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PAPER

Knowledge Integration by Probabilistic Argumentation

Saung Hnin Pwint OO†a), Member, Nguyen Duy HUNG†b), and Thanaruk THEERAMUNKONG†c), Nonmembers

SUMMARY While existing inference engines solved real world prob-
lems using probabilistic knowledge representation, one challenging task
is to efficiently utilize the representation under a situation of uncertainty
during conflict resolution. This paper presents a new approach to straight-
forwardly combine a rule-based system (RB) with a probabilistic graphical
inference framework, i.e., naı̈ve Bayesian network (BN), towards proba-
bilistic argumentation via a so-called probabilistic assumption-based ar-
gumentation (PABA) framework. A rule-based system (RB) formalizes
its rules into defeasible logic under the assumption-based argumentation
(ABA) framework while the Bayesian network (BN) provides probabilis-
tic reasoning. By knowledge integration, while the former provides a solid
testbed for inference, the latter helps the former to solve persistent conflicts
by setting an acceptance threshold. By experiments, effectiveness of this
approach on conflict resolution is shown via an example of liver disorder
diagnosis.
key words: knowledge integration, probabilistic argumentation, proba-
bilistic graphical models and rules

1. Introduction

Knowledge integration (KI) is a process of incorporating
new information into a body of existing knowledge [1] when
a source is insufficient for making decision itself. In multi-
agent systems, agents integrate and share their knowledge
to perform a common task [2]–[4]. In ontology integration,
several ontologies are integrated for handling semantic het-
erogeneity and knowledge variation [5]–[8]. In BNs inte-
gration [9]–[12], a global BN is constructed by combining
local BNs. However, conflict is a common problem when
knowledge from multiple sources is combined. For exam-
ple, a source has knowledge about that A causes B while an-
other source has knowledge about that B causes A. Unfortu-
nately, conflicts make inconsistent decisions in multi-agent
systems and inconsistent semantic information in ontology-
based systems, triggering some cycles in BNs.

As a conflict resolution, conflict is assumed as a
normalization factor of ignorance in Dempster’s rule of
combination [13] for merging evidences from independent
sources. Unfortunately, Dempster’s rule of combination
cannot solve the problem of total conflict evidences since it
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causes the combination result to be not applicable (N/A). So,
[14] extends the Dempster’s rule of combination by measur-
ing conflict between two pieces of evidence as a coefficient.
Moreover, several approaches [15]–[18] have been explored
to investigate combination methods for integrating conflict
evidences based on Dempster-Shafer theory (DST). How-
ever, the combination results may vary according to their
baseline methods. Meanwhile, argumentation is a common
sense of reasoning formalism and solves conflict by attack-
ing arguments. It is used in several areas including deci-
sion making, knowledge integration, ontology, and multi-
agents, for providing accurate final decisions. There are sev-
eral approaches [19]–[23], which use argumentation to solve
the conflict while integrating knowledge. These approaches
usually use single representation, such as either DST state-
ments or argumentation statements. However, it is more ef-
ficient if we combine straightforwardly different notations,
each of which has different strengths in its representation,
resulting in improving total process performance. In fact,
for combining different representations, it is difficult to de-
tect whether the knowledge of these representations over-
lap with each other or not due to their different vocabularies
in knowledge representation. For example, BN represents
knowledge in the form of a directed acyclic graph while RB
represents knowledge in the form of rules.

