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PAPER

Generative Moment Matching Network-Based Neural
Double-Tracking for Synthesized and Natural Singing Voices

Hiroki TAMARU†a), Nonmember, Yuki SAITO†b), Student Member, Shinnosuke TAKAMICHI†c),
Tomoki KORIYAMA†d), and Hiroshi SARUWATARI†e), Members

SUMMARY This paper proposes a generative moment matching net-
work (GMMN)-based post-filtering method for providing inter-utterance
pitch variation to singing voices and discusses its application to our devel-
oped mixing method called neural double-tracking (NDT). When a human
singer sings and records the same song twice, there is a difference between
the two recordings. The difference, which is called inter-utterance varia-
tion, enriches the performer’s musical expression and the audience’s expe-
rience. For example, it makes every concert special because it never re-
curs in exactly the same manner. Inter-utterance variation enables a mixing
method called double-tracking (DT). With DT, the same phrase is recorded
twice, then the two recordings are mixed to give richness to singing voices.
However, in synthesized singing voices, which are commonly used to cre-
ate music, there is no inter-utterance variation because the synthesis pro-
cess is deterministic. There is also no inter-utterance variation when only
one voice is recorded. Although there is a signal processing-based method
called artificial DT (ADT) to layer singing voices, the signal processing
results in unnatural sound artifacts. To solve these problems, we pro-
pose a post-filtering method for randomly modulating synthesized or nat-
ural singing voices as if the singer sang again. The post-filter built with
our method models the inter-utterance pitch variation of human singing
voices using a conditional GMMN. Evaluation results indicate that 1) the
proposed method provides perceptible and natural inter-utterance varia-
tion to synthesized singing voices and that 2) our NDT exhibits higher
double-trackedness than ADT when applied to both synthesized and nat-
ural singing voices.
key words: DNN-based singing-voice synthesis, generative moment
matching network, inter-utterance pitch variation, artificial double-
tracking, modulation spectrum

1. Introduction

When a person sings the same song twice, the resulting
singing voices are never the same. This difference is called
inter-utterance variation [1]. Inter-utterance variation leads
to rich musical experiences. For example, when a singer’s
singing is different from that in a compact disc recording,
the audience feels that the singer is really singing in front of
them and can be moved by the singer’s performance. Inter-
utterance variation also enables choosing a favorite from
various recordings of the same song in music production.
A mixing method called double-tracking (DT) [2], [3] uses
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Fig. 1 Double-tracking (DT), artificial double-tracking (ADT), and our
neural double-tracking (NDT). ADT and NDT are used for natural voices
but can also be used for synthesized voices.

inter-utterance variation (Fig. 1). DT is achieved by layering
two or more recordings by one singer to obtain a perceptu-
ally rich sound.

Singing-voice synthesis methods are currently used
for creating music. One aim with such methods is the
creation of expressive singing voices not depending on
the creators’ gender or singing ability. VOCALOID [4],
which is a singing-voice synthesis software, is so popu-
lar that many creators upload original songs created us-
ing VOCALOID online and that there are even concerts
performed by VOCALOID characters. Also, some indus-
trial companies are aiming at developing the synthesis sys-
tems [5], [6]. There are a variety of singing-voice synthesis
methods, e.g., unit selection synthesis (e.g., VOCALOID),
those based on hidden Markov models (HMMs) [7], [8], and
those based on deep neural networks (DNNs) [9], [10]. The
performance of DNN-based ones is improving rapidly in
recent years, outperforming HMM-based ones [9]. How-
ever, such DNN-based methods lack inter-utterance varia-
tion, as shown in Fig. 2. A single voice is synthesized from
one musical score with such DNN-based methods because
of the deterministic synthesis process. This results in the
lack of the rich musical experiences mentioned above and
makes DT impossible. The same problem also arises with
human singers when there is only one successful record-
ing but the creator wants to achieve double-trackedness.
An alternative to DT is signal processing-based artificial
or automatic double-tracking (ADT) [2], [11]. ADT, which
requires only one recording, deterministically modulates
one recording and mixes the original and modulated voices
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Fig. 2 Comparison of human and synthesized singing voices.

