appendix for the proof).

Theorem 1: Let a1, · · · , ap ∈ RP. Then,

∥∥∥∥∥∥∥

p∑

i=1

ai

∥∥∥∥∥∥∥

2

≤ p
p∑

i=1

‖ai‖2 . (11)

Using Theorem 1, we have
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∥∥∥∥∥∥∥∥

∑

(i, j)∈Z

N′∑

n=1

win

(
α∗i jx j − xi

)
∥∥∥∥∥∥∥∥

2

≤ |Z|
∑

(i, j)∈Z

∥∥∥∥∥∥∥
N′∑

n=1

win

(
α∗i jx j − xi

)
∥∥∥∥∥∥∥

2

= |Z|
∑

(i, j)∈Z

N′∑

n=1

win
2
∥∥∥∥
(
α∗i jx j − xi

)∥∥∥∥
2

= |Z|
∑

(i, j)∈Z
r(i, j).

(12)

We relax Eq. (10) by using this upper bound:

Z∗ = argmin
Z

∑

(i, j)∈Z
r(i, j)

subject to |Z| = Q.

(13)

We solve it in a greedy fashion. We select the neurons
one by one based on the following cost function F, where
we have Z∗ = argminZ F(Z):

F(Z) =
∑

(i, j)∈Z
r(i, j). (14)

Here, we need a constraint to avoid a contradiction. As-
sume that (i, j), ( j, k) ∈ Z. This means that we have merged
zi into z j, however, z j does not exist anymore as it has been
merged into zk. This is clearly an contradiction. Therefore,
we introduce a constraint to avoid merging any neuron into
z j if ( j, k) ∈ Z for some k.

3.4 Problem Reformalization and Greedy Algorithm

For better understanding, we reformalize the problem of se-
lecting the neurons based on graph theory, then we show the
algorithm to solve the problem.

The problem of selecting the neurons to be unified is
equivalent to the problem of creating a forest having mini-
mum cost in a complete symmetric digraph. Let G denote
the graph defined by

G = (V, E), (15)

where V and E denote the the sets composed of the vertices
and the edges, respectively. The vertices and the edges cor-
respond to the neurons and the possible unifications, respec-
tively. Since the graph is a complete symmetric digraph, we
have

E = V × V \ {(vi, vi)|vi ∈ V}. (16)

Let G′ = (V ′, E′) be the forest which we want to create,
where V ′ ⊆ V and E′ ⊆ E. If (vi, v j) ∈ E′, it means that
vi has been merged into v j. Then, we have the following
combinatorial optimization problem:

argmin
E′

∑

(vi,v j)∈E′
c(vi, v j) s.t. |E′| = Q, (17)

Algorithm 1
Input: Complete symmetric digraph G = (V, E), control parameter Q
Output: Forest G′ = (V′, E′)
Define: Initial and substantive edge cost c(·, ·) and c′(·, ·), set of prohib-
ited edges Ep, the number of elements of a set q(·),
Initialize: V′ = ∅, E′ = ∅, Ep = ∅,
for each (vi, v j) ∈ E do

c′(vi, v j) := c(vi, v j)
end for
while |E′| < Q do

Find (vi, v j) ∈ E \ Ep which minimizes c′(vi, v j)
V′ := V′ ∪ {vi, v j}, E′ := E′ ∪ {(vi, v j)}
for each s fulfilling (vs, vi) ∈ E′ do

E′ := (E′ \ {(vs, vi)}) ∪ {(vs, v j)}
end for
for each s fulfilling (vi, vs) ∈ E do

c′(vi, vs) := c(vi, vs)
end for
for each s fulfilling (vs, vi) ∈ E or (vi, vs) ∈ E do

Ep := Ep ∪ {(vi, vs), (vs, vi)}
end for
for each t fulfilling (v j, vt) ∈ E \ Ep do

c′(v j, vt) := c(v j, vt)
for each s fulfilling (vs, v j) ∈ E′ do

c′(v j, vt) := c′(v j, vt) + c(vs, vt) − c(vs, v j)
end for

end for
end while

where c(vi, v j) denotes the cost of (vi, v j), which is equivalent
to r(i, j) in Eq. (9).