This paper presents a study on integration of two pow-
erful but different presentations with augmentation-based
conflict resolution, that is combination of rule-based (RB)
and Bayesian network (BN) via probabilistic argumentation.
In our approach, defeasible reasoning can be incorporated
into the RB system using the ABA framework where any
conflict can be solved using the ABA’s semantic. Com-
plementarily, the probabilistic inference can be achieved
by querying the propositions based on evidences (obser-
vations) inside the BN. As one solution, it is possible to
set up a rule iff probability of the proposition computed
by the BN is greater than 0.5, then the proposition is en-
tailed by the framework. Otherwise, they conflict. To en-
able the combination of RB and BN, we propose to translate
them into a common representation, say the probabilistic
assumption-based argumentation (PABA) framework. So,
we use the PABA framework as an identical representation
since it captures both logical and probabilistic aspects. In
the conflict resolution, we formalize them into their respec-
tive PABA frameworks and provide a combination way for
integrating them into an integrated framework. Then, we
infer the proposition into this integrated PABA framework
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for computing the acceptable probability of the proposi-
tion. We show that our approach provides more reliable and
better explainable results than each single individual rep-
resentation. As an application area, we apply production
rules of a rule-based approach that is implemented by LU-
CAS [24], [25] and a naı̈ve BN that is generated from 100
patient-records [26]. They are concerned about diagnosis of
liver disorders and biliary tracts. We evaluate our approach
by inferring common diagnosis such as steatosis hepatitis
and primary biliary cirrhosis.

Some related works are shown in Sect. 2 while some
theoretical backgrounds are provided in Sect. 3. We describe
overview of our approach with its applications, an RB and
a naı̈ve BN, in Sect. 4. How to restructure the RB into the
ABA framework is described in Sect. 5. In Sect. 6, we show
how to detect conflicts between the ABA framework and the
naı̈ve BN. In Sect. 7, we resolve the conflict by introducing
the PABA framework, translating both RB and BN into this
framework, and then conducting threshold-based inference.
The experimental results are provided in Sect. 8. Some con-
clusions and future directions are given in Sect. 9.

2. Related Work

So far knowledge integration have been studied in several
works including those related to multi-agent systems [3],
[4], [27], and Bayesian inference systems [9]–[12], [19]. In
[9], a method that handles an ancestral ordering shared by
individual BNs, was developed to combine these BNs. The
method removes some nodes from two original networks
and combines these networks. In [10], a four-step algo-
rithm was proposed to systematically combine the quali-
tative and the quantitative parts of the different probabilis-
tic graphical models; Bayesian networks (BNs) and influ-
ence diagrams (IDs), for heart disease diagnosis. It re-
duces complexity of structural and quantitative (i.e., condi-
tional distributions) combinations by removing some orig-
inal dependencies between nodes. In [11], a method to
recover the global structure from multiple local Bayesian
networks without losing any domain information, was pro-
posed. In [12], the authors presented the probabilistic mod-
els as Bayesian Knowledge Bases (BKBs) and proposed
an algorithm called Bayesian knowledge fusion that allows
easy aggregation and de-aggregation of information from
multiple expert sources and facilitates multi-expert decision
making by providing a framework in which all opinions can
be preserved and reasoned over. In [28], an approach to
translate logical knowledge into Bayesian networks was il-
lustrated. In this approach, network composition is applied
to build a uniform representation that supports both logical
and probabilistic reasoning. In [29], an approach to fuse
multiple knowledge sources in geo-spatial decision support
systems, was proposed as probabilistic logic. In this work,
the probability of a sentence (i.e., a query) was computed
when a set of sentences is provided as evidences. Then the
probabilistic logic is introduced to represent uncertainties in
logical sentences and to reduce the computational complex-

ity of coping with the semantics of the sentence. If multiple
sources have conflicts in their knowledge, then it is difficult
to be integrated. In propositional bases, conjunctive and
disjunctive mergings are two ways to combine these bases
depending on whether the bases are conflicting or not [30].
When the bases are not conflicting, the former is preferred
to the latter, otherwise, the latter to the former.