(Fig. 1). Since ADT does not require multiple recordings
with inter-utterance variations, it can be easily applied to
both human and synthesized singing voices. However, the
signal processing of ADT results in unnatural sound arti-
facts [11].

To solve these problems, we propose a post-filtering
method for providing inter-utterance pitch variations to syn-
thesized and natural singing voices. We assume that such
variations follow a certain complicated distribution; thus,
we use deep generative models, which can model compli-
cated distributions. Based on our previous work on spec-
trum generation in text-to-speech synthesis [1], we use a
generative moment matching network (GMMN) [12], [13]
as the deep generative model. This is because it is effective
and easy to implement compared with other models. For
instance, generative adversarial networks [14] involve a dif-
ficult minimax problem and variational auto-encoders [15]
are subject to degradation of decoding quality due to over-
regularization [16]. Our conditional GMMN-based post-
filter is trained to represent the distribution of natural pitch
contours given either synthesized or natural pitch contours
and prior noise vectors. The trained post-filter randomly
modulates any input pitch contour and outputs an alterna-
tive pitch contour as if the singer sang again. Instead of
modeling the distribution of the pitch frame-wise, this post-
filter models the distribution of the modulation spectrum
(MS) [17] of the pitch contours so that a long-term pitch
structure can be captured. We apply the proposed method
to a new type of ADT we developed, called neural double-
tracking (NDT). With NDT, the secondary singing voice is
generated by modulating the input synthesized or natural
voice using our method. Since our method provides nat-
ural inter-utterance variation, our NDT achieves naturally
layered singing voices.

The experimental evaluation demonstrated that our
method can provide perceptible inter-utterance pitch vari-
ations to synthesized singing voices while preserving natu-
ralness and that the NDT exhibits higher perceptual double-
trackedness than ADT in both synthesized and natural
voices.

The rest of this paper is organized as follows. In Sect. 2,
we describe two related methods, i.e., DNN-based singing-
voice synthesis and ADT. In Sect. 3, we explain GMMN.
In Sect. 4, we describe the proposed method. In Sects. 5
and 6, we present the experimental results for synthesized
and natural voices, respectively. In Sect. 7, we conclude
the paper. Note that this paper is partially based on an in-

ternational conference paper [18] written by the authors, in
which we discussed our method and NDT for synthesized
singing voices. The contribution of this paper is applying
our method to NDT for natural singing voices. We conduct
experiments to evaluate the effectiveness of NDT for natural
singing voices.

2. Related Methods

2.1 DNN-Based Singing-Voice Synthesis Method

With the DNN-based singing-voice synthesis method pro-
posed by Nishimura et al. [9], the relationship between
musical information and singing voices is modeled using
DNNs. A musical score is converted into a sequence of vec-
tors representing musical and linguistic contexts. A singing
voice is converted into a sequence of speech parameters such
as a fundamental frequency (F0), spectral parameters, and
an unvoiced/voiced label. In the training process, the mean
squared error (MSE) between the predicted and target (nat-
ural) parameters is minimized as follows:

LMSE(y, ŷ) = ||y − ŷ||2 (1)

where y is the target and ŷ is the predicted speech-
parameter sequences. We focus on 1-dimensional con-
tinuous F0 [19] and define y as a scalar value sequence
[y(1), · · · , y(t), · · · , y(T )]�, where y(t) is the continuous log-
scaled F0 at frame t and � is the transpose. In the synthe-
sis process, ŷ = [ŷ(1), . . . , ŷ(t), . . . , ŷ(T )]� is generated us-
ing the DNN given the input context vector sequence and ŷ
is used to synthesize the output singing voice. The output
voice is uniquely determined according to the input context
since the synthesis process is deterministic.