Besides, we have a constraint that the height of trees
composing G′ must be 1. For example, assume that we have
the following tree with height of 2:

V ′ = {v1, v2, v3}, (18)

E′ = {(v1, v2), (v2, v3)}. (19)

This means that v1 has been merged into v2, which has al-
ready been merged into v3. This is an contradiction that
should be avoided.

All that is left is to solve the combinatorial optimization
problem. For obtaining the solution efficiently, we use a
greedy algorithm shown in Algorithm 1.

Computational order. In Algorithm 1, we have the
following computational steps: 1) to calculate c(·, ·) and 2)
to create G′ while updating V ′, E′, Ep and c′(·, ·). Step 1)
does not require heavy calculations and it needs to be done
only once. Step 2) occupies most of the complexity. The
order of Step 2) is O(N3), where N denotes the number of
neurons.

3.5 Extra Surgery

In Neuro-Unification, the behavior of the pruned neuron is
emulated by another neuron. However, it is possible to let 2
or more neurons for emulating a neuron’s behavior.

When merging zi into z j, xi is approximated by α∗i jx j.
The residual of this approximation, given by ri = xi −α∗i jx j,
causes the errors in the next layer. In order to make this
residual even smaller, we let zk(k � i, j) to emulate the resid-
ual of the behavior of zi. This can be described by
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β∗ik = argmin
β
‖βxk − ri‖2 , (20)

wkn := β∗ikwin + wkn. (21)

In the same manner, we can pick yet another neuron to em-
ulate the residual of the behavior of zi. By repeating this
procedure, the residual of xi gets even smaller, which re-
sults in reducing the errors of the inner activation levels in
the next layer.

Another good part of the extra surgery is that the re-
quired computational cost is very small compared to the
step of selecting the neurons to be unified. Therefore, one
can conduct lots of extra surgeries as desired without strong
computational resorces.

3.6 Applying Neuro-Unification to Convolutional Layers

The Neuro-Unification can be applied to the convolutional
layers with a minor modification. By expanding the feature
maps and the kernels in the convolutional layer into matri-
ces, we can deal with the convolutional layers in the same
manner with the fully connected layers.

Same with “im2col” method implemented in
cuDNN [20], we can describe the sliding window operations
in the convolutional layers by the sum of the matrix multipli-
cations, as shown in Fig. 3. Let a and A denote the numbers
of the input channels and the output channels, h denotes the
width and the height of the feature maps, s denote the width
and the height of the weight tensor. The sliding window op-
erations with a RN×a×h×h tensor, which denotes the feature
maps corresponding to the N input images, and a A×a× s× s
tensor, which denotes the weights, can be alternatively writ-
ten as

Fig. 3 The illustration of im2col method implemented in cuDNN. The
kernel (corresponding to the each single input channel) is reshaped into a
vertical vector, and the sub-matrices of the feature maps are reshaped into a
horizontal vectors. After these reshaping, we can describe the sliding win-
dow operation of the convolutional layer by a simple matrix multiplication.

Y =
∑

i∈B

ΦiΨ
�
i =
∑

i∈B

∑

m∈T
φi(m)ψ

�
i(m), (22)

where B = {1, · · · , a} denotes the set of the input channel
indices, Φi ∈ RNh2×s2

denotes the ith channel of the reshaped
input feature maps, Ψi ∈ RA×s2

denotes the reshaped weight
tensor, T = {1, · · · , s2} denotes the set of the column indices
of Φs and Ψs, φi(m) and ψi(m) denote the mth columns of Φi

and Ψi.
We can regard that this layer is equivalent to the fully

connected layer where as2 neurons exists, the behaviors of
those neurons are given by the φ’s, and the outgoing weights
are given by the ψ’s. Pruning the ith channel in the convolu-
tional layer is equivalent to pruning s2 corresponding neu-
rons in this converted form.

