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PAPER

Silent Speech Interface Using Ultrasonic Doppler Sonar

Ki-Seung LEE†a), Member

SUMMARY Some non-acoustic modalities have the ability to reveal
certain speech attributes that can be used for synthesizing speech signals
without acoustic signals. This study validated the use of ultrasonic Doppler
frequency shifts caused by facial movements to implement a silent speech
interface system. A 40kHz ultrasonic beam is incident to a speaker’s mouth
region. The features derived from the demodulated received signals were
used to estimate the speech parameters. A nonlinear regression approach
was employed in this estimation where the relationship between ultrasonic
features and corresponding speech is represented by deep neural networks
(DNN). In this study, we investigated the discrepancies between the ul-
trasonic signals of audible and silent speech to validate the possibility for
totally silent communication. Since reference speech signals are not avail-
able in silently mouthed ultrasonic signals, a nearest-neighbor search and
alignment method was proposed, wherein alignment was achieved by de-
termining the optimal pair of ultrasonic and audible features in the sense of
a minimum mean square error criterion. The experimental results showed
that the performance of the ultrasonic Doppler-based method was superior
to that of EMG-based speech estimation, and was comparable to an image-
based method.
key words: silent speech interface, ultrasonic Doppler, deep neural net-
works

1. Introduction

In conventional voice communication, voices are spoken
by a speaker (generation), speech signals are transmitted
through the air (transmission), and the messages are deliv-
ered through the recipient’s ears (reception). When specific
problems occur or some constraints should be considered
in each voice communication step, voice messages may not
be delivered correctly. A silent speech interface (SSI) tech-
niques [1] has been proposed to cope with these situations.
This technique can be applied to specific situations where
speech communication suffers from several inherent prob-
lems and constraints. SSI is useful for persons with speaking
impairment, for example, who have undergone a laryngec-
tomy caused by an accident or laryngeal cancer. SSI tech-
nology allows these patients to speak in their own voice us-
ing assistive devices. The SSI technique is also applicable
when an acoustic signal is no longer useful for communi-
cation among humans (e.g., very noisy environments). SSI
allows persons to speak to one another in a public place,
such as a library or conference room without disturbing oth-
ers. Moreover, it can be useful in a situation where private
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information should not be audibly exposed to others. An
important application of SSI is “Silent Call” service, which
was created to facilitate communication with emergency re-
sponders by callers who could not speak with them due to
the nearby presence of criminals who might seek to termi-
nate the call and or harm the caller if they became aware that
their victim is summoning help.

The non-acoustic modalities adopted for SSI should
be highly correlated with the corresponding audio speech
signals and not affected by high levels of ambient au-
dio interferences [2]. The modalities satisfying these con-
ditions include Doppler frequency shifts caused by GHz
microwaves [3]–[7], the ultrasound images (UI) of a vo-
cal tract [8]–[10], the visual shape of the mouth [11]–[16],
acoustic Doppler sonic signals [17]–[20], recorded signals
by a non-audible microphone (NAM) [21], [22], and an elec-
tromyogram (EMG) [23]–[27].

For the EMG- and NAM-based methods, the non-
acoustic signals associated with speech are directly acquired
through facial expressions. Accordingly, this method has
the advantage of robustness against the environmental inter-
ferences that are commonly found in vision-based methods.
However, the use of contact sensors can be uncomfortable
for users and could cause skin allergies. Methods that uti-
lize visual information employ the images captured from a
speaker’s mouth region as a secondary source of speech in-
formation. Since it is unnecessary for a user to have elec-
trodes attached to the face, the vision-based methods may
be more convenient than the methods that require contact
sensors. Capturing images and windowing the mouth region
is not a trivial task [14], however, and overall performance
may be more or less affected by the techniques associated
with image processing.

The Doppler effect is the change in frequency of a wave
when an observer moves relative to the source of the wave.
When a fixed frequency wave is incident to the moving ob-
ject, the echoes are Doppler shifted, which creates compo-
nents at other frequencies, that are proportional to their ve-
locity relative to the sensor. If multiple objects are mov-
ing with different velocities, the reflected signal will contain
multiple frequencies, one for each object. This principle
applies to the recognition of various human motions [28]–
[30] and it can be used to detect speech signals [18]–[20].
With Doppler-based speech processing techniques, the un-
derlying assumption is that the primary sources of Doppler
frequency shifts are vocal vibrations of the body surface
caused by sound. In the Doppler-based methods, the de-
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tection of speech signals is achieved by means of non-
contact sensing. Hence, the problems associated with con-
tact sensing, found in the EMG- and NAM-based methods,
can be avoided. Moreover, since image-related information
is unnecessary to detect a speech signal, the Doppler-based
techniques are free from image-related problems. An ap-
proach based on microwave Doppler, which is referred to as
“radar-microphone” was proposed in the literature for de-
tecting speech [3], [4] and for the detection of vocal cords
vibrations [7]. Such an approach has the advantage of a
high level of directional sensitivity with penetration and a
long detection distance. However, the radar speech itself
has several serious shortcomings, which include artificial
quality, reduced intelligibility, and poor audibility [5], [6].
The requirement of large and complicated hardware is an-
other drawback of radar microphone techniques. Doppler
frequency shifts are also observed in the reflections of tone
emitted by an ultrasonic transmitter. A method that uses an
ultrasound transducer has several advantages over the other
methods: lighter in weight, smaller in size, less expensive,
and allows for non-contact sensing. Accordingly, ultrasonic
Doppler signals (UDS) are used for various speech pro-
cessing fields, such as voice activity detection [19], speech
recognition [20], and speech synthesis [17].

The purpose of this study was to verify the usefulness
of Doppler frequency shifts generated by single tone ultra-
sonic signals, particularly for synthesizing audible speech.
One straightforward way to implement UDS speech synthe-
sizers is to use both an automatic speech recognizer and a
text-to-speech (TTS) system. For such a method, it is pos-
sible to synthesize unlimited utterances by using phoneme-
level ASR, and high-quality speech can be obtained by em-
ploying a corpus-based waveform concatenating TTS. How-
ever, the intelligibility of the resultant speech is significantly
affected by the accuracy of the adopted ASR. Moreover,
there are some problems associated with the usage of TTS,
including long delay and voice personality/prosody mis-
matches.

