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A Ruby-Based Hardware/Software Co-Design Environment with
Functional Reactive Programming: Mulvery

Daichi TERUYA†a), Student Member and Hironori NAKAJO††, Member

SUMMARY Computation methods using custom circuits are fre-
quently employed to improve the throughput and power efficiency of com-
puting systems. Hardware development, however, can incur significant de-
velopment costs because designs at the register-transfer level (RTL) with
a hardware description language (HDL) are time-consuming. This paper
proposes a hardware and software co-design environment, named Mulvery,
which is designed for non-professional hardware designer We focus on the
similarities between functional reactive programming (FRP) and dataflow
in computation. This study provides an idea to design hardware with a dy-
namic typing language, such as Ruby, using FRP and provides the proof-
of-concept of the method. Mulvery, which is a hardware and software co-
design tool based on our method, reduces development costs. Mulvery
exhibited high performance compared with software processing techniques
not equipped with hardware knowledge. According to the experiment, the
method allows us to design hardware without degradation of performance.
The sample application applied a Laplacian filter to an image with a size of
128 × 128 and processed a convolution operation within one clock.
key words: SoC FPGA, HLS, functional reactive programming

1. Introduction

Due to the end of Moore’s Law, making improvements to
software performance are reaching a limit. Therefore, com-
putation using custom hardware (circuits) is frequently hired
to improve the throughput, latency, and power efficiency of
computer systems. In this situation, reconfigurable devices,
such as a field-programmable gate array (FPGA), is attrac-
tive from both academic and industrial perspectives. An
FPGA is a type of very-large-scale integration (VLSI) de-
vice that an end-user can reconfigure to build custom digital
circuits with reduced manufacturing costs.

1.1 Problems with Designing Hardware

Hardware development, however, can lead to significant
development costs due to difficulties in describing the
register-transfer level (RTL) with a hardware description
language (HDL). HDL often tends to cause bugs and cer-
tain challenges related to debugging. In contrast, software-
development is characterized by mature debugging tech-
niques and analysis methods, in addition to well-developed
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coding techniques. Thus, software has relatively low de-
velopment costs and high productivity. Additionally, more
tools for software development are available than for hard-
ware development, which are often free to use. Therefore,
FPGA development incurs higher development costs than
software development, such that FPGA applications are lim-
ited despite their benefits in terms of energy and perfor-
mance.

To solve this problem, there are two well-known ap-
proaches. The first is meta-programming. Tools of this type
generate HDL descriptions from code written in a domain-
specific language (DLS) or macros with existing program-
ming languages. The amount of hardware description can
be less than when using an HDL, such that the abstraction
level is equivalent to the HDL descriptions. Such tools re-
quire knowledge for designing hardware even though the
tool based on a programming language. Hence, the tech-
niques do not reduce design costs but only development
costs.

The second approach is the adoption of high-level syn-
thesis (HLS) techniques that synthesize HDL descriptions
from behavioral descriptions written in a programming lan-
guage, such as C/C++ or Java. There are currently HLS
tools based on various languages [1], [2]. Moreover, FPGA
giants, such as Xilinx and Altera/Intel, have released HLS
tools based on C/C++ language [3], [4]. Typically, HLS
tools are specialized for software acceleration. However,
users must add certain annotations to the code to optimize
the performance. HLS tools require knowledge of specific
techniques to analyze the generated circuit and put effec-
tive annotation to the source code so that a room remains
to reduce design and development costs. The central cause
of this problem is a difference in the programming paradigm
among programming language and HDL. Programming lan-
guages rest on control-flow style, but HDL rest on data-flow
style. This fact leads to two problems. Firstly, since soft-
ware programs have no information for parallelism, HLS
tools require annotations similar to parallel computing pro-
grams. Secondly, Because there is no information for data-
flow in software programs, we need to control that which
piece of the code does the tool synthesizes into a module, or
the generated circuit might be unnecessarily either huge or
low performance.