Moreover, several approaches [15]–[18] have been ex-
plored to investigate hybrid methods for integrating con-
flict evidences based on Dempster-Shafer theory (DST). In
[15], the authors applied Dempster-Shafer Theory (DST) to
address the problems of combining information in recom-
mender systems (RSs) such as non-sense combination prob-
lem, totally-conflicting combination problem, incomparable
rating problem in RS. They analyzed six combination of
methods, which are based on DST, and proposed two hybrid
combination methods to solve existing conflict in massive
functions. The first hybrid method combines the methods of
Dubois and Prade’s Rule of Combination and the method of
Dempster’s Rule of Combination. The other method com-
bines Dempster’s Rule of Combination and finds the aver-
age of rule combination. The results of the paper showed
that these hybrid methods outperformed the baseline meth-
ods. In [16], the authors proposed a method based on
DEMATEL for combining multiple conflicting evidences
and reducing computational complexity in the combination.
The relation between evidences is determined by construct-
ing a similarity measure matrix. Then conflicting evidence
was modified by calculating prominence and importance
of evidence. Finally, the method computed the weighted
average of evidences as a combination result based on
Dempster’s rule of combination.

In the past, the argument-based systems (ABSs) helps
improve decision making process, particularly when the
user provided enough evidences, even the decision was
done in a realistic but complicate task [21]. In [19], the
WebKIDSS framework was developed as an argumentation-
enabled knowledge integration in a decision support system
in semantic web in order to solve conflicts which make in-
complete and inconsistent semantic web information. In
[20], argumentation was used instead of voting to develop
a hybrid intelligent system for crop classification. It inte-
grates expert knowledge and decisions of three bases clas-
sifiers; decision tree, support vector machine and neural
network. Both knowledge and decisions are expressed as
rules with defeasible logic programming in order to solve
conflicts for providing accurate prediction in crop classifi-
cation. When ontologies are incomplete and inconsistent,
a decision support framework for ontology integration was
developed in [22] using argumentation. It determines the
membership status of individuals to concepts and provides a
global understanding of the knowledge. In [31], preference-
based argumentation framework was proposed to solve con-
flicts by defining merging operators. In [32], a set of argu-
mentation frameworks were combined by merging operators
which generate a set of corresponding frameworks rather
than a single one. The framework, called Pooling Infor-
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mation from Several Agents (for short, PISA), was devel-
oped in [23] to enable classification using argumentation.
Agents are participated in a dialectical process arguing for
a given example to be classified based on their experience.
In [33], a scheme of probabilistic argumentation was devel-
oped by combining logic and probability in argumentation.
Their focus is an annotating logical formulas (rules) of a
knowledge base with probability. So far, even the existing
methods could solve real world problems using probabilistic
knowledge representation, but there have been no methods
that efficiently solve conflicts by integrating the representa-
tion under a situation of uncertainty. In this paper, we aim
to invent a method to solve conflicts by integrating multiple
types of knowledge representation under uncertainty.

3. Theoretical Backgrounds

This section provides the backgrounds of rule-based sys-
tem (RB), Bayesian network (BN), and some argumentation
frameworks.

3.1 A Rule-Based System

A rule-based system (RB) contains a set of production
rules, having a set of conditions and a set of actions by us-
ing predicates†, functions†† and their negations. A predi-
cate is an expression of the form either t(p1, . . . , pn−1, v1)
or t(p1, . . . , pn−1, [v1, . . . , vm]) where t is a predicate-name,
each pi is a parameter and each vi is a value. A function
is an expression of the form of either f (q1, . . . , qn) ◦ y1 or
f (q1, . . . qn)◦ [y1..ym] where f is a function-name, each qi is
parameter, ◦ is a mathematics operator (i.e., ◦ ∈ {=, <,≤, >
,≥}) and each y j is a value. The symbol NOT, which is used
in front of a predicate/function, is referred to the negation.
The symbol AND (resp. OR) is used as conjunctive (resp. dis-
junctive) connectors between predicates and functions. A
production rule is an expression of the following form:

R:x IF conditions THEN actions FI

where x is a rule number. A set of production rules
having common conditions are encoded in the following
module where each ast and bhq are conditions (i.e., func-
tions/predicates/negations), each ci is an action (i.e., func-
tion/predicate/negation), and x is a rule’s number.

PROVIDED (a11 OR . . . OR a1s1 ) AND . . . AND
(at1 OR . . . OR atst ) THEN

R:x
IF (b11 OR. . . OR b1h1 ) AND . . . AND

(bq1 OR. . . OR bqhq ) THEN
c1 AND. . . AND cm

FI
. . .
END;

†Predicate returns multiple values at the same time.
††Function returns one value at a time.

