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PAPER

Instruction Filters for Mitigating Attacks on Instruction Emulation
in Hypervisors∗

Kenta ISHIGURO†a), Nonmember and Kenji KONO†b), Member

SUMMARY Vulnerabilities in hypervisors are crucial in multi-tenant
clouds and attractive for attackers because a vulnerability in the hypervisor
can undermine all the virtual machine (VM) security. This paper focuses on
vulnerabilities in instruction emulators inside hypervisors. Vulnerabilities
in instruction emulators are not rare; CVE-2017-2583, CVE-2016-9756,
CVE-2015-0239, CVE-2014-3647, to name a few. For backward compat-
ibility with legacy x86 CPUs, conventional hypervisors emulate arbitrary
instructions at any time if requested. This design leads to a large attack
surface, making it hard to get rid of vulnerabilities in the emulator.

This paper proposes FWinst that narrows the attack surface against
vulnerabilities in the emulator. The key insight behind FWinst is that the
emulator should emulate only a small subset of instructions, depending on
the underlying CPU micro-architecture and the hypervisor configuration.
FWinst recognizes emulation contexts in which the instruction emulator is
invoked, and identifies a legitimate subset of instructions that are allowed
to be emulated in the current context. By filtering out illegitimate instruc-
tions, FWinst narrows the attack surface. In particular, FWinst is effective
on recent x86 micro-architectures because the legitimate subset becomes
very small. Our experimental results demonstrate FWinst prevents exist-
ing vulnerabilities in the emulator from being exploited on Westmere and
Skylake micro-architectures, and the runtime overhead is negligible.
key words: virtualization, hypervisor, instruction emulator, security

1. Introduction

Vulnerabilities in hypervisors are crucial in multi-tenant
clouds because they can undermine all the virtual machine
(VM) security. If a vulnerability results in VM Escape, a
malicious VM breaks out of itself, gets the full control over
the hypervisor, and attacks other co-located VMs using the
privilege of the hypervisor. Since the hypervisor is the most
privileged, the malicious VM can do whatever it wants. Un-
fortunately, there are many reported vulnerabilities in the
hypervisor. As of November 2018, 111 CVEs are reported
for KVM [1] and 275 vulnerabilities are in Xen Security Ad-
visories (XSA) [2].

This paper focuses on vulnerabilities in instruction em-
ulation in the hypervisor. Ideally, the hypervisor would only
need to emulate a small subset of the instruction set. How-
ever, on x86 architecture, the hypervisor may be required
to emulate most instructions [3], [4]. Instructions other than
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sensitive ones [5], [6] that must not be executed directly in
the guest are emulated in the following cases:

• Port I/O (PIO): When an I/O port is accessed, the port
I/O instructions are interpreted to emulate the accessed
I/O device.
• Memory Mapped I/O (MMIO): An access to an

MMIO region is trapped by the hypervisor and the ac-
cessing instruction is interpreted by the instruction em-
ulator to emulate the accessed I/O device.
• Shadow Page Tables: Prior to Nehalem micro-

architecture, Intel CPUs did not support second level
address translation. To keep the consistency between
“shadow” and “guest” page tables, the hypervisor
tracked changes of guest page tables by trapping and
emulating VM writes to them.
• Real Mode: Prior to Westmere micro-architecture, In-

tel CPUs prevented real-mode code from running in
guest-mode. Since CPUs boot in real-mode, hyper-
visors began with emulating the virtual CPU execu-
tion [7].
• Migration: To allow VM migration between Intel

and AMD CPUs, some hypervisors trap and emulate
vendor-specific instructions such as sysenter (spe-
cific to Intel). If sysenter is executed on AMD, the
hypervisor traps and emulates it.
• User-Mode Instruction Prevention (UMIP): UMIP

is a security feature introduced since Cannon Lake
micro-architecture, which prevents some privileged
registers from being read at user-level. Some hyper-
visors emulate UMIP on legacy (before Cannon Lake)
micro-architectures by emulating the instructions that
read those privileged registers.

Emulating most of the x86 instructions is complicated
and error-prone. In fact, vulnerabilities in x86 emulators
are not rare. To name a few, CVE-2016-9756 points out
vulnerabilities in far jump and far ret. CVE-2017-
2584 reports those in fxrstor, fxsave, sgdt, and sidt.
CVE-2015-0239 and CVE-2017-2583 report vulnerabilities
in sysenter and mov SS, respectively. CVE-2016-9756,
CVE-2017-2584, CVE-2015-0239, CVE-2017-2583 are all
related to vulnerabilities in the emulator. Making matters
worse, Amit et al. [3] demonstrate any instructions can be
forced to be emulated. This new attack vector allows an at-
tacker to exploit a vulnerability in any instructions.

This paper presents FWinst (derived from “Instruction
Firewall”), which raises the bar for attacks on instruction
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emulation by narrowing the attack surface against it. The
key insight behind FWinst is twofold. First, the emulator
supports a wide range of x86 instructions only for backward
compatibility. Recent x86 micro-architectures diminish the
need for instruction emulation. For example, allowing real-
mode in guest-mode eliminates the need for emulating real-
mode code in hypervisors. Supporting second level address
translation eliminates the need for emulating VM writes to
guest page tables.

Second, a legitimate subset of instructions to be emu-
lated depends on the emulation context in which the emu-
lator is invoked. If the emulator accepts only the legitimate
set of instructions in each context, the attack surface is nar-
rowed because the attacker cannot exploit vulnerabilities in
instructions not legitimate in the current context. FWinst
identifies six contexts: 1) PIO context, 2) MMIO context,
3) shadow page table context, 4) real-mode context, 5) mi-
gration context, and 6) UMIP context, and is given a list
of legitimate instructions for each context. For example, in
the migration context, sysenter, which is specific to In-
tel CPU, is emulated only on AMD CPUs; its emulation is
denied on Intel CPUs. In the MMIO context, the emulator
denies jmp instruction because an MMIO region is accessed
only through memory access instructions such as mov.

To narrow the attack surface, FWinst uses a hypervi-
sor’s configuration and determines which context is valid.
When a hypervisor is invoked to emulate an instruction,
FWinst checks if the current context is valid. If it is not, no
instruction is emulated. For example, if second level address
translation is enabled, no instruction should be emulated in
the shadow page table context. If the current context is valid,
FWinst passes only the legitimate instruction to the emula-
tor. For example, in the MMIO context, the legitimate set of
instructions are memory-access instructions. Emulation of,
for instance, jmp instruction, is denied.