In the present study, we employed a method of estimat-
ing the speech parameters from UDS features and synthe-
sizing audible speech using those estimations. The under-
lying principle relies on a certain degree of correlation be-
tween UDS and audible speech. The feasibility of UDS for
the estimation of speech can be explained by what has been
learned from previous work in EMG-based speech recogni-
tion [24] and synthesis [25]. In EMG-based speech recogni-
tion/synthesis, the movement of articulatory facial muscles
is assumed to be closely related to corresponding speech sig-
nals and can be measured via surface EMG sensors. Since
ultrasonic Doppler frequency shifts are also caused by artic-
ulatory facial movements, the same degree of performance
obtained by the EMG-based methods can be achieved by
adopting UDS. Previous studies have shown that the qual-
ity of synthesized speech signals from EMG is reasonable
in both naturalness and intelligibility [24]. Nevertheless, the
results were mostly obtained from EMG signals of audible
speech, rather than from those of silent speech. The UDS

of whispered or silent speech was not taken into considera-
tion in previous UDS-based speech synthesis schemes [17].
Since articulatory movements differ between silently artic-
ulated and normally spoken speech [15], investigation into
discrepancies between audible and silent speech would be
highly desirable for implementing silent communication.
In the previous study, deterioration of recognition accuracy
caused by discrepancies between audible and silent speech
was investigated and a method for compensating for such
discrepancies was proposed to improve the performance of
EMG-based automatic speech recognition [26].

For a speech synthesis system that uses silent UDS, no
audible speech is available to construct the mapping rules
between USD and speech. To deal with such problems, we
proposed a nearest-neighbor search and alignment (NNSA)
scheme that determined the appropriate audible speech fea-
ture for a given UDS feature. We also investigated the differ-
ences between two speech-synthesized signals, one from the
estimation rules using silent-UDS and the other from those
using audible-UDS. An investigation into the discrepancies
between silent and audible UDS in terms of the quality of
synthesized speech would be helpful for implementing a full
SSI system.

This paper is organized as follows. In Sect. 2, the
acoustic Doppler sensor is described and a procedure for
UDS and audio data acquisition is explained. Section 3
presents a procedure for extracting the features from UDS
for audible speech estimation. The estimation of the speech
spectra, which includes the NNSA method, is explained in
Sect. 4. Experimental results are presented in Sect. 5. Fi-
nally, concluding remarks are provided in Sect. 6.

2. Ultrasonic Doppler Sensor

A photograph of a subject wearing the developed device is
shown in Fig. 1. There are two sensors A and B to detect
the Doppler shifts in various directions, as shown in Fig. 2.
Sensor A is used to detect Doppler shifts in the mouth and
cheek area and is attached to the wireframe of the headset
microphone. Sensor B is located at the front of the throat,
which is used to detect Doppler sonar in the jaw and neck
region. A hairband-shaped holder is employed to fix sen-
sor B to the neck. The holder is made of plastic material
and is well warped and fitted according to the shape of the
user’s neck. Although sensor holder is attached to the body,
the sensor itself is not in direct contact with the skin sur-
face of the body. This allows the continuous acquisition of
signals in a non-contact manner, which is different from the
conventional contact sensing methods, such as sEMG and
NAM. Each sensor is composed of an ultrasonic transmit-
ter that emits a continuous ultrasonic tone at 40kHz and
ultrasonic sensors that are tuned to receive signals around
at 40kHz. The ultrasonic transmitter used in this study
was product model number MA40H1S-R, that is a surface-
mounted device (SMD)-type ultrasonic transducer. The cen-
ter frequency of the transmitter is 40kHz. The employed
ultrasonic sensor is product model number SPM0404UD5.
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Fig. 1 Two sensors, A and B attached to a subject. Top: front. Bottom:
left.

Fig. 2 Photograph of the ultrasonic sensors. Left: sensor A. Right: sen-
sor B.

The effective frequency range of the sensor is 10 to 65 kHz.
Sensor B uses two transmitter-receiver pairs, one for detect-
ing vocal cord vibration and the other for jaw movements.
Since very weak vocal cord vibrations are normally detected
in silent UDS signals, the sensor for detecting vocal cord
vibration was not used for silent UDS-based speech synthe-
sis. To simultaneously acquire audio-frequency range sig-
nals (just for audible UDS), an audio microphone (Model:
SHURE BETA 53) was also employed. By attaching the
UDS sensors to the subject’s neck and head, it was possi-
ble to prevent the undesirable motion artifacts caused by a
subject’s head movements.

To emit a continuous ultrasonic tone at 40 kHz, a func-
tion generator (Model: 33250A, Agilent) was employed and
the tone signal was amplified using a custom-made audio

Table 1 Length information of the recorded signals.

Length (sec)
Audible speech Silent speech
All Valid All Valid

Shortest 1.206 0.336 0.992 0.112
Longest 1.847 0.880 2.047 1.216
Average 1.513 0646 1.354 0.610

frequency range power amplifier. The amplified 40 kHz si-
nusoidal signal was inputted to ultrasonic transducers. The
effective beam angle of the employed ultrasonic transducer
was ±40◦, and the average distance between the transducer
and face skin was 3 cm. Hence, the effective radiation area
was 19.9 cm2, which was sufficient to detect the subject’s
articulatory movements. The signals from the sensor were
digitized at a rate of 192 kHz with 16 bits using a multi-
channel digital audio interface (Model: Fireface 800, RME).
Digital data were transmitted over an IEEE 1394 serial bus
to a desktop PC with an i7-6700k processor. To compensate
for the differences in the sensitivity of the employed ultra-
sonic sensors, gain adjustments were carried out on each
channel amplifier before recording.

A total of five subjects participated in the recording,
one female speaker and four male speakers, between 22
and 50 years of age. The purpose of this study was to de-
velop a UDS-based speech synthesizer for a specific appli-
cation, such as a “silent call”. Accordingly, synthesizable
utterance was limited to a few isolated words that were es-
sential in a specific application, rather than long sentences.
In the future, we will extend this work to long sentences.
This study used a 60-Korean word vocabulary [25] that was
phonetically balanced, which means it has speech sounds,
or phonemes, that occur as often as they would in a nor-
mal conversation. For each speaker, the words recorded in
the audible and silent speaking mode were identical. We
recorded each word 14 times for silent speech and 20 times
for audible speech. During the silent speech recording, each
subject was asked to make as few sounds as possible. If
a voice signal over a certain level was detected through
the headset microphone, the corresponding UDS signal was
deleted and re-recorded. Most subjects were advised to
have sufficient practice time before recording because they
were not familiar with pronouncing silent speech. Length
information of the recorded signals is summarized in Ta-
ble 1 where “valid” indicates a length excluding the non-
speech regions. This showed that the average length of the
recorded silent speech was slightly shorter than that of audi-
ble speech.