Furthermore, co-design environments for system-on-
chip (SoC) FPGAs, which have microcontroller units
(MCUs) as the hard-macro on one chip, are widely used.
However, as these environments are also made to accelerate
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software, opportunities for their use are also limited. There-
fore, there is a lack of descriptiveness when describing the
communication among hardware parts (or both hardware
and software parts). As such, our second goal is to pro-
pose a new co-design tool of hardware and software. Our
method achieves flexible software and hardware cooperation
and minifies of adding extra-codes in user codes to realize
the cooperation.

For rapid development, software engineering occasion-
ally adopts a lightweight language (LL) [6], such as Python
or Ruby. Contrarily, in hardware development, there is room
for improvement because, to the best of our knowledge,
fewer frameworks that focus on development efficiency ex-
ist than software development.

1.2 Our Approach with Functional Reactive Programming

For these reasons, this study proposes a new hardware de-
sign tool, named as Mulvery framework. The principal aim
of this study is to generate efficient circuits without adding
annotations by hand and any extensions of programming
language. This paper proposes the concept of our novel
hardware design method. Mulvery introduces the concept
of functional reactive programming (FRP) [8], [9] which is
a programming paradigm similar to hardware design. Mul-
very generates hardware from a Ruby program written using
a pre-defined operator set provided by Mulvery library. In
this study, we adopted ReactiveX (Rx) [10] as a basic imple-
mentation of FRP. Rx is a widely used standard operator-set
for development, such as web programming and Android
OS applications. Mulvery then translates each operator-
chain in an input program to a pipeline of hardware modules
written in HDL. The most operators are high-order functions
and take lambda abstractions as arguments so that the oper-
ators are able to handle any type of data.

As Rx is an API set defined for software programming,
Mulvery is similar to an HLS tool. Since FRP is a type of
data-flow style programming, Mulvery can converts a pro-
gram into a data flow graph (DFG) directly. Hence, Mul-
very is not an HLS tool but, rather, it is one of a meta-
programming tool for HDL.

The principal aim of this study is to design circuits
without adding annotations by hand and any extensions of
programming language. This paper provides a proof-of-
concept of our novel hardware design method. To summa-
rize briefly, this paper provides the following contributions:

• Reduce hardware design costs with a lightweight lan-
guage and FRP (Sect. 2.1),
• Automated co-design of software and hardware

(Sect. 2.2), and
• Provide hardware design techniques using dynamic

typing languages (Sect. 5).

The remainder of this paper is organized as follows.
Section 2 explains the Mulvery framework. Section 3 dis-
cusses relevant previous studies and Sect. 4 provides an
overview of FRP. Section 5 presents a method to generate

Fig. 1 The synthesizing flow of Mulvery.

HDL codes using FRP. Mulvery is evaluated in Sect. 6 and
Sect. 7 provides a summary and conclusion of our study.

2. Mulvery Framework

We have developed a hardware and software co-design
framework, Mulvery. This section shows the structure of our
Mulvery framework and describes how users can develop an
application with Mulvery.

Mulvery targets platforms using an SoC FPGA, which
includes both MCUs and FPGA logic, such as the Zynq-
7000 series released by Xilinx, Inc. An application gener-
ated by Mulvery must have both an executable file for the
MCU and a bit file for the FPGA. Therefore, Mulvery sep-
arates an input program into software and hardware compo-
nents and automatically adds codes and circuits, such that
both MCU and FPGA can collaborate and simultaneously
work. Figure 1 shows a generation flow of an application
for an SoC FPGA using Mulvery.