We have implemented a prototype of FWinst on KVM
(Linux version 4.8.1), which runs on Intel Westmere and
Skylake micro-architectures with the full-fledged support
for virtualization turned on. Our experiment demonstrates
FWinst can defend against several attacks on vulnerabili-
ties in the emulation of sysenter, far jump, far ret,
mov SS, fxrstor, fxsave, sgdt, sidt, clflush and
hint-nop in KVM (Linux version 4.8.1). It also shows
the performance overheads of FWinst is negligible. Fur-
thermore, the code size of FWinst is small (279 LoC) and
unlikely to introduce new security holes.

Our contribution can be summarized as follows. We
show the design and implementation of FWinst, a novel pro-
tection mechanism against vulnerabilities in the instruction
emulator. FWinst narrows the attack surface by restricting
the instruction emulation to the legitimate sets of the effec-
tive emulation context. We have identified six emulation
contexts and defined a legitimate set of instructions for each
context. The evolution of the hardware support for virtu-
alization reduces the number of instructions that should be
emulated by the instruction emulator and contributes to nar-
rowing the attack surface. We demonstrate the effectiveness

of FWinst against 17 reported vulnerabilities in the instruc-
tion emulator. This paper extends our workshop paper [8]
with more details and experiments.

The rest of this paper is organized as follows. Section 3
describes the threat model and analyzes the vulnerabilities
in instruction emulation. Section 4 shows the design and
implementation of FWinst, and Sect. 5 reports the experi-
mental results. Section 6 relates our work with others and
Sect. 7 concludes the paper.

2. Background

2.1 Intel VT-x Extension

Hardware virtualization extensions, Intel VT-x and AMD-V
for instance, enable almost all instructions of a guest VM
to run natively on host CPUs. Many current hypervisors
are implemented with hardware virtualization extensions.
For example, KVM and Xen Hardware-assisted Virtual Ma-
chine (HVM) make use of the virtualization extensions. The
rest of this section explains how an instruction emulator is
invoked inside the hypervisor, targeting on Intel CPU with
virtualization support (VT-x).

In Intel VT-x, two execution modes, the root and non-
root modes are added. Hypervisor code runs in the root
mode, whereas a guest VM code runs in the non-root mode.
Both the root and non-root modes have traditional execu-
tion modes (i.e. real mode and protected mode) and privi-
lege levels (i.e. ring protections). Therefore, guest VMs in
the non-root mode can use any of the execution modes and
the privilege levels without any support from the hypervisor.
Whenever some support is necessary from the hypervisor,
the control is transferred from a guest VM to the hypervisor,
called “VMExit”, changing the CPU mode from the non-
root mode to the root mode.

Once a VMExit occurs, the reason of VMExit is written
in a Virtual Machine Control Structure (VMCS) by the hard-
ware. The VMCS is a key virtualization structure in memory
that consists of several fields, for example, the guest or host
state fields, control fields, and VMExit information fields.
The hypervisor can control VM state and settings through
writing to the VMCS and get information about VM state
from the VMCS. On the VMExit, a handler dedicated to
each VMExit reason is invoked to emulate virtualized hard-
ware.

A VMExit occurs, for instance, when a guest VM at-
tempts to execute the cpuid instruction. A host CPU can-
not execute the cpuid instruction in a guest VM because it
should return the VCPU ID instead of the physical CPU’s.
Other system instructions, for example, accesses to the CRx,
GDTR, LDTR, and MSR registers cause VMExits.

2.2 Instruction Emulation in Hypervisors

Some instructions executed in a guest VM must be emu-
lated in the hypervisor although most instructions execute
natively on host CPUs. For example, if an MMIO region
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Fig. 1 Instruction Emulator in Ordinary Hypervisors and in Hypervisors with FWinst.

is accessed, the hypervisor must intercept the I/O operation
and emulate it. Because VT-x does not virtualize devices
and thus the issued I/O operation cannot be executed na-
tively on the physical device.

To trap access to an MMIO region from a guest VM,
the hypervisor sets all MMIO regions inaccessible from ev-
ery guest VM. A VMExit is caused with EPT violation (il-
legal memory access) as the VMExit reason when a guest
VM accesses an MMIO region. The hypervisor analyzes the
faulting address to determine whether the access is caused
by the access to an MMIO region.

Then, the hypervisor fetches the instruction that ac-
cessed to the MMIO region. The instruction emulator de-
codes and partially emulates the fetched instruction to rec-
ognize its operand. According to the operand, a device em-
ulator such as QEMU is invoked.

Instruction emulation is not limited to the access to
MMIO regions. The contexts that must be emulated are not
only in the case of accessing an MMIO region. The hyper-
visor emulates instructions in the following six contexts.

• Port I/O (PIO) context: The hypervisor emulates an
instruction that performs PIO. PIO is as an interface to
interact with devices and accessed through in or out
instructions are used to perform PIO. Executing in
or out instructions in guest VMs incurs VMExit and
these instructions are emulated by the hypervisor.
• Memory Mapped I/O (MMIO) context: The access

to an MMIO region must be emulated for device em-
ulation. MMIO is an interface to interact with devices
through system memory. The memory and registers of
devices are mapped to system memory so that CPUs
can access devices by the same instructions that are
used to access system memory. The hypervisor traps
and emulates MMIO operations by making MMIO re-
gions inaccessible.
• Shadow Page Tables context: The hypervisor needs

to emulate an instruction that updates a guest page ta-
ble to keep the consistency between guest and host
(shadow) page tables. Prior to Nehalem micro-
architecture, Intel CPUs did not support the second-
level address translation. The hypervisor uses shadow
page tables to translate guest virtual addresses into host
physical addresses. The hypervisor traps and emulates

an instruction that writes to a guest page table, and up-
dates shadow page tables to keep the consistency.
• Real Mode context: Prior to Westmere micro-

architecture, all guest instructions in real-mode must be
emulated by the hypervisor. Intel CPUs prevent real-
mode code from running in guest-mode. CPUs boot
in real-mode and thus the hypervisor emulates all the
instructions until they enter protected-mode.
• Migration context: To allow VM migration be-