3. Feature Extraction from UDS

Assuming that the ultrasonic transmitter emits a continuous
tone with a frequency fc, the transmitted signal is given by

Tr(t) = AT cos(2π fct + ΨT ) (1)

where AT and ΨT are the amplitude and phase of the under-
lying sinusoid, respectively. When the ultrasonic tone is re-
flected on an articulating face, the Doppler frequency shifts
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Fig. 3 Procedure for extracting features from ultrasonic signal.

are found in the reflected signals, due to the movements of
several articulatory organs. Assuming that total M objects
are engaged with the Doppler frequency shift, and the in-
stantaneous velocity of the m-th object at time t is given by
vm(t), the reflected signal is given by

Re(t) =
M∑

m=1

AT km cos(φm + ΨT ),

φm = 2π fc

[
t +

2
vs

∫ t

0
vm(τ)dτ

]
+ Ψm (2)

where km and Ψm are the attenuation coefficient and phase
shift of the m-th object at frequency fc, respectively. vs is
the speed of sound.

The procedure for extraction of the ultrasonic feature
is explained in Fig. 3 where demodulation is first performed
and low pass filtering/decimation is subsequently carried out
on the demodulated signal,

xu(n) = LPF↓
[
Re(t) cos(2π fdt)

]
(3)

where LPF↓[·] denotes low pass filtering followed by deci-
mation and fd is the demodulation frequency. Although the
received ultrasonic signal was a real value signal, the ex-
perimental result showed that its magnitude spectrum was
not exactly symmetrical with the 40kHz frequency bin.
Moreover, the experimental results showed that maintain-
ing the left sideband by setting the demodulated frequency
as fc − Δ f yielded slightly better results than in the case of
fd = fc. The Δ f represents the portion of the effective band-
width of UDS that is most closely related to the maximum
frequency of articulatory movements. Previous studies asso-
ciated with EMG-based speech recognition have suggested
that a sampling rate of 1kHz ∼ 2kHz is sufficient for repre-
senting the articulatory movements [23], [24]. Accordingly,

Δ f was set at 1kHz in this study.
Since the Doppler signals are related to the under-

lying speech signals, the features that have been adopted
in speech-related research were considered in this study.
Mel-scale filter bank analysis is widely employed in many
speech processing techniques [31]. Although the Doppler
frequency shifts are not perceived by the human ear, the use-
fulness of mel-scale filter bank analysis has been confirmed
in several speech recognition tasks that use articulatory mus-
cle movements [24], [25]. Hence, mel-frequency filter bank
energy was used as a feature for the ultrasonic signal. The
k-th mel-band energy is given by

xu,k =

Nk∑
i=1

|Xu(i)|Hk(i) (4)

where Xu(i) is the i-th discrete Fourier coefficient of xu(n),
Hk(i) is the corresponding magnitude response of the k-th
mel band, and Nk is the number of Fourier coefficients in
the k-th mel-bands. In the present study, the demodulated
ultrasonic signal covers 0∼1kHz. The number of mel-bands
within such a frequency range is 8. Note that mel-frequency
filter bank analysis was applied to both left- and right-side
bands as shown in Fig. 3. This resulted in a total of 32 UDS
features per frame.

4. Speech Estimation Using Silent UDS

The overall procedure for constructing a speech estimation
rule using silent-UDS is explained in Fig. 4. Three corpora
were built prior to construction of the estimation rule; an
audible UDS, audible speech, and a silent UDS databases.
In summary, an initial speech estimation rule was first con-
structed using the audible UDS and audible speech database.
The speech estimation rules for silent UDS was then itera-
tively refined using NNSA and re-estimation procedures.

4.1 Nearest Neighbor Search and Alignment

One of the fundamental problems associated with silent
UDS-based speech synthesis is that there is no reference
speech for given UDS that is essential for constructing the
speech estimation rules. In this study, a method of NNSA
was proposed to deal with this problem where the speech
estimation rule was iteratively found using the pairs of a
time-aligned UDS feature stream and an audible speech fea-
ture stream. The underlying principle is that for a given
silent UDS sample, its corresponding audible speech sam-
ple is chosen by minimizing the overall errors between the
time-aligned version of an estimated speech stream and
those of a selected audible speech stream, while silent UDS
samples and audible speech samples have the same word
context. A graphical explanation of the NNSA scheme is
shown in Fig. 5. The initial speech estimation rule was con-
structed using the pairs of audible UDS and speech sig-
nals. Let {X(A)

i }NA

i=1 and {Yi}NA

i=1 denote the sets of the au-
dible UDS samples and the corresponding audible speech
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Fig. 4 Procedure for construction of the speech estimation rule.

Fig. 5 Procedure of nearest-neighbor search and alignment.

samples, respectively, where Yi = {yi(0), . . . , yi(Ni − 1)},
X(A)

i = {x(A)
i (0), . . . , x(A)

i (Ni − 1)}, and Ni is the total num-
ber of feature vectors for the i-th UDS/speech sample. The
initial estimation rule is then given by

F (A) = arg min
F

NA∑
i=1

||Yi − F {X(A)
i }||2 (5)

where F {·} is a transformation function that maps UDS fea-
ture to audible speech feature and NA is the total number of
the pairs of audible UDS samples and corresponding speech
samples.

To build the speech estimation rule for silent UDS, we
first defined the following error measurement between the

feature stream of silent UDS and that of audible speech.