4. Experiments

We evaluate our method on VGG16 [13] trained with Im-
ageNet [15] and ResNet-56 [14] on cifar-10 [16], and com-
pare the performances with some existing methods.

4.1 Existing Methods

We explain the existing methods to compare with ours and
have the theoretical discussion.

(1) Data-free Parameter Pruning (DPP)

DPP [17] is a method for compressing the fully connected
layers. DPP unifies the neurons with similar incoming
weights. See Fig. 2 (a). ui denotes the incoming weights
of zi including the bias term. If ui � αu j, they remove zi and
update the outgoing weights of z j in the same manner with
Eq. (2).

We expect that our proposed method will perform bet-
ter than DPP, because DPP does not evaluate the influence
of activation functions while ours does. The assumption be-
hind DPP is that if the incoming weights of some neurons
are similar, their outputs should also be similar. However,
the similarity of the incoming weights of the neurons does
not guarantee that their outputs are also similar due to the
non-linearity of the activation functions such as ReLU.

Besides, DPP can use only one neuron to emulate a re-
moved neuron, while the proposed method can use as many
neurons as we want for emulating the removed one. This is
obviously one of the reasons why our method is better.

(2) Oracle Pruning (OP)

OP [11] conducts channel-wise pruning for convolutional
layers. OP computes the saliency of each channel based on
the derivative information of the cost function, and prunes
the least salient ones.

OP only prunes the neurons and do not conduct
surgery. Therefore, iterative pruning with OP may result in
a rapid degradation of the model accuracy.

Besides, differently from our method, OP’s channel se-
lection criteria is designed by heuristics, therefore, this crite-
ria is not promising for preserving the model performances.
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Fig. 4 Theoretical comparison of our method and ThiNet. It illustrates a
part of the weight tensor that goes from all the input channels to a single
output channel. In the reconstruction step, ThiNet multiplies the whole
weights in each channel by a common coefficient. On the other hand, our
method can tune weights independently from other weights that belong to
the same channel.

(3) ThiNet

ThiNet [22] is a pruning method for convolutional layers.
ThiNet prunes the channels in a greedy fashion so that the
outputs of the convolutional layer (in other words, the inner
activation levels in the next layer) is preserved, then recon-
structs the outputs by the least squares method.

Figure 4 illustrates a part of the weight tensor that goes
from all the input channels to a single output channel. In the
reconstruction step, ThiNet multiplies the whole weights in
each channel by a common coefficient such as Wi ← αWi.
On the other hand, our method updates each weight inde-
pendently such as w(i, j)

k ← αw(1,1)
1 + βw(1,2)

1 + · · · + ωw(s,s)
c ,

where w(i, j)
k denotes the (i, j) entry of the kth channel.

Another difference between our method superior and
ThiNet is that we take the consistent strategies for channel
(neuron) selection and surgery steps. We select channels to
be pruned based on the error in the next layer after surgery,
while ThiNet’s channel selection criteria is based on the er-
ror before surgery. Therefore, we expect that our method
can prevent the degradation of the model better than ThiNet.

Table 1 Results of VGG16 on ImageNet, fully connected layers. In this
Table, “NU” of “NU(k)” stands for “Neuro-Unification” and k denotes the
number of times of extra surgeries. The baseline top-5 accuracy is 0.895.

Params# NU(0) NU(1) NU(10) DPP

×1/2 0.854 0.874 0.879 0.856
×1/3 0.781 0.849 0.864 0.763

4.2 Experiments with VGG16 on ImageNet

We perform pruning on pretrained VGG16. For pruning, we
use randomly selected 5000 training images. All the im-
ages are resized so that the shorter side is 256. We apply
random horizontal flip and 224 × 224 random crop to the
training images, and apply 224 × 224 center crop to the test
images. Note that we do not conduct retraining the models
after/during pruning. As one of our motivations is to save
time for retraining, we want to see how well we can main-
tain the accuracy even without retraining.