tween different vendor CPUs (Intel and AMD), vendor-
specific instructions must be emulated if the VCPU’s
vendor differs from the physical CPU’s. For ex-
ample, vmcall and vmmcall are specific to Intel
and AMD respectively. Both of them invoke hyper-
call that hypervisors prepared for para-virtualization.
Fast control transfer instructions such as sysenter,
sysexit, syscall and sysret are vendor-specific.
Intel CPUs do not support syscall/sysret instruc-
tions for 32-bit kernels and also AMD CPUs do
not support sysenter/sysexit instructions for 64-
bit kernels. The hypervisor reports that the VCPU
supports vendor-specific instructions to use them even
if they are not supported by the physical CPU. If
the migrated VM execute vendor-specific instructions
not supported by the physical CPU, the physical CPU
throws an illegal instruction exception. Then, the hy-
pervisor traps illegal instruction exceptions and emu-
lates vendor-specific instructions.
• User-Mode Instruction Prevention (UMIP) context:

UMIP is a security feature of Intel processors to pre-
vent unprivileged code from reading system-wide set-
tings such as the physical address to an interrupt vector
table (interrupt descriptor table in Intel). More con-
cretely, UMIP prevents execution of sgdt, sidt, sldt,
smsw, and str instructions at unprivileged level [9]. To
emulate UMIP on legacy CPUs not supporting it, the
hypervisor traps and emulates them.

The new hardware virtualization extensions obviate the need
for instruction emulation in some contexts. We describe the
detail of eliminated contexts in Sect. 2.3.

2.3 Evolution of Intel VT-x

Intel VT-x has evolved since the first introduction on Pen-
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Fig. 2 Evolution of Intel VT-x and corresponding emulation contexts
over time.

tium 4 in 2005. While six contexts require instruction em-
ulation in Intel Pentium 4, the hypervisor on the most re-
cent micro-architecture has to support three contexts. Fig-
ure 2 shows the evolution of Intel VT-x and the relationship
between CPU features and emulation contexts over time.
Since the new features of VT-x allow guest VMs in Real-
Mode and Shadow Page Table contexts to execute instruc-
tions natively, these contexts no longer require the instruc-
tion emulation. These features have been enabled by de-
fault in popular hypervisors such as KVM and Xen for ten
years [10], [11]

In Nehalem micro-architecture, the extended page ta-
ble (EPT) was introduced as second-level address transla-
tion. The hypervisor does not need to perform instruction
emulation in the shadow page table context if the EPT is en-
abled. The EPT holds translations of guest physical address
to host physical address and the hypervisor maintains EPTs
instead of shadow page tables. Therefore, the hypervisor
does not need to trap and emulate instructions that modify
guest page tables

In Westmere micro-architecture, “Unrestricted Guest”
feature was introduced. This feature enables guest VMs to
run real-mode code in guest-mode. The emulation in real-
mode context has not been necessary anymore.

The instruction emulator still supports many instruc-
tions for backward compatibility while new features of VT-
x obviate the need for instruction emulation in Real-Mode
and Shadow page Table contexts. The current hypervisors
invoke the instruction emulator in those contexts if the host
uses legacy CPUs; they do not support EPT or unrestricted
guest. A new attack vector that enables attackers to force
the emulation of arbitrary instructions to exploit its emula-
tion has been proposed [3]. As a result, in spite of the new
features of VT-x, the attack surface in the instruction emu-
lator is still large.

3. Threat Model and Vulnerability Analysis

3.1 Threat Model

Before describing the threat model, this section explains the
detail of a new attack vector. This attack vector is neces-
sary to exploit a wide range of vulnerable instructions. To
exploit the instruction emulator, an attacker has to force the

Fig. 3 Timing Attack on Instruction Emulation.

hypervisor to perform emulation of a vulnerable instruction.
However, as described in Sect. 2.2, the contexts of the in-
struction emulator invoked are limited.

At first glance, an attacker appears unable to exploit
a vulnerable instruction if it does not cause any VMExit
because the emulator is not invoked. Suppose that an at-
tacker is trying to exploit a vulnerability in the emulation of
sysenter instruction (CVE-2015-0239). When sysenter
is executed on Intel x86, it does not cause any VMExits
and thus the emulator is not invoked. Interestingly, Amit
et al. [3] have proposed the new attack vector to force the
emulator to decode whichever instruction the attacker wants
to exploit. This attack vector is a timing attack and exploits a
short time interval between the VMExit and the emulator in-
vocation. In Fig. 3, an attacker accesses an MMIO region to
cause a VMExit, and quickly replaces the accessing instruc-
tion with a vulnerable instruction (sysenter). If the re-
placement finishes before the VMExiting instruction (mov)
is fetched, the emulator fetches and decodes the vulnerable
instruction.

Our threat model is as follows. We assume that a guest
operating system is not trustworthy; it may have security
holes and be subverted by an attacker. Together with the
attack vector proposed by Amit et al., this assumption im-
plies that an attacker can force any instruction to be emu-
lated through an MMIO region. Note that an attack on the
instruction emulator is sometimes possible from the user-
space. Recent Linux allows a small portion of the MMIO
region to be exposed to user-space; HPET (High Precision
Event Timer) can be configured to be exposed to user-space
in Linux.

3.2 Vulnerability Analysis

As described in Sect. 2.3, the emulator in the hypervisor
supports many instructions for backward compatibility. The
complexity of x86 instruction set leads to vulnerabilities in
the emulator. In particular, instructions rarely used in mod-
ern environments are not tested and maintained well and are
likely to be vulnerable. CVE-2015-0239 reports a vulnera-
bility in the emulation of sysenter in 16-bit mode, which
results in the privilege escalation. CVE-2016-9756 reports
vulnerabilities in the emulation of far jump and far ret
in 32-bit mode, which leads to the leak of the host kernel
stack. More vulnerabilities are reported; CVE-2017-2584,
CVE-2017-2583, CVE-2014-8480, CVE-2014-3647, CVE-
2016-8630, and CVE-2014-8481 are all related to vulnera-
bilities in the emulator.
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The goal of FWinst is to narrow an attack surface
against vulnerabilities in instruction emulation. Our insight
behind FWinst is twofold. First, emulation of most instruc-
tions is required for backward compatibility. If the hyper-
visor runs on CPUs with full-fledged support for virtualiza-
tion, the number of emulation contexts that require instruc-
tion emulation becomes much smaller. While the hypervisor
on legacy x86 micro-architectures must support 6 emulation
contexts, the hypervisor on recent micro-architectures has
to support only 3 contexts: 1) Port I/O, 2) MMIO, and 3)
Migration. Emulation in Real-Mode, Shadow Page Table,
and UMIP is not necessary in recent micro-architectures be-
cause real-mode in guest-mode is allowed, EPT (extended
page table) is supported for second level address translation,
and guest VMs can leverage UMIP without VMExiting.