ε(M,W,F ) =
NNA∑
i=1

||YMi − F {X̃(NA)
i,Wi
}||2 (6)

where Mi is a sample map function that maps the i-th silent
UDS sample to the Mi-th audible speech sample and NNA

is the total number of silent UDS samples in the training
corpus. X̃(NA)

i,Wi
is a time-warped version of the i-th silent UDS

sample, which is given by

X̃(NA)
i,Wi
= {x(NA)

i (w(0)), . . . , x(NA)
i (w(Ni − 1))} (7)

where Wi = {wi(0), . . . ,wi(Ni − 1)} is a set of time warp-
ing functions that align the sequence of silent UDS feature
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vectors with that of audible speech feature vectors, YMi .
The optimal transformation function for silent-UDS is

given by

F (NA)∗ = arg min
F

{
min
M,W
ε(M,W,F )

}
(8)

This implies that the optimal estimation rule is constructed
using the feature vectors derived from the selected audi-
ble speech sample YMi and the time-warped feature vector
stream from the silent UDS sample. Such pairs are obtained
by minimizing the overall distance between the estimated
speech feature stream from the time-warped feature stream
of silent UDS and that of the selected audible speech. Note
that context information of the i-th silent UDS sample is
identical to that of the selected audible speech sample YMj .
Since simultaneous minimization (8) cannot be achieved by
a closed form solution, an iterative method was employed in
this study, where NNSA and updating of the speech estima-
tion rules are iteratively performed to minimize the overall
error ε, as shown in Fig. 4. In each NNSA step, for a given
F , a set of sample map functionsM and a set of time warp-
ing functionsW are found by minimizing ε.

M( j), W( j) = arg min
M,W
ε(M,W,F ( j−1)) (9)

where ( j) is the iteration index. Minimization of ε with re-
spect to W can be achieved by a dynamic programming
procedure [32]. With previously obtained M( j) and W ( j), the
estimation rule F is found by minimizing ε.

F ( j) = arg min
F
ε(M( j),W( j),F ) (10)

M( j), W( j), and F ( j) are then used for the next iteration
( j+1) and the process is repeated until an acceptable conver-
gence threshold is reached. Note that the initial estimation
rule F (0) is given by F (A), which can be obtained using au-
dible UDS features.

4.2 DNN-Based Speech Feature Estimation

Deep neural networks (DNN) were employed to estimate the
relationship between the input (UDS feature) and the output
(audible speech feature). In the training stage, a regression
DNN model was trained from a training corpus, that con-
sisted of pairs of speech features and those of ultrasound sig-
nals. The audible speech represented by the log magnitude
spectra was the target output of the DNN. In the estimation
stage, the feature parameters extracted in the training stage,
were derived from the incoming ultrasound signals. The fea-
ture parameters were then inputted to the trained DNN.

To obtain the initial network, a deep generative model
of input features was adopted by a stacking of multi-
ple restricted Boltzmann machines (RBMs) [33]. A back-
propagation algorithm with the minimum mean square error
(MMSE) criterion was employed to train the DNN. The ob-
jective function was given by a mean square error between
the estimated log magnitude spectrum and that of audible

speech. A stochastic gradient descent algorithm was per-
formed in mini-batches with multiple epochs to improve the
learning convergence.

Multiple frames of the ultrasonic signal were used as
DNN input. By using this configuration, the DNN captures
the acoustic context information along the time axis [34].
When Nu multiple frames, which is given as an odd number,
are used, the input of the DNN is given by

XNu (t) = {x(t − Nu/2), . . . , x(t), . . . , x(t + Nu/2)} (11)

Note that the sample index and audible/silent marks are
omitted for simplicity. It was also reported that perfor-
mance improvements were achieved by estimating multiple
speech features over time [16]. Accordingly, Ns neighboring
feature vectors of speech signals were simultaneously esti-
mated using DNN, and a method of overlap-and-add using
a triangular window was adopted to form the output vector
sequence. It is generally accepted that increasing the num-
ber of frames leads to an increase in the DNN performance
since DNNs have sufficient acoustic contents. However, as
the distance between the two frames is increased, the cor-
relation between the underlying two frames is reduced. In
this study, the numbers of neighboring frames for speech
and UDS were determined by maximizing the performance
in terms of speech enhancement, and hence, the results for
the various values of Nu and Ns were obtained and will be
shown in the subsequent results section.

4.3 Speech Synthesis

The final step in UDS-based speech synthesis is to synthe-
size audible speech signal from the estimated speech param-
eters. There are two ways to synthesize speech signals from
the estimated spectral parameters. One is based on a lin-
ear prediction (LP) model, where a voice is generated by
filtering the excitation source through an all-pole filter that
reflects the vocal tract transfer function [31]. The all-pole
filters can be represented by a linear prediction coefficient
(LPC), LPC cepstrum (LPCC), Log Area Ratio (LAR), and
line spectrum pairs (LSP). In this study, the LSP coefficient
and LPCC coefficient were employed as LP feature vari-
ables. These two feature variables are used in a wide va-
riety of speech processing techniques, and have the advan-
tage of being free from the problems associated with insta-
bility [31]. The LP-based synthesis approach requires addi-
tional estimation rules for an excitation source and a pitch
period for voiced speech. These two parameters are closely
related to vocal cord vibration, which, however, cannot be
detected with silent speech. An alternative way was adopted
in visual-based SSI [16] wherein random noise was used as
an excitation source. Although this approach has reportedly
produced intelligible speech, the tone of the voice was lost
and the resultant sound was equivalent to a whisper.

An approach of short-time Fourier transform (STFT) is
another method for speech synthesis. In this case, the mag-
nitude of the spectrum of windowed short-time speech is
regarded as a speech parameter, which is estimated using a
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DNN. Continuous waveforms were obtained by concatenat-
ing the short-time speech signals obtained by inverse Fourier
transform. Since the phase spectrum was not available, a
method of the least square error estimation of modified short
time Fourier transform magnitude (LSEE-MSTFTM) [35]
was employed in this study, where the squared error between
the STFT of a signal and the estimated magnitude spectrum
is decreased iteratively. The results of both LP-synthesis and
the STFT-based method will be presented and compared in
the following section.