2.1 Hardware Design with a Dynamic Typing Language

Compilers cannot synthesize a description written with a dy-
namic typing language into a circuit since compilers are un-
able to determine the types of variables with static syntactic
analysis in a dynamic typing language. Mulvery uses one of
FRP’s characteristics that an interpreter can dynamically an-
alyze a program written with FRP without any sample input
data of the application and can build a dataflow graph. In
Mulvery library, codes that generate a corresponding node
of its dataflow graph are implemented instead of the actual
functionality. Hence, although map, scan, and subscribe
method in Fig. 8 are executed when Mulvery is generating
the hardware, the Ruby interpreter generates dataflow graph
instead of actual calculations. Section 5 discusses details on
how to generate HDL from a program. Although the use of
a dynamic typing language has not been sufficiently studied
as a hardware design tool, we suggest that this study can
offer a significant contribution to hardware design method-
ologies. Our proposal can be applied not only with Ruby
but also with various programming languages, regardless of
whether its type system is dynamic or static.
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Fig. 2 A class inheriting MulveryBase.

2.2 Co-Design of the Hardware and Software

If a part of an application is too complicated to code with
Mulvery’s operators, typically, the part is not suitable to
be an FPGA-based accelerator, even if either using another
HLS tool; such a part needs hardware experts to be improved
the performance. Hence, programmers should reorganize
the algorithm to rewrite into a dataflow-style to code with
Mulvery’s operators. If it is hard to realize, the part is suit-
able to be calculated on an MCU.

Thus, Mulvery retains the components that are not
Mulvery’s operators as “software” and translates only the
Mulvery’s operators into hardware. Behavior that is easy
to describe in a dataflow model, such as an Rx description,
is suitable for processing with hardware. In contrast, com-
munication processing, such as a TCP/IP protocol stack, is
adequate for software because an FPGA implementation for
such a transaction consumes hardware resources and de-
grades system performance. Therefore, such parts should
be implemented as software from a performance and pro-
ductivity perspective.

Typically, for most HLS tools, users must modify and
optimize applications to improve performance. In contrast,
Mulvery offers increased performance without tuning. Mul-
very does not synthesize parts of a program that expect per-
formance degradation if it is offloaded to FPGA; such a part
runs on MCU. A Muvery program express temporal and
spatial parallelism.

(1) Programming model

A part of program written with Mulvery’s operators is ex-
plicitly separated for simple synthesis in the Mulvery frame-
work. Specifically, the MulveryBase class shown in Fig. 2 is
used as the top-level of a target application. Mulvery syn-
thesizes a circuit from Mulvery’s operators written in the
build dataflow method. The main method is executed on an
MCU as the software component. The software component
transmits data and passes results to and from the FPGA via
instance variables defined in its build dataflow method. To
understand this, let us view a sample code in the following
subsection.

(2) Data sharing among hardware and software

Figure 3 shows the basic architecture of a circuit gener-
ated using Mulvery. The CoRAM architecture [11] is used

Fig. 3 The basic architecture of a circuit generated using Mulvery.

Fig. 4 The structure of the Mulvery framework.

Fig. 5 An example of the build dataflow method.

to communicate among modules on an FPGA and CPU(s).
CoRAM is one of shared memory architectures designed to
communicate among multiple hardware modules on recon-
figurable devices. When transferring an event from a mod-
ule on an FPGA to a CPU, the module stores data from the
event in a CoRAM assigned to the module. Therefore, soft-
ware components can read data from the hardware compo-
nents, similar to memory-mapped I/O.

2.3 Developing an Application with Mulvery

Figure 4 shows the structure of the Mulvery framework.
To use Mulvery, the application program requires the Mul-
very Library. As the Mulvery framework does not extend
the syntax of Ruby and is built as a Ruby library, Mulvery
can be used on a regular Ruby interpreter without a dedi-
cated compiler or preprocessor. This following subsection
explains the workflow to develop an application with Ruby
and Mulvery.

(1) Defining dataflows

Codes written with Mulvery’s operators must be placed in
the build dataflow method of the MulveryBase class, and it
will be the dataflow machine in an FPGA.