2.2 ADT

DT is a mixing method used to provide richness to singing
voices [2], [3] by recording and mixing the same musical
phrase twice. The problem is that it is difficult for singers
to avoid unnatural differences between the two recordings
(e.g., note lengths). To solve this problem, ADT, which is
an alternative method, was proposed. With ADT, instead of
recording twice, the secondary voice is obtained by mod-
ulating the first voice based on signal processing [2], [11].
Originally, the process was achieved by taking a vocal sig-
nal from the sync head of a multi-track, recording it to an-
other loop of tape which was speed varied with a slow oscil-
lation, and recording it back onto the multi-track [2]. More
recently, it has been replaced with computational signal pro-
cessing; the most common method is the chorus effect [11].
This effect modulates the input pitch contour with a low-
frequency oscillator (LFO). In other words, a simple func-
tion, such as a sine function, is added to the original pitch se-
quence. The modulated voice is then mixed with the original
one. Typically, the modulated voice is given some volume
reduction and temporal delay to enhance the doubled-voice
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sense.
Although ADT can be applied to any singing voice in-

cluding natural and synthesized voices, it involves mixing
two signals with similar phases, resulting in comb-filtering
and its subsequent unnatural changes of sound [11].

3. GMMN

A GMMN [12] is a neural network that enables random sam-
pling from the target distribution. A GMMN takes a ran-
dom noise vector as the input of the neural network where
the noise behaves as the source of the randomness. In the
training process, we minimize the maximum mean discrep-
ancy (MMD) between the predicted and target distributions.
MMD represents the discrepancy of statistical moments be-
tween the two distributions. In the generation process, a
random value is sampled from the trained distribution.

A conditional GMMN [13] is an extension of a GMMN
that enables random sampling from the conditional distribu-
tion given certain input variables. As the input of a con-
ditional GMMN, the joint vector consisting of conditioning
variables and random noise is used. The GMMN, which
outputs a conditional distribution, is trained by minimizing
conditional MMD (CMMD), which measures the distance
between two conditional distributions. Here, we consider
the CMMD between the distributions of the target vector in-
cluded in training data and the output vector obtained by the
neural network. Let Sin = [sin(1), · · · , sin(T ′)] be the input
conditioning vector set, Stgt = [stgt(1), · · · , stgt(T ′)] be the
target vector set. T ′ is the total number of frames of training
data. Let Sout = [sout(1), · · · , sout(T ′)] be the output vector
set and squared CMMD is defined as follows:

L(Sin,Stgt,Sout) =
1

T ′2
‖CSout |Sin − CStgt |Sin‖2 (2)

where CSout |Sin and CStgt |Sin are the covariance operators of Sout

and Stgt conditioned with Sin, respectively. The estimates of
CSout |Sin and CStgt |Sin are given by the following equations [20]:

ĈSout |Sin = ΦSout (Υ
�
Sin
ΥSin + λIT ′)

−1Υ�Sin
(3)

ĈStgt |Sin = ΦStgt (Υ
�
Sin
ΥSin + λIT ′)

−1Υ�Sin
(4)

ΦSout = [φ(sout(1)), . . . , φ(sout(T
′))] (5)

ΦStgt = [φ(stgt(1)), . . . , φ(stgt(T
′))] (6)

ΥSin = [ψ(sin(1)), . . . , ψ(sin(T ′))] (7)

where φ(s) = k(s, ·) is the feature map for Sout and Stgt, and
ψ(s) = h(s, ·) is the feature map for Sin. k(·) and h(·) are
arbitrary positive definite kernel functions which compose
a reproducing kernel Hilbert space (RKHS). We do not have
to use the same kernel function for k(·) and h(·). IT ′ is the T ′-
by-T ′ identity matrix, and λ is a regularization coefficient.
Since φ(s) and ψ(s) are the elements of RKHSs, we use the
following relationship:

KA,B = Φ
�
AΦB (A, B = Stgt,Sout) (8)

HSin = Υ
�
Sin
ΥSin (9)

where the notation KA,B is the T ′-by-T ′ Gram matrix
between A and B. For example, KStgt,Sout is the Gram
matrix between Stgt and Sout, i.e., its (i, j)th element is
k(stgt(i), sout( j)). Similarly, HSin is the Gram matrix for Sin

and its (i, j)th element is h(sin(i), sin( j)). From the equations
above, CMMD is estimated as follows:

L̂(Sin,Stgt,Sout) =
1

T ′2
{tr(LSin KStgt,Stgt )

+ tr(LSin KSout,Sout )

− 2tr(LSin KStgt,Sout )} (10)

LSin = H̃
−1
Sin

HSin H̃
−1
Sin

(11)

H̃Sin = HSin + λIT ′ . (12)

In the generation process, a random value is sampled
from the modeled conditional distribution given input vari-
ables.