4.4 Harmonic Enhancement

Harmonic structure is a unique characteristic of voiced
speech signals. Harmonic enhancement [36] is a method for
preserving the harmonic structure of a corrupted speech sig-
nal so that the intelligibility is improved. The harmonic-
enhanced signal is given by

ỹpe(t) = y(t) + αhe × y(t − P(t)) (12)

where αhe denotes the harmonic enhancement factor and
P(t) is the pitch period at time t. A reliable estimation of
the pitch period is essential for harmonic enhancement. In
most of the currently available pitch estimation algorithms,
the pitch period is estimated from the audible speech that
is not available in silent UDS. In the present study, exper-
iments were carried out to confirm the possibility of pitch
estimation using silent UDS. The pitch estimation method
using UDS was proposed in this study, where a DNN was
trained using a set of the pairs of UDS features and pitch
periods detected by audible speech. The procedure of pitch
estimation was similar to the previous DNN-based pitch es-
timation method [37] in which DNN provided likelihoods
of each candidate pitch periods, a sequence of the optimal
pitch periods was obtained by a Viterbi-trellis search. In-
stead of using spectral feature vectors derived from noisy
speech [37], UDS feature vectors were inputted to DNN.
The number of the candidate pitch periods was set at 67,
and the weights for the posterior probability and the transi-
tion probability were set to 0.7 and 0.3, respectively.

The experimental results showed that the average pitch
error of silent UDS-based estimation was about 10 times
higher than that of speech-based estimation. Those results
show that it is questionable whether harmonic enhancement
with silent UDS-based pitch estimation can improve the
quality of reconstructed speech signals. According to the
experimental results, however, the harmonic enhancement
method has some allowance for pitch error. Therefore, it
is more meaningful to examine the improvement of speech
quality by harmonic enhancement than the absolute error of
the pitch estimation. In the following sections, results from
the adoption of harmonic enhancement will be shown and
its usefulness will be verified.

5. Experimental Results

5.1 Experimental Setup

The features were extracted from the windowed speech and
from the windowed UDS. A 32 msec length Hanning win-
dow was commonly used to compute and extract the feature
parameters at 16 msec intervals. For LP-synthesis, the or-
der of LSP was 20, which is identical to that of LP-analysis.
The order of LPCC was set as 30. For STFT-based synthe-
sis, the log-magnitude of the Fourier transform (FT) coeffi-
cients was used where the length of the fast Fourier trans-
form (FFT) was set at 256. Accordingly, the dimension of
the log-power spectral feature vector was 128. The same
FFT length was adopted to compute the UDS feature.

To compare with the visual- and EMG-modality speech
synthesis schemes, the video and EMG were simultaneously
recorded. In the video recording, a frame rate of 30Hz
was adopted for an image size of 640×480 pixels. Semi-
automatic segmentation was carried out on the captured im-
ages to extract the speaker’s mouth region. The resultant
mouth image was 176×144 pixels. The 2D-DCT was ap-
plied to the cropped images, and lower frequency compo-
nents were established as visual features. The dimensions
of the visual features were determined heuristically at 32.
Since the frame rate of speech was different from the video
frame rate, a cubic spline interpolation was carried out on
the DCT coefficients.

During the EMG acquisition, surface myoelectric sig-
nals (MES) were collected from the three articulatory facial
muscles; levator anguli oris, depressor anguli oris, and zy-
gomaticus major. Each MES was collected using pairs of
Ag-AgCl button electrodes (3M, 2258). The electrodes were
3.3 cm in diameter (including the foam adhesive patch). The
reference electrode was located at the back of the neck. A
Mel frequency cepstral coefficient (MFCC) was used as the
feature variable since its usefulness has been confirmed in
several speech-related applications [24], [25]. The dimen-
sion of the MFCC was set at 5, and hence, a total of 15
EMG features per frame were used for speech prediction.
For both visual- and EMG-based speech estimations, a DNN
was also used to predict the log-power spectral speech fea-
tures. Multiple frames were also considered in the EMG-
and vision-based estimations. Ne and Nv are the number
of multiple frames for EMG and vision, respectively. The
maximum number of the frames was set at 11, which was
identical to the UDS cases.

Since it is very difficult to mathematically determine
the optimum number of hidden layers, we performed sev-
eral experiments to investigate the relationship between the
number of hidden layers and objective performance. Ac-
cording to the experimental results, the best performance
was obtained when the DNN contained three hidden layers,
and the number of the nodes in the hidden layer was set to
[1.5 × Ni]. (where [x] is the nearest integer value of x and
Ni is the number of input nodes, which is 32 × Nu, 32 × Nv,
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and 15 × Ne for the DNNs of UDS, vision, and EMG, re-
spectively.) Except for the top layer, the sigmoid activation
function was adopted. The momentum constant α of the sig-
moid active function was set to 0.7. The linear function was
used at the top layer.

The number of RBM pre-training epochs in each layer
was 100. The learning rate of the RBM training was set at
0.0005. A fixed learning rate of 0.001 was applied for the
fine-tuning of the baseline. The total number of epochs at
the fine-tuning stage was 200. For both RBM pre-training
and fine-tuning, the momentum was set at 0.05 for the first
five epochs, then maintained at 0.07 thereafter. Mean and
variance normalization was applied to the input and target
feature vectors of the DNN. The performance of the DNN
was expected to be improved by dropout regularization [38].
The experimental results also showed clear differences be-
tween when a dropout was adopted and when it was not,
particularly for the test data. Hence, dropout regularization
was adopted in the present study where a keep probability
of 0.8 was employed. The DNN was trained using 70% of
the total features in the training stage, and the remaining
features were used for evaluation. In the following, all pre-
sented results were obtained from evaluation data.

Three objective measures were applied in the experi-
ments, including the prediction gain, the perceptual evalua-
tion of speech quality (PESQ) [39], and the short-time ob-
jective intelligibility measure (STOI) [40]. The prediction
gain is given by

Gp = −10 log10

N∑
i=1

Ni−1∑
n=0
||yi(n) − ŷi(n)||2

N∑
i=1

Ni−1∑
n=0
||yi(n) − ȳ||2

(13)

where ŷ and ȳ denote the estimated and mean target feature
vectors, respectively. Higher prediction gain corresponds to
good estimation performance. The PESQ has a high cor-
relation with subjective evaluation scores [39]. PESQ was
mostly used as a compressive objective measure and was
also employed to evaluate the perceptual aspect of the syn-
thesized speech from visual information [16]. PESQ is cal-
culated by comparing the enhanced speech with a sample
of clean reference speech, and it ranges from −0.5 to 4.5.
The STOI [40] was proposed as a correlation-based mea-
surement to evaluate the speech intelligibility degradation
caused by speech enhancement solutions.