Second, a legitimate subset of instructions is very lim-
ited that is allowed to be emulated in each emulation con-
text; arbitrary instructions should be emulated in every em-
ulation context. For example, an MMIO region is accessed
only by memory-accessing instructions; it is not legitimate
to jump into an MMIO region or to invoke sysenter on
an MMIO region. If the instructions not legitimate in the
current emulation context are filtered out, the attack surface
is narrowed; an attacker can exploit a vulnerability in the
instructions that are legitimate in the current context.

By narrowing the attack surface, FWinst is expected
to prevent an attacker from exploiting vulnerabilities in in-
struction emulation. Since only the memory-accessing in-
structions are legitimate in MMIO context, it is impossible
to force the emulation of vulnerable sysenter, far jump,
and far ret through the MMIO region. On recent micro-
architectures, a legitimate set of instructions does not in-
clude legacy, rarely-used instructions. In addition, it would
be easier to maintain the emulation code and verify its cor-
rectness because the number of legitimate instructions is
much smaller than that of the entire instructions. This would
enhance the overall safety of the instruction emulator.

4. Design and Implementation

The vulnerability analysis in Sect. 3 suggests the attack sur-
face against the instruction emulator can be narrowed if the
emulation context is taken into account. This section de-
scribes the design and implementation of FWinst, which fil-
ters out instructions that should not be emulated in the cur-
rent emulation context.

4.1 Overall Architecture

Figure 1 b) illustrates the overall architecture of FWinst.
FWinst resides in the hypervisor between VMExit han-
dlers and the instruction emulator. When a VMExit han-
dler is invoked and needs the instruction emulation, it in-
vokes FWinst and passes it the VMExit reason. It tells the
hypervisor what event has happened in the guest VM and
provides a good clue to estimate the emulation context. If
FWinst cannot determine the emulation context only from

Table 1 Summary of Emulation Contexts and Legitimate Set of Instruc-
tions.
Emulation Context Legitimate
Context Identification Instructions

PIO I/O instruction in, out
MMIO EPT violation mov, movsx

or EPT misconfig stosx, or
Shadow page table Exception or NMI (#PF) memory access

instructions
Real mode VCPU status all real-mode

(No VMExit) instructions
Migration Exception or NMI (#UD) vmcall, vmmcall

syscall, sysenter
sysexit, rsm, movbe

UMIP Access to GDTR or IDTR sgdt, sidt, sldt
or Access to LDTR or TR smsw, str

the VMExit reason, it collects more pieces of information
from the internal states managed by the hypervisor.

To determine which instruction should be emulated in
each emulation context, FWinst maintains a list of legiti-
mate instructions for each context. This list is constructed in
advance. For some contexts, it is straightforward to define
the legitimate set of instructions. For example, the legiti-
mate instructions for Port I/O context are those in the family
of in and out instructions, because I/O ports are accessed
only through them. For other contexts, such as MMIO con-
text, some engineering efforts are needed to determine the
legitimate set. Section 4.3 describes the approach FWinst
has taken to determine the legitimate set.

4.2 Identifying Emulation Contexts

Table 1 shows the summary of the emulation contexts iden-
tified in FWinst. FWinst identifies six contexts: 1) Port I/O,
2) MMIO, 3) shadow page table, 4) real mode, 5) migration,
and 6) UMIP.

Port I/O context. It can be identified directly from
the VMExit reason. When a guest OS makes an access to
an I/O port, it incurs a VMExit with the reason set to ‘I/O
instruction’. FWinst determines the current context is Port
I/O from the VMExit Reason.

MMIO context. It is identified by confirming a
VMExit occurs due to an access to an MMIO region. When
a guest OS makes an access to an MMIO region, the fault-
ing address is notified. FWinst confirms the faulting address
fits in the MMIO region. The detailed behavior differs de-
pending on the configuration of the hypervisor. If the EPT
feature is turned on, the VMExit reason is set to ‘EPT Vio-
lation/Misconfiguration’. If the EPT feature is unavailable
or turned off, the VMExit reason is set to ‘Exception or
Non-maskable interrupt (#PF)’. In both cases, if the fault-
ing address resides in an MMIO region, FWinst concludes
the context is MMIO, because there is no overlap between
an MMIO region and guest page tables.

There are two things to be noted. First, when the
memory-mapped APIC (Advanced Programmable Interrupt
Controller) is accessed, an VMExit with ‘APIC Access’ oc-
curs. In this case, FWinst concludes the current context is
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MMIO because this is the access to the APIC control reg-
isters using an MMIO interface. Second, the hypervisor
sometimes — e.g., for host swapping — intentionally con-
figures EPT entries or shadow page tables to cause VMEx-
its on the access to a certain page. In this case, FWinst is
not invoked because the hypervisor does not emulate any in-
structions. The hypervisor resolves the VMExits by loading
memory pages and/or setting page tables properly.

Shadow page table context. If the EPT feature is not
available, the shadow page table context is identified with
the cooperation of the hypervisor. This context is identi-
fied by confirming a VMExit occurs due to an access to a
guest page table. When a guest page table is accessed in the
guest, a VMExit with the VMExit reason set to ‘Exception
or Non-maskable interrupt(#PF)’ is incurred and the faulting
address is notified to the hypervisor. The hypervisor keeps
track of the addresses to guest page tables (stored in CR3)
and thus can determine if the access is to a page table or not.

Real mode context. If the unrestricted guest mode is
not available, the real-mode code is executed either in the
virtual 8086 mode or on the emulator [10]. The hypervisor
maintains a global state that tells whether the emulation for
real-mode is required or not. By checking the status reg-
ister (CR0 in this case), the hypervisor can know whether
the VCPU is in real mode or not. Note that the instructions
are not always emulated in real mode. KVM checks the
VCPU status and lets the guest run in the virtual 8086 mode
if possible. FWinst inquires of the hypervisor whether the
emulation is necessary. FWinst checks the global state to
determine the current emulation context.