4. Proposed GMMN-Based Post-Filtering Method and
Its Application to NDT

4.1 MS Extraction of Pitch Contour

The MS is the log-scaled power spectrum of a parameter
sequence [17]. It represents the temporal structure of the
sequence. The MS Sin of the input pitch sequence yin is
calculated using a short-time Fourier transform (STFT), as
follows:

Sin = [sin(1), · · · , sin(τ), · · · , sin(T ′)] (13)

sin(τ) = [sin(τ, 0), · · · , sin(τ,m), · · · , sin(τ,M)]� (14)

where τ is the segment index (one segment corresponds to
one window of the STFT) and m is the modulation frequency
index. The notation sin(τ,m) is the MS of m at τth segment,
T ′ is the total number of segments, and M is half the number
of segments. The MS Stgt of the target pitch sequence ytgt is
calculated similarly.

We used the zero-mean continuous F0 sequence [17]
to prevent errors caused by zero padding. After the post-
filtering (described in Sects. 4.2 and 4.3), we can recon-
struct the continuous F0 sequence by carrying out an inverse
STFT (ISTFT) using the filtered MS and the phase infor-
mation of the input pitch contour. When calculating the
MS, we need to use appropriate settings (e.g., windowing
length) to achieve a perfect reconstruction through an STFT
and ISTFT. We only use the lower modulation frequency
MS (i.e., slowly changing components) for post-filtering be-
cause post-filtering the components with higher modulation
frequencies causes unnatural temporal fluctuations in the F0

sequence. This is reasonable because the LFO of ADT is
equivalent to an addition operation in the lower modulation
frequency.

4.2 Proposed Post-Filtering Method and NDT for Synthe-
sized Singing Voices

We describe a GMMN-based post-filter built with our



642
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.3 MARCH 2020

Fig. 3 Schematic diagram of post-filter built with proposed method.

method for randomly modulating the F0 sequence of syn-
thesized singing voices. Figure 3 represents the structure of
the post-filter. We use a deterministically synthesized pitch
contour as yin and the natural pitch contour of the same song
as ytgt.

In the training process, the conditional GMMN models
the conditional distribution of natural continuous F0. Let
n(τ) ∼ U[−1, 1) be the prior noise vector at τth segment and
G(·) be the conditional GMMN. The input of the conditional
GMMN is the joint vector [sin(τ)�, n(τ)�]� and the output
is the filtered MS sout(τ), i.e., sout(τ) = G([sin(τ)�, n(τ)�]�).
L̂(Sin,Stgt,Sout) in Eq. (10) is minimized in training.

In the modulation process, we first calculate the MS
Sin of an arbitrary input pitch sequence yin. Then, given the
sequence of joint vectors [sin(τ)�, n(τ)�]�, the conditional
GMMN outputs a sequence of sout(τ). Using Sout and the
phase information of yin, we then obtain the output pitch se-
quence yout by carrying out an inverse STFT. By changing
the noise, the post-filter can produce a different pitch con-
tour. Finally, using the new pitch contour and the other orig-
inal speech parameters, we obtain a randomly modulated
voice by vocoding.

To conduct NDT on synthesized singing voices, we
first generate a randomly modulated version of the input
voice. The modulated voice is given some volume reduc-
tion and temporal delay to simulate the setting of ADT. Fi-
nally, we can obtain the layered voice by mixing the modu-
lated voice with the original one. The schematic diagram is
shown in Fig. 4.