5.2 Comparison of Prediction Gains

The underlying assumption of the present study is that the
speech estimation rules from the pairs of audible UDS and
corresponding speech are not well matched with those from
the silent UDS and corresponding speech pairs. To ver-
ify this assumption, two speech estimation rules were built.
The first uses the pairs of audible UDS and audible speech,
and then, speech estimation was carried out on silent UDS
(method A-S). The second uses the pairs of silent UDS and

audible speech, and speech was estimated using silent UDS
(method S-S). Since reference audible speech was not avail-
able in the method S-S, the audible speech signal selected
using NNSA was alternatively used as a reference for au-
dible speech. For comparison, speech estimation was also
carried out on audible UDS using the rule constructed by
the pairs of audible UDS and audible speech (method A-
A). Note that since audible UDS was employed in both the
rule construction and synthesis stages, the method A-A can-
not be adopted for silent speech interface. The prediction
gain for each method was investigated for each number of
the neighboring feature vectors so that the optimal number
of the frames in terms of prediction performance was deter-
mined.

The results are presented in Table 2 where the values
in bold type indicate its maximum prediction gain for each
method. As expected, method A-A yielded the best perfor-
mance among the three methods. This was due to obtaining
the signals under the same conditions (audible condition)
for both rule construction and synthesis. However, perfor-
mance degradation in terms of prediction gain was observed
under mismatched conditions. For method A-S, the differ-
ence of maximum prediction gain from the method A-A was
2.714. This was reduced to 2.181 by employing the method
S-S where NNSA was adopted to obtain the reference audi-
ble speech signals. This indicated that mismatches between
audible and silent UDSs were partially compensated for by
employing NNSA. It is interesting to note that the acoustic
context information was more useful for the matched con-
ditions (method A-A). Under these conditions, the highest
prediction gain was obtained when the number of the neigh-
boring features was given by 11 frames. Whereas the best
performance was obtained with no neighboring UDS fea-
tures in case of the method A-S.

We also evaluated the validity of UDS-based speech es-
timation by comparing the prediction gains for other modal-
ities (sEMG and vision). The results are shown in Table 2
for each modality. In the following, the results of UDS
modality are considered to be obtained from method S-S.
The maximum prediction gain was obtained for the UDS-
modality when the numbers of the neighboring feature vec-
tors were 9 and 3 for UDS and speech, respectively. The
average prediction gain for the UDS modality was also re-
markably higher than other modalities. This indicates that
ultrasonic Doppler is useful for an estimation of the speech
signal. For all combinations of Ns and Nu, the prediction
gains of UDS-modality were consistently higher than other
modalities. The differences from UDS-based estimation in
maximum prediction gain were 1.189 and 0.347 for sEMG-
and vision-based estimation, respectively.

The maximum and average prediction gains of vision-
based estimation were higher than those of sEMG. For
vision-modality, higher prediction gains were obtained
when the larger number of the image frames was adopted.
In the previous vision-based speech synthesis method [16],
more than 11 frames improved the quality of the reproduce
speech signals. However, performance improvements were
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Table 2 The prediction gains in dB for each modality, according to the
number of the frames (Ns denotes for speech. Nu, Ne, and Nv denote for
UDS, sEMG, and image, respectively. The bold values indicate the maxi-
mum for each modality.)

(a) Audible UDS (method A-A)

Nu \ Ns 1 3 5 7 9 11

1 5.511 5.477 5.157 4.736 4.639 4.425
3 6.677 6.483 6.230 6.080 5.790 5.528
5 6.911 6.809 6.646 6.457 6.213 6.113
7 7.129 7.047 6.998 6.745 6.576 6.361
9 7.316 7.366 7.282 6.943 6.735 6.707
11 7.550 7.459 7.295 7.227 7.001 6.843
13 7.281 7.247 7.203 7.181 6.820 6.663

(b) Silent UDS (method A-S)

Nu \ Ns 1 3 5 7 9 11

1 4.836 4.374 3.911 3.401 3.572 3.336
3 4.650 4.439 4.290 4.269 4.141 4.246
5 4.626 4.637 4.345 4.334 4.245 4.275
7 4.469 4.613 4.419 4.187 4.214 4.151
9 4.257 4.524 4.170 4.054 4.066 3.774
11 4.206 4.362 4.266 4.183 3.847 4.002
13 4.138 4.210 4.130 4.110 3.657 3.982

(c) Silent UDS (method S-S)

Nu \ Ns 1 3 5 7 9 11

1 4.540 4.650 4.436 4.191 4.029 3.754
3 4.860 5.051 4.978 4.988 4.707 4.580
5 5.061 5.054 5.293 5.194 4.954 4.866
7 5.190 5.293 5.233 4.973 5.068 4.891
9 4.923 5.369 5.259 5.176 4.907 5.017
11 4.829 5.299 5.136 5.134 5.147 4.911
13 4.834 5.017 5.186 5.132 5.140 4.908

(d) sEMG

Ne \ Ns 1 3 5 7 9 11

1 3.124 3.165 2.842 2.508 2.304 1.787
3 3.898 3.564 3.029 3.009 2.796 2.633
5 3.905 3.887 3.610 3.009 2.971 2.709
7 4.043 3.862 3.680 3.389 3.239 3.007
9 4.084 3.899 3.790 3.397 3.389 3.039
11 4.176 3.902 3.896 3.589 3.298 3.152
13 4.180 3.982 3.870 3.433 3.178 3.056

(e) Vision

Nv \ Ns 1 3 5 7 9 11

1 2.295 2.302 2.159 2.170 2.078 2.089
3 3.023 3.024 3.191 3.058 2.748 2.649
5 3.378 3.531 3.188 3.135 3.090 2.996
7 4.098 3.770 3.502 3.409 3.325 3.088
9 4.753 4.357 4.295 3.998 3.378 3.276
11 5.022 4.604 4.739 4.377 3.844 3.974
13 5.018 4.556 4.650 4.379 3.875 3.978

not clearly observed in this study, even when the number of
frames were increased by 11 or more. This was mainly due
to the relatively short stimuli employed in the present study.

For all modalities, the prediction gain for a given num-
ber of speech frames (Ns) has an increasing trend as the
number of the neighboring input feature vectors Nu in-
creased. The increasing rates differed according to the num-
ber of neighboring speech feature vectors Ns and modality.