Figure 5 shows an example of the build dataflow
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Fig. 6 An example of the main method and its output.

method. In Fig. 5, a dataflow is defined using a timer module
and an array of certain numbers. The number observable is
an event stream, where each event contains a number, such
that the timer generates an empty event every second. The
zip operator waits for an event from two observables. When
it receives an event from each observable, the operator zips
these events into an object and emits it as a new event. In
short, the @numbers observable takes data from data and
emits the data as an event every second.

A select operator filters items that does not pass a test
specified by the lambda abstraction. Thus, @even numbers
observable emits an even number as an event every two sec-
onds. Mulvery provides multiple ways to generate an ob-
servable (e.g., from array, from IO, and timer).

(2) Defining a software component

A software component is specified in the main method of
the MulveryBase. The software component subscribes data
from hardware components via observables defined in de-
fine dataflow method as instance variables. Subscribers of
each observable are registered with the subscribe method.
Figure 6 shows an example of a main method implemen-
tation and its output. In the sample code, the subscribers
merely display the data when it is observed.

(3) Behavioral test

As simulations of RTL are time-consuming, behavioral tests
is a better way to ensure that the behavior of a program is
correct while coding. Applications can use the “Mulvery
Library for Soft” instead of the “Mulvery Library” for be-
havioral tests. When an application loads the test library,
the program runs as software, without hardware.

3. Related Works

3.1 Hardware Design Tools

PyMTL [12] is a custom-hardware design tool based on

Python, which can be referred to as a multi-paradigm de-
sign tool because it contains three levels of abstraction: the
function level (FL), clock level (CL), and register-transfer
level (RTL). As FL descriptions are a type of dataflow pro-
gramming, PyMTL is similar to Mulvery. However, PyMTL
users must implement each function in CL or RTL. There-
fore, PyMTL is not designed for software engineers.

Chisel [13] and CλaSH are hardware design tools based
on a functional programming language. Chisel is currently
used as a softcore implementation of RISC-V [14] and the
RISC-V implementation is published as open-source hard-
ware. Although these tools may decrease implementation
and debugging costs, design costs are still high because they
are not behavioral descriptions.

Veriloggen [15] is also a Python-based multi-paradigm
Verilog HDL code constructor. The programming model for
Veriloggen is sufficiently abstracted from the Verilog HDL
code as an AST for secure handling of hardware specifica-
tions in Python. Pyverilog provides several high-level oper-
ations (e.g., the Reduce instruction to data streams). How-
ever, input and output data types for the operations are lim-
ited and such operations require extra codes to fit the data
types before and after the operation. Thus, there is room to
improve productivity.

3.2 Hardware and Software Co-Design Tools

FPGA vendors have released this type of tool to encour-
age hardware acceleration of software (e.g., Xilinx SDAc-
cel [16] and Intel FPGA SDK for OpenCL [3]). Typically,
to offload parts of the process to an FPGA, users must se-
lect and annotate target functions. Users must analyze and
tune the target software to determine the parts that will be
offloaded. These tools are peculiarly suited to hardware en-
gineers since knowledge of the hardware is required to per-
form this task.

There are several tools that automatically select the
hardware parts. However, there are a several tools that au-
tomatically select the hardware parts. Warp Processing [17]
analyzes a program that is running on an MIPS processor
and dynamically offloads slow parts. Thus, users do noth-
ing to optimize the system but must wait for trial-and-error
analysis, which is performed by the tool. LegUp [1] can
statically construct a co-designed system. However, LegUp
currently only supports a pure hardware architecture and is,
therefore, not a co-design tool. Consequently, methodolo-
gies for automatic architecture exploration in co-design en-
vironments further studies are needed.

4. Functional Reactive Programming

This study focuses on FRP to realize a novel hardware and
software co-design environment. FRP is a paradigm that is
suitable for the development of an event-driven application
(e.g., GUI development) [18]. Using plain reactive program-
ming (RP) makes it difficult to resolve data dependency due
to the side-effects of each instruction. In contrast, no side-
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Fig. 7 An example of counting a number of events in the FRP.