4.3 Proposed Post-Filtering Method and NDT for Natural
Singing Voices

A post-filter that modulates natural singing voices can be
built with our method in a similar manner to that of the syn-
thesized voices. The difference is the data that we use. We
need a repeated singing voice database (i.e., the same singer
singing the same songs multiple times). Let N be the num-
ber of recordings for each song, given one recording as the
input, we can use the remaining N − 1 recordings as the tar-
get. Thus, we can use N P2 = N(N − 1) pairs. Since the

Fig. 4 Schematic diagram of NDT for synthesized singing voices. “Post-
filter” in this figure corresponds to Fig. 3. In actual implementation, we
decreased volume of modulated sound and added delay to it before mixing.
“Spectrum” means spectral parameter and “U/V” means unvoiced/voiced
label. “Cont. F0” means continuous F0 sequence.

number of pairs increases by the squared order, we can eas-
ily increase the amount of training data. NDT can be used
on natural singing voices in a similar manner to that of syn-
thesized singing voices.

We consider two models. One is the singer-dependent
(SD) model, which models the inter-utterance variation of
a single singer. We can only use the singing voices of this
singer as the input. The other is the singer-independent (SI)
model, which models the singer-independent inter-utterance
variation by using a database consisting of multiple singers.
The SI model can be used for arbitrary singers.

4.4 Discussion

We now discuss the novelty and advantages of the proposed
method. Our method involves randomness in the MS do-
main, not in the time domain. We developed this method
for post-filtering, not generating. We previously built a
GMMN-based frame-wise spectrum generation method for
text-to-speech [1]. However, this method had two problems:
1) frame-wise noise vectors caused unnatural discontinuity
in the output sequence and 2) the GMMN conditioned with
linguistic features was incapable of providing perceptible
variations because the linguistic features were sparse. The
proposed method solves these problems. First, the MS of
F0 contours is a lower-dimensional representation that effec-
tively captures segment-wise temporal structure, and filter-
ing the components with lower modulation frequencies can
randomly vary the F0 contour without losing the continuity
of the contour. Second, using a GMMN as a post-filter can
avoid the sparseness problem and provide sufficient inter-
utterance variations, as discussed in Sect. 5.2.

This is the first study to 1) provide natural inter-
utterance pitch variations by using GMMNs to model MSs
and 2) introduce such a post-filtering method for singing
voices. Since this method takes into account the distribu-
tion of natural MSs, the variation in the post-filtered voices
should be in the natural range. Figure 5 shows a pitch con-
tour that was synthesized on the MSE basis and post-filtered
(i.e., randomly modulated) pitch contours. We can see that
our method samples different but continuous pitch contours.
As mentioned in Sect. 1, inter-utterance variation enables
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Fig. 5 Example of generated pitch contours. Four contours are sampled
by our proposed method. Value of unity on vertical axis is equal to semi-
tone.

one to choose a favorite from various ones. Since the pitch
contour of each segment can be saved by fixing the input
noise of that segment, it is possible to choose one’s favorite
pattern phrase-by-phrase and concatenate the segments to
complete the whole song.

NDT is the first double-tracking method that uses a
deep generative model. Conventional ADT involves a voice
made by modulating the original voice deterministically
without taking into account the natural distribution of pitch
variations. NDT, on the other hand, takes into account the
natural pitch variations, resulting in a more doubled-voice
sense, as discussed in Sects. 5.4, 6.2, and 6.3.

We use data augmentation, which is an effective
method for improving the accuracy of DNN modeling, in re-
lation to the STFT. In an STFT, the calculated value signif-
icantly changes depending on the segment position (i.e., the
frame index of the beginning of the segmentation). To cover
such perturbations, we added all possible offsets to segment
positions of the STFT analysis. This method augments the
training data of the post-filter and presumably enhances its
training accuracy.

We extend the framework so that natural singing voices
can be input by creating a repeated singing voice database
(Sect. 6.1). Although DT uses inter-utterance variations,
mixing two voices with too much difference (especially note
lengths) can cause unnaturalness. Since our method only
changes the value of F0, there is no worry about too much
difference. Therefore, NDT can even be a safer and more
practical choice than DT.