For UDS, the maximum of the correlation between the pre-
diction gain and Nu was 0.8915, when Ns was 3, whereas
the maxima of the correlation coefficients were 0.9510 and
0.9936 for sEMG- and vision-based speech estimation, re-
spectively. This indicates that longer input feature vectors
are desirable to increase the speech estimation performance
for sEMG- and vision-modalities. Similar results were re-
ported in a recent vision-based speech estimation study [16].

The prediction gain was inversely proportional to the
number of neighboring speech feature vectors Ns. This was
commonly observed for other modalities. Accordingly, the
maximum prediction gains were obtained when a relatively
small Ns (3, 1, and 1 for UDS, sEMG, and vision, respec-
tively) was employed. Such a poor performance for a longer
Ns can be explained by the effects of over smoothing, which
is caused by an averaging of many spectral feature vectors.
Hence, a method of alleviating the over-smoothing effects
is highly desirable, particularly when longer spectral feature
vectors are employed. Formant enhancement [4] and har-
monic enhancement [36] are possible solutions to the over-
smoothing effects.

5.3 Comparison of Perceptual Quality

Although the prediction gain is a good indicator of perfor-
mance in speech estimation, the DNN configuration with the
highest prediction gain did not always correspond to the best
performance in terms of PESQ and STOI. Hence, five DNNs
were selected that yielded the top five prediction gains.

The results are shown in Table 3. Similar to the results
of prediction gain, method A-A yielded the highest PESQs
and STOIs. A remarkable level of performance degrada-
tion was also seen when the estimation rules constructed us-
ing audible UDS were driven by silent UDS (method A-S).
This was commonly observed for all DNNs. These results
provided more proof that articulatory movements differ be-
tween silently articulated and normally spoken speech. The
results also indicated that PESQs were slightly improved by
employing harmonic enhancement, even though the pitch
periods were estimated using silent UDS. For estimating
speech from silent UDS using method S-S, the maximum
improvement in PESQ was 0.013. In this case, the harmonic
enhancement factor was 0.7. It is also noteworthy that au-
dible UDS provided more accurate pitch periods than silent
UDS. This was confirmed by the fact that PESQ was max-
imally increased by 0.117, when the pitch periods were es-
timated from audible UDS using method A-A in the case of
(Nu,Ns) = (9, 3) and αhe = 0.5. Such improvement was re-
markably higher than in the case of silent UDS-based pitch
estimation.

The results in terms of PESQ and STOI are also pre-
sented in Table 3 when sEMG and image were used to syn-
thesize speech. Note that only audible EMG and audible
image were considered in the experiments and that NNSA
was not adopted for these two modalities. When harmonic
enhancement was employed, the pitch period was estimated
using each modality (EMG and image).



1884
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.8 AUGUST 2020

Table 3 Average PESQ and STOI results for different DNN configurations and different harmonic
enhancement factors. “No HE” denotes no harmonic enhancement.

(a) The results of estimating speech from audible-UDS using method A-A.

DNN No HE αhe = 0.3 αhe = 0.5 αhe = 0.7
Nu Ns PESQ STOI PESQ STOI PESQ STOI PESQ STOI

9 1 2.138 0.9092 2.194 0.9088 2.232 0.9048 2.229 0.9004
9 3 2.120 0.9077 2.184 0.9066 2.237 0.9028 2.225 0.8995
11 1 2.201 0.9182 2.255 0.9173 2.263 0.9123 2.262 0.9092
11 3 2.169 0.9175 2.242 0.9163 2.243 0.9109 2.252 0.9077
11 5 2.155 0.9159 2.241 0.9148 2.246 0.9096 2.249 0.9068

Average 2.157 0.9137 2.223 0.9128 2.244 0.9081 2.262 0.9047

(b) The results of estimating speech from silent-UDS using method A-S.

DNN No HE αhe = 0.3 αhe = 0.5 αhe = 0.7
Nu Ns PESQ STOI PESQ STOI PESQ STOI PESQ STOI

1 1 1.394 0.8282 1.424 0.8280 1.406 0.8275 1.382 0.8224
3 1 1.530 0.8513 1.526 0.8509 1.522 0.8505 1.518 0.8500
5 1 1.515 0.8574 1.496 0.8570 1.494 0.8568 1.526 0.8560
5 3 1.651 0.8578 1.637 0.8565 1.631 0.8552 1.651 0.8539
7 3 1.532 0.8182 1.552 0.8164 1.555 0.8146 1.544 0.8123

Average 1.524 0.8426 1.527 0.8418 1.522 0.8409 1.524 0.8389

(c) The results of estimating speech from silent-UDS using method S-S.

DNN No HE αhe = 0.3 αhe = 0.5 αhe = 0.7
Nu Ns PESQ STOI PESQ STOI PESQ STOI PESQ STOI

9 3 1.860 0.8821 1.868 0.8800 1.862 0.8768 1.850 0.8736
11 3 1.901 0.8957 1.909 0.8936 1.908 0.8905 1.904 0.8879
7 3 1.947 0.8744 1.945 0.8716 1.948 0.8689 1.947 0.8664
5 5 1.902 0.8630 1.912 0.8612 1.914 0.8587 1.915 0.8567
9 5 1.889 0.8715 1.878 0.8693 1.882 0.8659 1.880 0.8638

Average 1.900 0.8773 1.902 0.8751 1.903 0.8722 1.899 0.8697

(d) The results of estimating speech from sEMG.

DNN No HE αhe = 0.3 αhe = 0.5 αhe = 0.7
Ne Ns PESQ STOI PESQ STOI PESQ STOI PESQ STOI

5 1 1.628 0.7537 1.618 0.7524 1.620 0.7500 1.618 0.7466
7 1 1.663 0.7634 1.676 0.7610 1.646 0.7584 1.653 0.7555
9 1 1.682 0.7842 1.683 0.7823 1.678 0.7793 1.680 0.7758
9 1 1.674 0.7690 1.661 0.7673 1.654 0.7640 1.612 0.7588
11 1 1.712 0.8134 1.700 0.8105 1.703 0.8066 1.688 0.8054

Average 1.683 0.7767 1.668 0.7747 1.660 0.7717 1.650 0.7682

(e) The results of estimating speech from image.