Migration context. If an unsupported instruction is
executed in a guest, a VMExit occurs with the reason set
to ‘Exception or Non-maskable interrupt (#UD)’. Encoun-
tering this VMExit reason, FWinst concludes the current
context is migration. At first glance, this strategy looks
dangerous because all vendor-specific instructions are em-
ulated without further inspection. Since the number of legit-
imate instructions is small in the migration context, FWinst
checks which vendor-specific instruction is supported and
rejects the emulation of the instructions natively supported
because it is nonsense to emulate natively supported instruc-
tions. Note that FWinst does not confirm a virtual machine
in question is actually migrated from another machine be-
cause a virtual machine image built for AMD, for instance,
can be executed on Intel x86 without migration.

UMIP context. It can be identified directly from
the VMExit reason. Executing the instructions covered by
UMIP incurs a VMExit with the reason set to ‘Access to
GDTR or IDRT’ or ‘Access to LDTR or TR’. FWinst deter-
mines the current context is UMIP if these VMExit reasons
are set in the VMCS.

Note that determining the emulation context is quite
simple. Since the mapping between the emulation contexts
and the reason the hypervisor is invoked is straightforward,
we believe the possibility of making a mistake in deter-
mining a valid context is quite low. If there is a mistake
in determining a valid context, it can lead to false-positive

#define build_mmio_read(name, size, type, \
reg, barrier) \

static inline type name( \
const volatile void __iomem *addr) \

{ \
type ret; \
asm volatile("mov" size " %1,%0":reg (ret) \

:"m" (*(volatile type __force *)addr) \
barrier); \

return ret; \
}

Listing 1: Example of MMIO accessor in Linux Kernel
4.8.1 arch/x86/include/asm/io.h line 46

or -negative. A false-positive occurs if an incorrect context
prevents the emulation of a legitimate instruction. A false-
negative occurs if an incorrect context allows the emulation
of an illegitimate instruction.

4.3 Legitimate Instructions

For each emulation context, a set of legitimate instructions
are defined. Table 1 shows the summary of the legitimate
set of instructions for each context.

For PIO and UMIP context, it is straightforward to de-
fine the sets. For PIO context, the family of in and out
instructions are legitimate because I/O ports are accessed
only through them. For UMIP context, sgdt, sidt, sldt,
smsw, and str instructions are legitimate because these in-
structions are covered by UMIP [9].

For MMIO context and shadow page table context, the
legitimate set of instructions is memory-accessing instruc-
tions; i.e. instructions having memory-access operands. By
default, FWinst allows these instructions to be emulated in
these contexts. If the operating systems hosted on the hyper-
visor are known in advance, their coding conventions can be
leveraged to further restrict the legitimate set. For example,
the hosted operating systems are known in advance in the
PaaS (Platform-as-a-Service) environments.

For MMIO context, the legitimate set can be further
restricted. An MMIO region is accessed solely by device
drivers, and the operating systems provide accessor func-
tions/macros to MMIO regions to encapsulate the coding
difficulties in memory coherence such as barriers. Listing 1
and 2 exemplify the accessors in Linux and Windows, re-
spectively. The legitimate set can be derived from memory-
accessing instructions in the accessors. Our current proto-
type restricts the legitimate set in this way for Linux and
Windows. This approach works well for drivers that use
the accessors to access MMIO regions. In practice, driver
developers use the accessors to avoid writing the code for
complicated memory synchronization.

For the shadow page table context, all the functions
that update page tables in the guest OS must be investi-
gated. The legitimate set is memory-accessing instructions
in those functions. Fortunately, the number of those func-
tions is small. Linux has five functions that update page
tables.
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__forceinline
UCHAR
READ_REGISTER_UCHAR (

_In_ _Notliteral_ volatile UCHAR *Register
)

{
_ReadWriteBarrier();
return *Register;

}

Listing 2: Example of MMIO accessor in wdm.h line 17433
that is included in the Windows Driver Kit, build version
0162

For the real mode context, it is almost impossible to de-
fine a small set of legitimate instructions because real-mode
code can execute a bunch of instructions during the boot se-
quence. Currently, FWinst includes all the instructions valid
in real mode in the legitimate set. To avoid attacks during
the boot sequence, it is better to load a virtual machine im-
age after the boot sequence (i.e., CPU in protected mode),
which has been built in an isolated and secure environment.

For migration context, vendor-specific instructions
must be emulated. KVM/QEMU lists up all the
vendor-specific instructions: vmcall, vmmcall, syscall,
sysenter, sysexit, rsm, and movbe. These instructions
are included in the legitimate set for the migration context.
Since it is nonsense to emulate natively supported instruc-
tions, the legitimate set excludes the instructions that are
supported natively on the physical CPUs.

4.4 Implementation

A prototype of FWinst has been implemented on Linux
KVM (Linux Kernel 4.8.1) for Intel x86-64 architecture.
We assume the micro-architectures posterior to Westmere,
and the full-fledged features (EPT and unrestricted guest
mode) for virtualization are enabled. Westmere was re-
leased around 2010 and thus, it is natural to assume West-
mere micro-architecture or later. FWinst assumes Intel x86.
Our description targets on KVM but FWinst can be applied
to Xen or other hypervisors in principle.

The current prototype identifies PIO, MMIO, migra-
tion, and UMIP contexts. Shadow page table or real mode
contexts are not recognized because the EPT feature and the
unrestricted guest mode are enabled.

4.4.1 Building the Legitimate Instruction Set

For PIO and UMIP contexts, the legitimate set of instruc-
tions is straightforward, as described in Sect. 4.3.

For the migration context, our current prototype in-
cludes the instructions specific to AMD (vmcall) and those
supported on later Intel micro-architectures(movbe). FWinst
can recognize which vendor-specific instructions are sup-
ported because the hypervisor in which FWinst is running
has an access to the model-specific register (MSR) that tells
the CPU micro-architecture. As described in Sect. 4.2, the
current implementation of FWinst does not confirm a vir-

tual machine is actually migrated from another machine but
this does not mean migration context is not handled; it re-
jects the emulation of vendor-specific instructions natively
supported on the current micro-architecture.