5. Experimental Evaluation Using Synthesized Singing
Voices

5.1 Experimental Conditions

To evaluate our method applied to synthesized singing
voices shown in Figs. 3 and 4, we used Japanese singing
voice data of 31 songs from the HTS demo [21], 26 songs
from the JSUT-song corpus [22], and 9 in-house songs. The
singer of the second and third corpora was the same female
and the singer of the first corpus was a different female.
From these corpora, we used 58 songs (76 min and 50 s) for
training the DNN for singing-voice synthesis, 28 songs (29

min and 41 s) of the HTS demo for training the post-filter,
and 3 songs (1 min and 54 s) of the HTS demo (not included
in the training data) for the evaluation. We used 3-fold data
augmentation by transposing the context labels and voices
up and down a semitone [10]. The sampling rate was 16
kHz. We used the WORLD analysis-synthesis system [23]
to analyze and synthesize singing voices. The frame shift of
the analysis-synthesis was set to 5 ms.

We predicted speech parameters on MSE basis using
a feed-forward DNN consisting of a 705-dimensional in-
put layer, 3 × 256-unit gated linear unit (GLU) [24] hid-
den layers, and a 127-unit linear output layer. The 705-
dimensional input features consisted of 688-dimensional
linguistic and musical features, a one-hot song code and
a one-hot singer code [25]. The target and predicted
speech parameter vector consisted of log-scaled contin-
uous F0, 40-dimensional mel-cepstral coefficients, band-
aperiodicity [26], dynamic (delta- and delta-delta-) fea-
tures [27] of those 42-dimensional parameters, and a binary
unvoiced/voiced label. We used AdaGrad [28] to optimize
DNN parameters. The number of training iterations was set
to 50. The learning rate was 0.005, and the batch size was
500.

For the conditional GMMN, we used a feed-forward
DNN consisting of an 11-dimensional input layer, 3 ×
128-unit GLU hidden layers, and input-to-output residual
net [29]. We used AdaGrad to optimize DNN parameters.
The learning rate, minibatch size, and the number of train-
ing iterations were set to 0.005, 13,000, and 10, respectively.
To calculate LSin in Eq. (11), an approximation using 1024-
dimensional random Fourier features [30] was used because
calculating the inverse matrix was computationally infea-
sible. The input of the conditional GMMN was an 11-
dimensional vector consisting of the first-order MS (m = 1)
of the synthesized singing voice and a ten-dimensional noise
vector generated from a uniform distribution U[−1, 1). To
stabilize the post-filter training, noise vectors were gener-
ated for each segment before training then fixed during train-
ing. The regularization coefficient λ was 0.01. We used
Gaussian kernels for the input and output features, i.e., for
the output, exp{−||stgt(i)− sout( j)||2/σ2}. We set σ for the in-
put and output kernels to 100.0 and 1.0, respectively; these
values were empirically chosen. The natural MS was nor-
malized into the range [0.01, 0.99]. A 96-frame (480 ms)
Hanning window and 48-frame (240 ms) segment shift were
used for the STFT to extract MSs. To clarify the effect of
pitch modulation, we used mel-cepstral coefficients, band-
aperiodicity, and the unvoiced/voiced label of the corre-
sponding natural singing voices in the vocoding process.

We conducted several subjective evaluations on 1)
whether our method provided perceptible inter-utterance
variation, 2) whether it degraded the naturalness of the pitch
contours, and 3) whether the double-trackedness of NDT
was higher than that of ADT. To make it easier for listeners
to judge, we manually split the samples into segments in ac-
cordance with three conditions: short (one phrase), middle
(twice as long as short or the same length as short, depend-
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Table 1 Answer rate of perceived inter-utterance difference

Post-filtered MSE p-value

0.276 0.176 7.45×10−3

Table 2 Naturalness and their p-values for middle- and long-duration
singing voices

Length condition Post-filtered MSE p-value

Middle 0.504 0.496 8.58 × 10−1

Long 0.480 0.520 3.72 × 10−1

ing on the phrases), and long (several phrases). The aver-
age lengths for the three conditions were 3.01, 4.88, and
10.24 s, respectively. We carried out the evaluations using
the crowdsourcing platform “Lancers” [31] and gathered 25
participants for each evaluation.