4.2.1 Pruning Fully Connected Layers

We prune “fc1” and “fc2”. The pruning ratios (the ratio of
the number of neurons/channels to be pruned in a certain
layer) for both layers are set evenly, and the pruning ratio is
tuned so that the model size (the number of the parameters)
becomes 1/2 and 1/3.

Table 1 shows the results. We only see a marginal
defference between our method without extra surgeries and
DPP at ×2 compression ratio. With extra surgeries, our
method easily outperforms DPP. At ×3 compression ratio,
our method is obviously better even without extra surgeries.
After 10 extra surgeries, we only suffer 0.031 accuracy drop,
while DPP suffers 0.132.

We also briefly report the computational time of Neuro-
Unification. In Neuro-Unification, the computation of Algo-
rithm 1 accounts for most of the whole computation. When
N = 4,096, it took about 177 seconds computing with single
thread of Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz.
We believe this is fast and practical enough.

4.2.2 Pruning Convolutional Layers

We set the pruning ratios in Conv1, Conv2, Conv3 and
Conv4 to 6.5 : 6 : 6 : 5.5. We do not prune the layers
in Conv5, because we found out that the layers in Conv5
are not redundant, and pruning those layers results in steep
accuracy drops.

For pruning, we use the same subdataset that is used
in Sect. 4.2.1. In the convolutional layers, the behaviors of
the channels are denoted by {Φi ∈ RNh2×s2 |i ∈ B}. Since the
Φ’s are too large matrices, we take randomly selected 50000
rows and deleted the other rows.

Table 2 shows the result. Our method, especially with
10 times of extra surgeries, easily outperforms the other
methods. At ×2 speed-up, we only suffer 5.0% accuracy
drop even though the model has not been retrained. ThiNet
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Table 2 Results of VGG16 on ImageNet, convolutional layers. The
baseline top-5 accuracy is 0.895.

FLOPs NU(0) NU(1) NU(10) OP ThiNet

×1/2 0.375 0.802 0.845 0.024 0.245
×1/3 0.097 0.616 0.729 0.006 0.022

Table 3 Results of ablation study, VGG16 on ImageNet, fully connected
layers. Performances of Neuro-Unification with different number of images
for encoding. The baseline top-5 accuracy is 0.895.

Params
Images# for Neuro-Coding
128 1024 5000

×1/2 0.704 0.769 0.854
×1/3 0.388 0.537 0.781

is better than OP, however, much worse than our method
even without extra surgeries. As we discuss later, this is be-
cause Neuro-Unification takes more sophisticated approach
for surgery than that of ThiNet.

4.2.3 Ablation Study

For evaluating how important it is to encode the neuron
behaviors, we set the number of samples used for Neuro-
Coding as 128, 1024, 5000, and applied Neuro-Unification
to the fully connected layers of VGG16. We do not conduct
extra surgeries in this experiment.

See Table 3. The trend is that the more samples
are used for Neuro-Coding, the better the performance of
Neuro-Unification is. It implies that when the number of
samples for Neuro-Coding is not many enough, the neu-
ron behaviors cannot be described well by the behavioral
vectors, and the performance of Neuro-Unification becomes
poor. Thus, it is crucial to use many data for Neuro-Coding
enough to describe the neuron behaviors well.

4.3 Experiments with ResNet-56 on Cifar-10

We conduct experiments with ResNet-56 on cifar-10 taken
from [21]. In this experiment, we not only prune but also
retrain the models for 10 epochs at 0.01 learning rate and
another 10 epochs at 0.001 learning rate, and evaluate the
performances before and after the retraining.

For pruning, we use 5120 randomly sampled images.
The training images are padded by 4 pixels in each side, and
randomly cropped at 32× 32. The rest of the parameters are
as below: the momentum is 0.9, the minibatch size is 128,
the gradients was computed by SGD with cross entropy loss.

The targets are only the convolutional layers since
ResNet has only one fully connected layer. ResNet-56 has
27 branched units that have 2 convolutional layers, such as
the one shown in Fig. 5. We conduct pruning on the layers
that are not located in the branching points and the merge
points (Therefore, the targets are 27 layers). We set the prun-
ing ratio in each layer constantly. As we think the results in
Sect. 4.2.2 is enough to conclude that our method is better
than OP, we use only ThiNet for comparison.