Fig. 8 Sample code for implementing Fig. 7

effects exist with a “functional” RP. As a result, DFGs are
more easily generated from a program written in FRP than
one written in RP.

There is a data type that represents an “over time”
value, referred to as an observable, such that program-
mers can declaratively describe operations for this data type.
In imperative programming, interruptions are used by pro-
grams to realize dynamic variables. In contrast, when using
FRP, programmers do not have to consider interruptions be-
cause the variables (objects) are updated over time.

We implemented our methodology in Ruby lan-
guage [19] because Ruby offers flexible grammar and the
capability of implementing DSL. Our proposal can be ap-
plied not only with Ruby but also with various programming
languages, regardless of whether its type system is dynamic
or static.

Let us investigate an example of an FRP. Figure 7
shows an example of an FRP while Fig. 8 shows its Mulvery
program. In this example, the program counts a number of
events. In line 1, an observable class is initiated as an object.
Each instance of an observable has methods defined in the
Rx for handling events that the observable arrived at by it-
self. Most Mulvery’s operators takes lambda abstractions as
arguments. Lines 3 and 4 of the sample code shows such a
operators. A lambda abstraction is passed to the map opera-
tor in line 3 and, at any time, returns 1. A lambda abstraction
is passed to the scan operator in line 4 and holds a result of
an expression reg+d in a register, i.e., “reg.” In other words,
the scan operator adds 1 to the variable reg each arrival of
an event. As both the map and scan operator returns an ob-
servable object, operators can be chained. When a terminal
event arrives at an observable, the observable is successfully
completed. Thus, when the scan operator is complete, the
subscribe method in line 5 calls a lambda abstraction that
has been passed to itself. Finally, the lambda abstraction in
line 5 prints the counting result.

Table 1 The principal schedulers in Mulvery.

Name Roll

CurrentThreadScheduler
Pushes given process

to the queue of the current thread

ImmediateScheduler
Starts given process immediately

on the current thread

DefaultScheduler
Starts given process

on a background thread

LocalScheduler
Creates a new thread

and starts given process on it

The essential point is that the FRP concept is similar to
a dataflow model. The FRP paradigm can express both tem-
poral and spatial parallelism. Therefore, it is reasonable to
assume that the FRP is also suitable to describe the behavior
of hardware.

Lambda abstractions play a vital role in separating
dataflow descriptions and data types. Each operator is ab-
stracted to the operation level while the concrete manipula-
tion of the data entities is handled by the lambda abstrac-
tions. Therefore, queries are able to fit various data for-
mats with a uniform description method. Let us consider an
add function as an example. The function is called without
a lambda abstraction, i.e., as obs.add(1), where the data
types that the add function can handle are limited exclu-
sively to numeric types. In contrast, if the function takes a
lambda abstraction as an argument, the add function is avail-
able to handle any data type, even if it is a structure type as
in the following code: obs.add(1) { |d| d.value }.

5. RTL Design Generation

This study focuses on the similarity between the develop-
ment of programs using FRP and FPGA circuits and inves-
tigates the effectiveness of the FRP in synthesizing circuits
from a program in dynamic typing languages, such as Ruby.

The steps shown next is the way to generate a circuit
using Mulvery:

1. A user specifies an application’s behavior with Mul-
very operators,

2. Mulvery evaluates and analyzes the program written in
step 1 on the Ruby interpreter to generate RTL codes,
and

3. The user synthesize the RTL codes generated in step 2
with vendor tools.

5.1 Scheduling Strategy

To explain Mulvery’s scheduling method, this subsection
describes the concept of the Rx scheduler. A scheduler is
a design-pattern of a class that schedules tasks to be pro-
cessed. The most Rx operators require a scheduler object as
an argument. This scheduler concept realizes multi-thread
programming and provides priority to the tasks.