For MMIO context, the legitimate set is restricted for
Linux and Windows Vista, 7, 8 and 10. In the case of Linux,
the MMIO region is accessed only through some macros and
inline functions used in device drivers. From the compiled
binary of the device drivers, we have extracted memory-
accessing instructions and included them in the set. The
resulting set of legitimate instructions includes only the in-
structions of the mov family. In the case of Windows, an-
other approach has been taken because of the unavailabil-
ity of the source code. The legitimate set is extracted from
the log of instructions executed during the kernel launch
and shutdown times. Since device drivers are loaded at the
launch time and unloaded at the shutdown time, this log
covers the memory-accessing instructions used to access to
MMIO regions. The resulting set of legitimate instructions
includes the mov family of instructions.

There is a subtle problem in MMIO context. During
the boot sequence, BIOS makes an access to an MMIO re-
gion. Therefore, the legitimate set for MMIO context has
to include instructions used by BIOS to access to an MMIO
region. To extract those instructions we again relied on the
execution log. BIOS uses movs and stos instructions to ac-
cess to the MMIO region and thus, those instructions have
been added to the legitimate set. The MMIO-accessing in-
structions solely used by BIOS can be excluded from the
legitimate set after the boot sequence. Since the BIOS can
be accessed only in some CPU modes, FWinst can remove
those instructions from the legitimate set when the CPU is
not in those CPU modes. Or they can be entirely removed
if we can assume the guest VM always loads a booted VM
image.

4.4.2 Implementation of the Instruction Filter

The control and data flow between the components of the
instruction emulator are depicted in Fig. 4. Solid lines show
the control flow and dotted lines show the data flow. KVM
instruction emulator consists of three major components:
1) opcode decoder, 2) operand decoder, and 3) emulator.
When KVM emulates an instruction, these three compo-
nents are invoked in this order. We add FWinst (depicted
as a gray box) as a new component to the instruction emu-
lator. FWinst filters improper instructions according to the
emulation context and the legitimate set.

When a VMExit occurs, the VMExit handler deter-
mines the emulation context according to the VMExit rea-
son with the support from the hypervisor. If the emulation
is necessary, it invokes the opcode decoder. The opcode de-
coder fetches the instruction to be emulated from the guest
memory and stores it in a memory area for the emulation
that is accessible only from the inside of KVM. After de-
coding the opcode, it invokes FWinst with the emulation
context passed to FWinst. FWinst gets the instruction to be
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Fig. 4 The control and data flow between the components of the instruc-
tion emulator in KVM with FWinst.

emulated. If it is not included in the legitimate set, FWinst
filters out the instruction. If it is included in the set, FWinst
invokes the operand decoder.

To filter the instruction before emulating, FWinst needs
only the opcode of an emulated instruction in the contexts.
To avoid duplicated implementation of opcode decoders,
FWinst lets the instruction emulator decode each instruc-
tion. This design allows us to reuse the opcode decoder and
releases us from maintaining two decoders (the one in the
instruction emulator and the other in FWinst). Note that
FWinst does not rely on the operand decoder, which is more
complicated and more vulnerable than the opcode decoder.
The operand decoder has 665 LOC, whereas the opcode de-
coder has 279 LOC. Three vulnerabilities (CVE-2016-8630,
CVE-2014-8481, and CVE-2014-8480) in the operand de-
coder have been reported whereas one vulnerability (CVE-
2009-4031) in the opcode decoder has been reported. Even
if there is a vulnerability in the operand decoder, FWinst
works properly.

5. Experiments

To demonstrate the effectiveness of FWinst, we have im-
plemented a prototype of FWinst on Intel x86 Skylake and
Westmere micro-architectures. In the following analysis and
experiments, all the CPU support for virtualization is turned
on; i.e. EPT and the unrestricted guest mode are both turned
on. Table 2 shows the experimental environment.

5.1 Security Analysis

To demonstrate the effectiveness of FWinst, we have inves-
tigated 110 vulnerability reports from 2009 to 2018 that are
related to KVM and found that 17 vulnerabilities reside in
the instruction emulator, which are listed in Table 3. For
these vulnerabilities we have collected or implemented PoC
(proof-of-concept) code and tested it on FWinst. As shown
in Table 3, FWinst can defend against 14 vulnerabilities out
of 17 on Haswell, (indicated by

√
in column ‘Haswell’),

13 vulnerabilities out of 17 on Westmere (indicated by
√

in
column ‘Westmere’), and 13 out of 17 on AMD Jaguar (in-
dicated by

√
in column ‘AMD’ and ‘AMD’ refers to AMD

Jaguar in the rest of this section). Since FWinst can fil-

Table 2 Experimental Environment

Hardware for Skylake

Host CPU Intel Xeon Silver 4110
2.10GHz (Skylake)

Host memory 32 GB
Hardware for Westmere

Host CPU Intel Xeon X5650
2.67GHz (Westmere)

Host memory 4 GB
Software for both

Host OS Linux Kernel 4.8.1
Host QEMU Version 2.9.50
Guest OS Ubuntu 18.04 x86 64
# of VCPUs 2
Guest memory 1 GB
Virtual drive IDE
Virtual graphics card VGA standard
Virtual network interface card e1000

ter out more instructions in more recent micro-architectures,
Haswell prevents more attacks than Westmere.

The column ‘emu. context’ denotes the emulation con-
texts whose legitimate sets of instructions include vulner-
able instructions listed in ‘vul. inst’. The vulnerable in-
structions cannot be exploited on micro-architectures in
which the contexts in ‘emu. context’ would not be effective.
‘None’ in the context column in Table 3 means the vulner-
able instructions should never be emulated in any context.
The discussion below follows the contexts listed in ‘emu.
context’.

Real Mode context only: In CVE-2017-2583, CVE-
2016-9756, CVE-2014-8480, CVE-2014-3647, CVE-2014-
0049 and CVE-2010-0435, vulnerable instructions are in-
cluded only in the legitimate set of Real Mode context. The
‘unrestricted guest mode’ is turned on to natively execute
real-mode instructions on all the tested machines. There-
fore, Real Mode context would not be effective and these
vulnerable instructions are not emulated at all.