Table 4 shows the result. Consistently with the other

Fig. 5 The illustration of a branched structure of ResNet-56. The data
tensors are forwarded through the both paths and are eventually merged.
Thus, we prune only the intermediate layers so that we keep the output
shape unchanged at the end of the residual unit.

Table 4 ResNet-56 on cifar-10. The baselines are 0.934 (top-1).

FLOPs Retraining NU(0) NU(1) NU(10) ThiNet

×1/2 No 0.655 0.810 0.834 0.827
×1/2 Yes 0.927 0.924 0.925 0.923

experiments, our method outperforms the other methods
when we do not conduct retraining. After fine-tuning, the
accuracy of our pruned ResNet-56 is from 0.924 to 0.927.
This is competitive with ResNet-32 in [14] (The accuracy
is 0.925.), while our pruned model has fewer FLOPs than
unpruned ResNet-32 by approximately 10%.

It should be noted that the performance difference of
our method and ThiNet is not very significant after retrain-
ing. Although, the strength of our Neuro-Unification is not
only preserving the accuracy but also optimizing the net-
work architectures. We expect that we can further outper-
form ThiNet by extending Neuro-Unification in the future.
This is mensioned in Sect. 6.

5. Conclusion

We proposed Neuro-Coding and Neuro-Unification, a
method for neural network pruning and surgery. The pro-
posed mehtod encodes the behaviors of the neurons or the
channels by their outputs and unify the neurons with similar
behaviors, in other words, we prune a neuron and transfer
its weights to another one. Moreover, we can conduct ex-
tra surgeries, where we let more than one neurons to emu-
late the behavior of a pruned one. Therefore, our method
enables to maintain the model performances in high level
without retraining. On the experiments, the proposed meth-
ods performs much better than the existing methods, and the
effectiveness of the proposed method is confirmed.
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6. Future Work

We plan to extend Neuro-Unification so that we can opti-
mize the pruning ratio in each layer. Currently, the model
is pruned with manually determined pruning ratios and re-
trained. It requires lots of labors to optimize the pruning
ratios, because the model accuracy achieved by retraining
can be known only after retraining. On the other hand, our
method can preserve the accuracy of the model very well
even without retraining. We can judge if we should stop
or keep on pruning based on the error after surgery, when
we prune each layer. This is very efficient, because we can
know the proper pruning ratios without conducting retrain-
ing. Note that this is only possible with our method, because
we can preserve the accuracy of the model very well even
without retraining and the existing methods cannot preserve
the accuracy as well as ours.
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Appendix:

Proof of Theorem 1: Let ai( j) denote the jth entry of ai.
Then, we need to prove

P∑

j=1

⎛⎜⎜⎜⎜⎜⎝
p∑

i=1

ai( j)

⎞⎟⎟⎟⎟⎟⎠
2

≤ p
P∑

j=1

p∑

i=1

a2
i( j). (A· 1)

Based on Cauchy-Schwarz inequality, we have
⎛⎜⎜⎜⎜⎜⎝

p∑

i=1

ai( j)

⎞⎟⎟⎟⎟⎟⎠
2

=

⎛⎜⎜⎜⎜⎜⎝
p∑

i=1

1 · ai( j)

⎞⎟⎟⎟⎟⎟⎠
2

≤
⎛⎜⎜⎜⎜⎜⎝

p∑

i=1

12

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

p∑

i=1

a2
i( j)

⎞⎟⎟⎟⎟⎟⎠ = p
p∑

i=1

a2
i( j).

(A· 2)

Therefore, we have

P∑

j=1

⎛⎜⎜⎜⎜⎜⎝
p∑

i=1

ai( j)

⎞⎟⎟⎟⎟⎟⎠
2

≤
P∑

j=1

p
p∑

i=1

a2
i( j) = p

P∑

j=1

p∑

i=1

a2
i( j). (A· 3)
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