There are several schedulers that are implementations
of frequently used strategies (e.g. “execute on a new thread”
and “interrupt”) in the pre-defined schedulers of the Rx. Ta-
ble 1 shows the important schedulers and Fig. 9 shows the
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Fig. 9 The relationship among the operators, threads, and principal
schedulers.

Table 2 Rx operator classification.

Creation-Class Timer-Class Data-Manipulation-Class
from array timer select
from IO interval map
empty average

relationships among the operators, threads, and schedulers.
Table 1 shows the important schedulers and Fig. 9 shows the
relationships among the operators, threads, and schedulers.
The LocalScheduler has a queue and executes tasks from
the head of the queue. Each instance of the LocalScheduler
works as a different thread.

Normally, on regular Rx, most operators use the Cur-
rentThreadScheduler as the default scheduler. The Current-
ThreadScheduler adds new tasks to the queue of the cur-
rent thread. Therefore, a system sequentially calculates the
given operators. We classified the Rx operators into three
classes, as shown in Table 2, and reconsidered the default
scheduler for each operator to realize automatic spatial par-
allelization. The operators classified to the Creation-Class
use DefaultThreadScheduler as a default scheduler instead
of the CurrentThreadScheduler. As the operators in the
Creation-Class are data sources and have no dependency
with the other operators in the Creation-Class, each oper-
ator in Creation-Class can be recognized as an independent
dataflow.

Operators in the Data-Manipulation-Class remain to
use the CurrentThreadScheduler as the default scheduler be-
cause these operators are sequentially executed from a data
source.

Operators in the Timer-Class use the DefaultThread-
Scheduler as the default scheduler. These operators create a
new thread because the timers are typically run on an inde-
pendent thread.

5.2 Building a DFG

Mulvery executes the build dataflow method of the given
program to generate the HDL code. Thus, a chain of Mul-
very’s operators that specify a dataflow is dynamically eval-
uated at once when generating hardware. In our method, in-

Fig. 10 An implementation of the from array operator in Mulvery.

stances of the DefaultThreadScheduler, which are initiated
in the Creation-Class operators, construct a dataflow from
an Mulvery program. Therefore, every Rx query is recog-
nized as an independent dataflow. This subsection explains
how DFGs are generated with schedulers, as well as how an
RTL design is generated from these DFGs.

(1) Constructing a DFG

Dataflow graphs are composed of instances of the Observ-
able class and DataflowOperator class. Figure 10 shows
a part of the implementation of the Observable class. The
from array operator registers an instance of the Dataflow-
Operator class instead of a task into its scheduler. Lambda
abstractions given to an operator are recorded in an instance
of the DataflowOperator (Fig. 13).

When the DataflowOperator is initiated, the instance
registers itself in the DataflowContainer. Therefore, every
independent dataflow is contained in the DataflowContainer
class.

(2) Generating an RTL design from the DFG

Mulvery generates an RTL design written in Verilog from a
dataflow graph saved in the DataflowContainer. As HDL
code generation is separate from DFG generation, HDL
code generation can be readily exchanged from Verilog
HDL to VHDL or another HDL.

A template for HDL description is prepared for each
Mulvery’s operator. Each DataflowOperator (see Fig. 13)
passes parameters to Ruby’s template engine (ERB) to gen-
erate a module in Verilog using a corresponding template.
At this time, the lambda abstractions saved in an instance
of the DataflowOperator are translated into Verilog code,
where the generated code passes to the ERB. The ERB em-
beds the code in the template corresponding to the instance
of the DataflowOperator, as shown in Fig. 11 and Fig. 12.
At this point, to exchange data and instructions with one or
several CPUs, Mulvery allocates an address on the CoRAM
for each observable object if it is referenced from software
part.