In CVE-2017-2583 and CVE-2010-0435, the vulnera-
ble instructions have memory-accessing operands. As de-
scribed in Sect. 4.3, the instructions that have memory-
accessing operands should be included in the legitimate set
of MMIO context. Mov SS in CVE-2017-2583 loads or
stores the stack segment register, and mov dr in CVE-2010-
0435 loads or stores the debug registers. These instructions
are excluded from the legitimate set of MMIO context be-
cause they are not used to access to MMIO regions.

Migration context only: In CVE-2017-17741, CVE-
2017-7518, CVE-2015-0239 and CVE-2012-0045, vulner-
able instructions are included only in the legitimate set
of Migration context. All the vulnerable instructions here
are vendor-specific. In CVE-2017-17741, the vulnerable
instructions are Intel-specific vmcall and AMD-specific
vmmcall. If these instructions are requested to be emulated
on the machines that can natively execute them, FWinst re-
jects the emulation and can prevent the attack. If the request-
ing guest is migrated from another machine and the running
binary is for a different vendor, FWinst considers the em-
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Table 3 Summary of vulnerabilties.

CVE # vulnable instruction Intel Westmere Intel Haswell AMD vul. comp. emu. context
2018-10853 fxrstor, fxsave, sgdt, sidt

√ √ √
emu. UMIP, Real Mode

2017-17741 vmmcall, vmcall d d d emu. Migration
2017-7518 syscall

√ √ √
emu. Migration

2017-2584 fxrstor, fxsave, sgdt, sidt × × × emu. UMIP, Real Mode
2017-2583 mov SS

√ √ √
emu. Real Mode

2016-9756 far jump or far ret
√ √ √

emu. Real Mode
2016-8630 illegal instruction

√ √ √
operand None

2015-0239 sysenter
√ √

d emu. Migration
2014-8481 movbe d

√ √
operand Migration, Real Mode

2014-8480 clflush, hint-nop, prefetch
√ √ √

operand Real Mode
2014-7842 unsupported instructions by the instruction emulator

√ √ √
emu. None

2014-3647 far jump or far ret
√ √ √

emu. Real Mode
2014-0049 pusha

√ √ √
emu. Real Mode

2012-0045 syscall
√ √ √

emu. Migration
2010-5313 unsupported instructions by the instruction emulator

√ √ √
emu. None

2010-0435 mov DR
√ √ √

emu. Real Mode
2009-4031 instruction that contains too many bytes × × × opcode All√

: defended, ×: not defended, d: depends on migration contexts, emu.: emulation, operand: operand decoder

ulation request is legitimate and cannot prevent the attack.
Thus, all the columns for CVE-2017-17741 are marked as
‘depend’.

In CVE-2015-0239, the vulnerable instruction is
sysenter, an Intel-specific instruction, which would not be
emulated on Intel machines. On AMD machines, this in-
struction is emulated only if a guest running the Intel binary
is migrated from another machine. Thus, the columns ex-
cept for AMD are marked as ‘

√
’, and the column for AMD

is marked as ‘d’.
In CVE-2017-7518 and CVE-2012-0045, the vulnera-

ble instruction is syscall. This instruction is not imple-
mented only on the 32-bit version of Intel x86; the micro-
architectures listed in the table all support syscall and
thus, this instruction will not be emulated.

Migration and Real Mode contexts: In CVE-2014-
8481, the vulnerable instruction is included in both Migra-
tion and Real Mode contexts. Since the ‘unrestricted guest
mode’ is effective on all the tested machines, Real Mode
context would not be effective and the vulnerable instruc-
tion would be emulated only in Migration context.

CVE-2014-8481 is marked as ‘depends’ in Intel West-
mere, and the vulnerable instruction is movbe introduced in
Intel Haswell or AMD Jaguar. If FWinst recognizes a guest
is running binary for Westmere, FWinst rejects the emula-
tion of movbe because it is strange that Westmere binary is
executing unsupported movbe. But if the guest is migrated
from another machine and runs binary for Haswell, FWinst
emulates movbe on Westmere; the vulnerability can be ex-
ploited.

UMIP and Real Mode contexts: In CVE-2018-
10853 and CVE-2017-2584, the vulnerable instructions are
included in either UMIP or Real Mode contexts. Instruc-
tions fxrstor and fxsave are included only in Real Mode
context and thus are not emulated in our testbeds. Vulnera-
ble instructions sgdt and sidt are included in UMIP con-
text. If the guest is running in UMIP context and the vulner-
abilities are exploited, FWinst cannot defend against it. Be-
cause of this, all the columns of CVE-2017-2584 are marked

as ‘×’.
Interestingly, the vulnerability pointed out in CVE-

2018-10853, which launches privilege escalation from non-
root/ring3 to non-root/ring0, can be prevented. Privilege es-
calation to non-root/ring0 is meaningful only if a user-level
process launches an attack. Fortunately, the current imple-
mentation of the instruction emulator rejects sgdt and sidt
when they are issued at user-level, if UMIP is turned on, be-
cause UMIP does not allow the execution of those instruc-
tions at user-level. As the result, the privilege escalation is
unsuccessful even though FWinst does not filter out vulner-
able instructions sgdt and sidt.

All contexts: CVE-2009-4031 is marked as ‘×’ in all
columns. This vulnerability lies in the opcode decoder and
can be exploited when the opcode length exceeds the max-
imum length (15 bytes). FWinst cannot defend against this
vulnerability because FWinst reuses the KVM opcode de-
coder. This vulnerability is exceptional in that it lies in the
opcode decoder. As Table 3 indicates, most vulnerabilities
lie in the operand decoder or the emulator. Checking the op-
code length suffices to defend against this vulnerability and
thus we have already extended FWinst to have this verifica-
tion phase before the opcode decoding.

Not in any contexts: In CVE-2016-8630, CVE-
2014-7842, and CVE-2010-5313, the vulnerable instruc-
tions are not included in any contexts and thus, FWinst can
defend against attacks that attempt to exploit these vulnera-
bilities.