5.2 Perception of Inter-Utterance Variation

To investigate whether the generated inter-utterance varia-
tion was perceptible for human listeners, we asked the par-
ticipants whether they felt there was a difference between
a pair of singing voices. We used short-duration voices to
make it easier to remember subtle differences. We presented
20 pairs for each listener. Ten pairs were randomly post-
filtered voices and the other ten pairs were identical MSE-
based voices (control). Welch’s t test was used to calculate
the p-value.

Table 1 lists the results. For the MSE-based voices,
the perception rate was 17.6% despite that the same voice
was presented twice. On the other hand, the rate for the
post-filtered voices was statistically significantly higher than
that for the MSE-based voices. From this result, we can in-
fer that perceptible inter-utterance variation can be produced
using our method.

5.3 Naturalness of Post-Filtered Singing Voice

To determine whether our method degrades the quality of
the pitch contour of synthesized voices, we presented ten
pairs of post-filtered and MSE-based voices to the partici-
pants and asked them to choose the more natural one. We
used the middle- and long-duration voices to make it easier
to assess the overall naturalness.

Table 2 lists the results. We did not observe statistically
significant difference for either the middle- or long-duration
voices. This implies that our method did not reduce the nat-
uralness of synthesized pitch contours.

5.4 Double-Trackedness of NDT

We evaluated the double-trackedness (i.e., the perceptual
similarity to an actual double-tracked sound) of ADT and
our NDT:

ADT: Modulating the log-scaled F0 sequence by using an

Table 3 Double-trackedness and their p-values for middle- and long-
duration singing voices

Length condition NDT ADT p-value

Middle 0.724 0.276 < 10−10

Long 0.736 0.264 < 10−10

LFO and mixing its vocoded speech waveform with the
MSE-based waveform. We used a sine wave oscilla-
tion whose depth and rate were 10% of a semitone and
0.775 Hz, respectively. The parameters were chosen
by referring to a book on mixing [11]. The voices were
modulated in the vocoder-parameter domain, not in the
waveform domain because doing so is thought to pro-
duce fewer artifacts.

NDT: Modulating the log-scaled F0 sequence using our
method and mixing its vocoded speech waveform with
the MSE-based waveform.

With both methods, the modulated waveform was delayed
by 20 ms and the volume decreased by 3 dB to produce the
usual ADT setting [11]. We presented ten pairs of voices
generated using the two methods above to the participants
and asked them to choose the one that sounded more like an
actual double-tracked sound. As discussed in Sect. 5.3, we
used the middle- and long-duration samples.

Table 3 lists the results. Under both the middle and
long conditions, the scores of our NDT were significantly
higher than those of ADT. We can infer that our method
achieves more double-trackedness than ADT does.

6. Experimental Evaluation Using Natural Singing
Voices

6.1 Experimental Conditions

We created an in-house repeated singing voice database of
17 songs (13 min and 30 s). The songs were Japanese chil-
dren’s songs chosen from the demo of HTS [21]. Four male
singers (A, B, C, D) sang all songs five times. They first
listened to an example singing voice once with a headphone
then sang along with the example and a metronome while
looking at musical scores. Singing voices were recorded
in an anechoic chamber. The sampling rate was 16 kHz.
We used 14 songs (12 min and 6 s) for conditional GMMN
training and 3 songs (1 min and 24 s) as the test data for
post-filtering.

The overall setting of the post-filter is similar to that
for synthesized singing voices. We now describe the dif-
ferent parts. We used the repeated singing voice database
for the input and target of the conditional GMMN. We
used WORLD [23] for the analysis and synthesis but used
STRAIGHT [32] only for the extraction of F0 because it was
empirically more accurate for the voices of the database. In
the vocoding process (analysis and synthesis), we used a
513-dimensional spectral envelope instead of mel-cepstral
coefficients because it was not necessary to compress the
dimension. The log-scaled F0 was linearly interpolated in
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the training, but we used only the voiced part in the objec-
tive evaluation. The architecture of the conditional GMMN
and the training settings (the learning rate, the gradient, etc.)
were the same as those presented in Sect. 5.1, except that the
σ for the input and output kernels were 0.1, which was em-
pirically chosen. We built both SD and SI models for all
four singers. For the SI models, we used the singing voices
of three other singers.