5.3 Circuit Synthesis from Lambda Abstractions

Mulvery’s operators defined as high-order functions, such
as a map or scan, take a lambda abstraction as an argument.
A lambda abstraction that is passed to an operator takes an
event as its argument. For example, Fig. 14 shows a program
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Fig. 11 The workflow that generates the HDL code of a module.

Fig. 12 Part of the code for the HDL generation of an operator.

Fig. 13 The structure of a dataflow and its container.

Fig. 14 Sample code of the map operator.

that doubles data arriving as an event. Operators (functions)
can receive a lambda function as a block in Ruby’s syntax.
Although such a lambda abstraction is not written with FRP,
it also must be translated into HDL codes. Hence, we have
employed another way to realize parallel computing for the
lambda abstractions. Each data object in a program (i.e., the
variable event in Fig. 14) has meant an edge of the dataflow
in its DFG.

(1) Generating DFGs from lambda abstractions

For static, high-level synthesis of a lambda abstraction into
a circuit, a synthesizer must infer the types of all variables.
However, Ruby is not a static typing language. Thus, for
the sake of simplicity, Mulvery regards the lambda abstrac-
tion as a dataflow that initiates from its arguments. The map
operator is implemented as shown in Fig. 15. A piece of
the HDLComposer implementation class is also shown in
Fig. 12. The yield statements used in an operator call and
evaluate a block given to the operator. To generate a piece

Fig. 15 An implementation of the map operator.

Fig. 16 Sample code of the special “if” statement provided in Mulvery.

of HDL code from a lambda abstraction, Mulvery passes an
HDLComposer object for each argument of the lambda ab-
stractions. The HDLComposer behaves as a numeric-type
object by default but users can implement other object be-
haviors if necessary.

(2) Control statements

The method described in the paragraph above generates un-
expected HDL code when Ruby’s control statements, such
as if or for, are used in the lambda abstractions because
execution is branched at these statements. Thus, Mulvery
provides special methods and classes to use control state-
ments. An example of an if statement in Mulvery is shown
in Fig. 16. The mv if method returns an IfContext object,
resulting in the synthesis of other branches that are con-
tained in the context object. The IfContext class has elseif
and else methods. Thus, a programmer can use conditional
statements.

6. Sample Application and Evaluation

To show our tool does not decrease the performance of an in-
put program than the performance when the given program
is executed as software, we developed an application with
convolution operations for image processing to evaluate our
proposed method. The application applies a Laplacian filter
with a size of 5 × 5 to an image with a size of 128 × 128
(Fig. 17). Figure 18 shows the architecture of the applica-
tion while Fig. 19 shows the essential code of the sample
application, which receives a line (128 px) of an image as
an event. When five events (i.e., five lines) are stored in the
input buffer, the system simultaneously applies the Lapla-
cian filter 124 times in parallel and emits a line of the pro-
cessed picture as an event. Finally, the result buffer emits a
processing result as an event when it stores 124 lines.

In this example, the Matrix class that is a standard class
of Ruby is overridden by Mulvery library to be a hardware
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Fig. 17 The application of a 5 × 5 Laplacian filter.

Fig. 18 The architecture of the sample application.

Fig. 19 The essential part of the sample application.

module, and conv has been newly added to the Matrix class.

6.1 Structure of the Generated Hardware

Figure 20 and Fig. 21 shows the structure of the hardware
generated by Mulvery. Mulvery generated an array consist
of 5 × 128 register, denoted as data, and connected the ar-
ray to a matrix consist of 5 × 5 pixels, denoted as mats.
Each element of mats has been connected to each of 124
independent convolution arithmetic units. The convolution
unit convolves an element of the mat with the matrix of the
Laplacian filter saved as a variable kernel.