5.2 Runtime Overhead

To estimate runtime overhead introduced by FWinst, we
measured the runtime overhead of several benchmarks.
Our machine environment and its configuration are given
in Table 2. We prepared a micro-benchmark that ac-
cesses to an MMIO region repeatedly to show the over-
head of FWinst ; FWinst is invoked every time an MMIO
region is accessed by a guest VM. For macro-benchmarks,
UnixBench [12], sysbench [13], ApacheBench [14], and
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Fig. 5 Normalized performance of UnixBench, Apache Bench, sysbench, micro benchmark and
graphic benchmarks on Skylake with the original KVM as the baseline

Fig. 6 Normalized performance of UnixBench, Apache Bench, sysbench, micro benchmark and
graphic benchmarks on Westmere with the original KVM as the baseline

Fig. 7 # of FWinst invocations

Phoronix Test Suite [15] are used. UnixBench and sys-
bench are standard benchmarks to measure the performance
of the operating system. ApacheBench is chosen for the
server workloads and Phoronix Test Suit is for graphics-
intensive workloads. OpenArena and Unreal Tournament
2004 (UT2004), chosen from Phoronix Test Suits, execute
OpenGL 3-D games.

Figure 5 and 6 show the relative performance on Sky-
lake and Westmere, respectively. The overhead of FWinst
on Skylake is from 0.0 % to 2.7 % and the highest overhead
benchmark is the sequential read of sysbench. In the case
of Westmere the overhead of FWinst is from 0.0 % to 3.8
%. FWinst causes relatively low overheads for the follow-
ing reasons. First, the overhead due to FWinst is caused
when an instruction emulator is invoked. Recent advance in
hardware virtualization reduces the number of instructions
that should be emulated and thus the overhead is getting
lower. Second, instruction emulation in our experiments is

primarily for the device emulation. KVM emulates device at
userspace and thus the relative overhead of FWinst becomes
very low.

The number of FWinst invocations in one second for
each benchmark is shown in Fig. 7. This result shows that
the most cause of instruction emulation is I/O operation, be-
cause FWinst is invoked many times in I/O intensive work-
loads except graphics benchmarks. Since the guest OS in
these workloads performs a lot of I/O operations, the in-
struction emulator must emulate I/O instructions frequently.
Hence, FWinst must verify every emulated instruction and
FWinst is also frequently invoked. Although graphics-
intensive workloads are I/O intensive workloads, the num-
ber of FWinst invocations is not high. There are two rea-
sons as follows. First, the graphics library in this guest en-
vironment uses LLVMpipe [16] as a 3D graphics driver and
it performs all rendering on the CPU. This eliminates the
need for emulating I/O instructions. Another reason is that
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the emulation of I/O operations is not necessary when the
guest OS updates its video ram. Because, in the implemen-
tation of virtual VGA in QEMU, KVM and QEMU enable
the guest OS to write directly to its video ram for perfor-
mance reason and the VMExit never occurs writing to its
video ram.

6. Related Work

FWinst takes an approach different from other approaches
to securing the hypervisor.

Hardening Hypervisors. Conceptually, FWinst is
similar to network firewalls. A network firewall narrows
the attack surface against vulnerable servers and clients in-
side the firewall. While many techniques are developed and
deployed to harden servers and clients in general, network
firewalls are still useful to reduce the risk of exposing vul-
nerable servers and clients. FWinst reduces the risk of ex-
posing vulnerable emulation of instructions, and allows us
to get rid of the emulation of legacy and intricate instruc-
tions. Nioh [17] is conceptually similar to FWinst. It is a
firewall for virtual devices that filters out suspicious requests
to virtual devices.

Aside from the approach like FWinst, there are many
research efforts to harden the hypervisors against general at-
tacks. These approaches can be used together with FWinst.
Since none of these approaches can eliminate all the security
threats, FWinst reduces the risk of exposing security holes
lurking in the emulator that spill out of the state-of-the-art
protection.

Monitoring Hypervisors. Monitoring hypervisors at
runtime is a promising approach to improve the security of
hypervisors. Dancing with Wolves [18] monitors untrusted
hypervisors from a secure event-driven monitor. Hyper-
Safe [19] and HyperVerify [20] provide runtime protection
for hypervisors.

Testing the Hypervisor. Virtual CPU Validation [3]
takes advantage of Intel’s testing facilities to look for se-
curity vulnerabilities in KVM. Over half of the 117 bugs
they discovered are instruction emulator bugs, five of which
are security vulnerabilities. To exploit vulnerabilities in in-
struction emulators, a new attack vector is shown to force
the emulator to emulate arbitrary instructions at any time.
MultiNyx [21] generates test cases automatically for modern
hypervisors, which rely on complex processor extensions,
using the symbolic execution. To avoid the complex speci-
fication of the extensions for virtualization, MultiNyx uses
the Bochs CPU emulator as an executable specification and
generates 206,628 test cases that revealed many inconsisten-
cies between different KVM configuration.

Reducing TCB. Another approach to hardening hy-
pervisors is to reduce TCB (trusted computing base) in the
hypervisor. Min-V [22] disables all unnecessary virtual de-
vices when running VMs in the cloud. NoHype [23] elimi-
nates the virtualization layer at runtime, and each VM di-
rectly runs on statically assigned resources. NOVA [24]
takes a microkernel approach to achieving a smaller TCB.

Deconstructing Xen [25] divides Xen’s privileged code into
per-VM slices, and confines the attacks inside the slices.
HyperLock [26] prepares a shadow hypervisor for each VM
and provides runtime isolation for the privileged host. De-
Hype [27] demotes KVM to user mode and runs it as a per-
VM deprivileged hypervisor.

7. Conclusion

The contribution of this paper is that the attack surface
against vulnerabilities in the emulator can be narrowed, if
the underlying micro-architecture and the hypervisor config-
uration are taken into account. FWinst identifies a legitimate
set of instructions by recognizing emulation contexts, and
filters out illegitimate instructions, thereby narrowing the
attack surface. Our preliminary evaluation shows FWinst
effectively prevents emulator vulnerabilities from being ex-
ploited on posterior to Westmere micro-architectures, and
the runtime overhead is from 0.0% to 2.7% on Skylake and
from 0.0 % to 3.8 % on Westmere on widely-used bench-
marks.

For future directions, it would be interesting to divide
emulation contexts into the finer ones and prune a legitimate
set of instructions for each fine-grained context. In partic-
ular, if FWinst is installed in PaaS (Platform-as-a-Service)
clouds, the hypervisor can make more assumptions on guest
operating systems, which would enable us to prepare fine-
tuned contexts for each guest operating system. This would
enhance the protection against vulnerable emulators.
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