DNN No HE αhe = 0.3 αhe = 0.5 αhe = 0.7
Ni Ns PESQ STOI PESQ STOI PESQ STOI PESQ STOI

11 1 2.059 0.8648 2.077 0.8681 2.058 0.8632 2.067 0.8613
9 1 2.037 0.9250 1.996 0.9226 1.978 0.9204 1.997 0.9183
11 5 1.771 0.8027 1.801 0.8002 1.792 0.7947 1.780 0.7887
11 3 1.869 0.8939 1.886 0.8900 1.904 0.8869 1.873 0.8838
11 7 1.698 0.7904 1.709 0.7889 1.707 0.7821 1.707 0.7805

Average 1.887 0.8554 1.894 0.8540 1.888 0.8495 1.885 0.8465

The overall performance of EMG-based speech estima-
tion was worse than that of silent-UDS speech estimation
(method S-S). The maximum difference in average PESQ
between silent-UDS and EMG was 0.249 when an harmonic
enhancement factor of 0.7 was adopted. For STOI, the maxi-
mum difference was 0.1015. Considering that audible-EMG
was used for EMG-based speech estimation, UDS was more
useful in implementing a silent speech interface. For EMG-
based speech estimation, both PESQ and STOI were de-

creased when harmonic enhancement was employed. More-
over, the performance was further decreased as the harmonic
enhancement factor was increased. This indicates that em-
ploying harmonic enhancement was not a good choice for
improving the quality of EMG-based speech synthesis. Ac-
cording to the experimental results, errors in pitch estima-
tion were significantly higher, compared with silent UDS-
based pitch estimation. This means that a major cause of
such bad performance for EMG-based speech synthesis with
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harmonic enhancement is the low accuracy of EMG-based
pitch estimation.

The maximum PESQ of the synthesized speech signals
from the image were slightly higher than that of silent UDS-
based speech synthesis. The maximum PESQ exceeded 2.0,
which could not be obtained by other modalities when no
neighboring spectral features were considered (Ns=1). In
the case of Ns > 1, the quality of the synthesized speech sig-
nals from the image was worse than that from silent UDS-
based speech synthesis. Although the maximum STOI was
found in image-based estimation, the average STOI of the
method S-S is higher than that of the image-based method
regardless of αhe. Consequently, the quality of silent UDS-
based speech estimation is comparable to image-based es-
timation. The harmonic enhancement was in part effec-
tive to improve the quality of synthesized speech from im-
age features. When a relatively smaller enhancement factor
(αhe = 0.3) was adopted, the average PESQ was increased
by 0.007. However, no remarkable improvements were ob-
served when αhe ≥ 0.5. Such results are also associated with
the accuracy of image-based pitch estimation. It is generally
known that the source components of speech signals includ-
ing pitch period and excitation are not well predicted us-
ing an image captured from the speaker’s mouth region [16].
However, our results showed that the quality of synthesized
speech from images could be improved somewhat by adjust-
ing the degree of harmonic emphasis when the pitch period
is estimated from an image.

5.4 MOS Test Results

A subjective listening test was designed to evaluate the ab-
solute quality of reproduced speech signals using the MOS
(Mean Opinion Score) test. In this test, 18 listeners (12
males, 6 females; ages ranging from 21-52 years, mean age
26) participated and were asked to score the quality of the
reproduced speech signals. All of them had normal hear-
ing ability. The quality rating scale for each factor is as
follows: Excellent=5/Good=4/Fair=3/Poor=2/Bad=1. The
test data set consisted of 10 pairs of isolated words that
were randomly taken from the database. None of the lis-
teners had significant prior knowledge of the contents of the
test sentences. Quality evaluation was carried out on the
speech signals reproduced by the following three schemes:
(1) audible-UDS synthesis (method A-A), (2) silent-UDS
synthesis (method A-S), (3) silent-UDS synthesis (method
S-S), (4) sEMG-based synthesis, and (5) image-based syn-
thesis. For each method, the DNN configuration and the har-
monic enhancement factor with the highest average PESQ
were chosen according to Table 3.

The results are shown in Fig. 6 where the average
MOSs are presented for each method. Similar to the results
of PESQ and STOI, audible UDS-based synthesis (method
A-A) yielded the highest MOS. The listeners indicated that
utterances reconstructed using the method A-A sounded
clearer and were less noisy than those produced using the
other methods. This method, however, cannot be applied

Fig. 6 MOS test results.

to implement a true SSI system, since audible UDS should
be used for both the construction of synthesis rules and the
synthesis procedure. Except for the synthesis method A-A,
the S-S method showed the highest average MOS. The lis-
teners indicated the quality of the synthesized speech by the
method S-S was remarkably superior to both the method A-
S and sEMG-based method in terms of intelligibility and
naturalness. Compared with the image-based method, lis-
teners were not able to discriminate differences easily, but
indicated that the synthesized speech by the method S-S was
slightly better. Consequently, the UDS-based speech syn-
thesis scheme can be adopted for implementation of SSI that
provides reasonable quality with the advantage of low-cost,
no image-based preprocessing, and non-contact sensing.

6. Conclusions

In this study, a method for synthesizing speech using ultra-
sonic Doppler caused by articulatory movements was pro-
posed and the effectiveness of the proposed method was ver-
ified. With the proposed method, the mapping rules between
silent UDS and audible speech were taken into consider-
ation. These were not addressed by previous UDS-based
speech synthesis methods. The experimental results showed
a clear difference between silent UDS and audible UDS.
Speech synthesis was also carried out on other modalities.
The quality of synthesized speech from silent UDS was re-
markably better than that of speech synthesized from EMG
signal. The overall quality of the speech synthesized from
silent UDS was comparable to speech synthesized from an
image.

UDS-based speech synthesis uses equipment that is
non-contact, lightweight, and inexpensive, and it yields
synthesized speech that compares to existing image-based
speech synthesis methods. The rules for speech synthesis
under completely silent conditions can be obtained by us-
ing the NNSA method proposed in this work. This would
be helpful for implementing full silent speech interface sys-
tems. Future work will focus on determining the sensor lo-
cations and feature variable associated with silent UDS. We
will also study a multi-modality silent speech interface sys-
tem in which the use of both UDS and image complement
one another to improve the perceptual quality of synthesized
speech signals.
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