In both the subjective and objective evaluations, we
compared the following four mixing methods:

ADT: The same as that presented in Sect. 5.4.
NDT (SD): Modulating the log-scaled F0 sequence using

our SD post-filter and mixing its vocoded speech wave-
form with the input voice.

NDT (SI): Modulating the log-scaled F0 sequence using
our SI post-filter and mixing its vocoded speech wave-
form with the input voice.

DT: Mixing the input voice with another recording of the
same singer and same song as the input voice.

With ADT and NDT, the modulated voice was delayed by
20 ms. With all four methods, the volume of the secondary
voice decreased by 3 dB.

6.2 Subjective Evaluation of NDT

To investigate the perceptual double-trackedness of our
NDT, we conducted a listening test using Lancers [31]. We
manually split the samples in accordance with two condi-
tions: short (one phrase) and long (several phrases). The
average lengths were 4.9 s and 10.5 s, respectively. One-
hundred listeners participated for each condition. Each
participant listened to 48 samples (3 samples × 4 singers
× 4 methods) and scored the double-trackedness of the
samples on a scale from 1 (the listener did not sense
double-trackedness at all) to 5 (the listener sensed double-
trackedness much).

Figures 6 and 7 show the mean opinion score (MOS)
for each duration condition. Under both short and long con-
ditions, the double-trackedness scores of ADT were low and
those of NDT were close to those of DT. We conducted two-
sided paired t-tests to determine whether there were differ-
ences between the MOS of NDT (SD) and NDT (SI). The p-
values under the short and long conditions were 5.66× 10−1

and 5.12 × 10−2, respectively; thus, no statistically signifi-
cant difference between SD and SI was observed when the
significance level was 5%.

These results indicate that our NDT exhibits higher per-
ceptual double-trackedness than ADT. We can also infer
that it is possible to build singer-independent NDT models
since the SI models are as effective as the SD ones. Some
voice samples used in the evaluation are available online†.

†https://sites.google.com/site/shinnosuketakamichi/research-
topics/neural-double-tracking

Fig. 6 MOS of double-trackedness for short condition.

Fig. 7 MOS of double-trackedness for long condition.

Fig. 8 Violin plot of RMSEs between pair of singing voices for 4 mixing
methods.

6.3 Objective Evaluation of NDT

To investigate the numerical difference among the four mix-
ing methods, we compared the root mean squared error
(RMSE) between the log-scaled F0 sequences of the input
and secondary voices. For ADT, we used 272 samples (4
singers × 17 songs × 4 recordings). For NDT, we used
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48000 samples (4 singers × 3 songs × 4 recordings × 1000
random noise patterns). For DT, we used 408 samples (4
singers × 17 songs × 6 pairs of recordings).

The distribution of RMSE is shown in Fig. 8. The
RMSE of ADT is small and the variance of it is almost zero.
On the other hand, both the RMSE and its variance of NDT
are closer to those of DT than those of ADT. From this re-
sult, the high double-trackedness of NDT was objectively
confirmed.

7. Conclusion

We proposed a GMMN-based post-filtering method that
provides inter-utterance pitch variation to singing voices
and discussed its application to a mixing method we de-
veloped called NDT. Inter-utterance variations of human
singing not only enrich musical experiences but also enable
DT. However, there are no such variations in determinis-
tically synthesized voices and previously recorded voices.
Our method uses a GMMN to model inter-utterance pitch
variations among natural singing voices to randomly modu-
late singing voices as if the singer sang again. Experimen-
tal results indicate that 1) our method can generate pitch
variations that are perceptible by human listeners without
degrading the naturalness of the synthesized singing voices
and that 2) higher double-trackedness can be achieved using
our NDT than using ADT in both synthesized and natural
singing voices.

In the future, we will extend our framework so that we
can model inter-utterance variation of the duration and spec-
tral parameters and combining it with that of the pitch to
generate more natural variations.
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