6.2 Scheduling Process

In the sample program shown in Fig. 19, the from array op-
erator reserves a new thread using DefaultThreadScheduler.
After this, the map and the buffer operators chained to the
from array operator schedule itself to the thread reserved by
from array using CurrentThreadScheduler. A data object
(e.g., the variable data and each element of the array mats
in Fig. 19) will be an edge in the DFG. In other words, lines
4–10 in Fig. 19 generates 124 threads and the lambda ab-
straction defined in lines 12–14 runs on each thread. There-

Fig. 20 The pipeline (left) and result of lambda abstraction synthesis
(right) in Fig. 19.

Fig. 21 Structure of matrix convolution unit (left) and structure of inner
product unit (IPU) (right).

Fig. 22 A confirmation of hardware operation synthesized using the
Icarus Verilog.

fore, the convolution mat.conv(kernel) runs on 124 threads
in parallel.

6.3 Evaluation

We evaluated the hardware generated from the sample ap-
plication.

(1) Behavior verification

We verified the behavior of the hardware with the Icarus
Verilog, whose results are shown in Fig. 22. One-hundred
and twenty-eight iterations of the 5 × 5 convolution were
completed in one clock. Mulvery generated high-throughput
hardware without exploring the architecture. The first con-
volution required two clocks as only the first signal was
skipped due to the influence of a rising clock.

(2) Resource consumption

Table 3 shows the resource consumption on the SoC FPGA
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Table 3 The resource consumption of the Zynq-7000 (XC7Z020).

Resource Estimation Available Utilization %

LUT 48,839 53,200 91.80
FF 3,949 106,400 3.71
BRAM 35.50 140 25.36

Zynq-7000 (XC7Z020) platform released by Xilinx, Inc.
Because many of matrix multipliers had been generated, the
LUT consumption was huge. Mulvery has no way to di-
rectly control resource consumption and calculation speed.
The resource consumption control is one of the current is-
sues of Mulvery.

(3) Software comparison

Finally, we compared the processing speed with the case
where the software was operated on a CPU. Ruby was im-
plemented on an Intel Core-i3 at 3.4 GHz, where the perf
command on CentOS 7 was used to measure the runtime.

The result was that the sample application required
3,130 ms of CPU time to process the image. In contrast,
the generated hardware consumed approximately 135 clocks
per image (Fig. 22). As the operating frequency of the
FPGA was 100 MHz, the maximum throughput was approx-
imately 194 GB/s. However, it is difficult to input images
at 194 GB/s from the memory or from an external I/O to
the FPGA. On the Zynq platform, the measured bandwidth
for reading memory was approximately 1.6 GB/s. Thus, the
data buses were bottlenecked, such that the actual maximum
processing speed was approximately 0.2 ms per image as the
data transferred from the memory.

Despite problems with bottlenecked data buses, Mul-
very can generate hardware compared with standard CPU
processing, without explicit circuit synthesis tuning by a de-
signer.

7. Conclusions

This paper proposed a hardware and software co-design en-
vironment, named Mulvery. FRP, which is widely used for
software development, was applied to our tool since the se-
mantics of FRP programs is similar to hardware design.

According to the experiment, the method allows us
to design hardware without degradation of performance.
A sample application that applied a Laplacian filter to a
128×128 image processed the convolution operation within
one clock, with a 91.8% resource consumption on the Zynq-
7000 (XC7Z020) platform.

We introduced a method to generate DFGs from a
program based on FRP. To our knowledge, no other hard-
ware design framework based on sofware development tech-
niques, i.e., FRP and a dynamic typed language, exists.
Mulvery generates a circuit for an FPGA from query chains
written in the pre-defined operator set in Mulvery. Mul-
very’s pre-defined query set is based on ReactiveX, such
that Mulvery translates each query defined in the query set
to a hardware module. Mulvery converts a Ruby program
into DFGs and then converts the DFGs into Verilog code.

Software-like development which adopts a dynamic typ-
ing language suffers from a lack of previous studies. Our
method, based on the FRP, can be applied to numerous pro-
gramming languages, regardless of whether the system is
dynamic or static. Therefore, our proposal can be used
not only with Ruby but also with various programming lan-
guages.
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