3.2 A Bayesian Network

Definition 1: A Bayesian network is a pair, N = (G,T )
where G = (V, E) is a directed acyclic graph having a set of
nodes; V , and a set of edges; E, and T is a set of conditional
probabilities for all nodes.

The network is a probabilistic graphical model repre-
senting uncertainties. A node (random variable) Vi has a
set of exclusive or mutual exclusive values; v1, .., vk where
k > 0. The edge from nodes Vi to Vj represents the con-
ditional dependency between them and Vi is a parent of Vj.
Let Par(Vj = v j) be a set of parents of Vj having a value of
v j. The joint probability distribution of nodes can be com-
puted by the following equation.

P(V1=v1, . . . ,Vn=vn)=
n∏

i=1

P(Vi=vi|Par(Vi=vi)) (1)

3.3 The Abstract Argumentation Framework

Definition 2: The abstract argumentation framework [34]
is a pair,AF = (Ar, Att) where Ar is a set of arguments and
Att ⊆ Ar × Ar is a set of attacks††† between arguments.

A set of arguments, S ⊆ Ar, is conflict-free if it doesn’t
attack itself. Argument A is acceptable w.r.t S if any argu-
ment attacking the argument A is attacked by arguments in
S . Conflict-free set S is admissible if each argument in S
is acceptable w.r.t S . S is a complete extension if it is ad-
missible and every argument in S is acceptable w.r.t S . S
is a preferred extension if it is admissible and a maximal
(w.r.t set inclusion) complete extension. S is an ideal ex-
tension if it is admissible and contained in every preferred
extension. Let f (S ) be a characteristic function that is de-
noted as f (S ) = {A ∈ Ar | A is acceptable w.r.t S }. S
is a grounded extension iff it is admissible and the least
fix-point of the characteristic function f (S ). An argument
A is credulously/grounded/ideally accepted w.r.tAF (i.e.,
AF �x A where x ∈ {cr, gr, id}) if it is contained in a pre-
ferred/grounded/ideal extension of AF respectively. It is
skeptically accepted by AF , (i.e., AF �sk A), if it belongs
to all extensions ofAF .

3.4 The Assumption-Based Argumentation Framework

Let L be a language containing a non-empty set of literals:
positive, negative (i.e., classical negation) and negation as
failure. Underlying languageL, the assumption-based argu-
mentation (ABA) framework [35] is an extension of Dung’s
abstract argumentation framework [34]. The ABA frame-
work identifies sentences by means of inference rules sup-
ported by assumptions.

Definition 3: The ABA framework is a triple, F =

(A,R, ) where A is a set of assumptions, R is a set of

†††(A, B) is denoted that argument A attacks argument B.
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inference rules and † is a total mapping from each as-
sumption to its contrary.

In ABA, the assumption never appears in the head of
inference rule r ∈ R of the form α0 ← α1, . . . , αn where
n ≥ 0. The inference rule is classified into defeasible rule
and strict rule. The defeasible rule contains at least one as-
sumption in the body of the rule while the strict rule does
not contain assumption in the body of the rule. The strict
rule without body of the rule of the form α ← is called a
fact. An inference rule r ∈ R (resp. a subset of the set of
inference rules (R ⊆ R)) can generate an argument conclud-
ing a proposition π, which is the head of the inference rule
r (resp. r′ ∈ R). The argument, which concludes the propo-
sition π ∈ L and is supported by a set of assumptions Q, is
denoted as (Q, δ, π) when there is a deduction δ from π to
Q. The detail backward deduction is referred to [35]. Rea-
sonably, (Q, δ, π) is said to be (Q, π). An argument (Q, π)
attacks argument (Q′, π′) by attacking some assumptions in
Q′. π is credulously/grounded/ideally accepted w.r.t ABA F
(i.e., F �x∈{cr,gr,id} π) if the argument that concludes π is con-
tained in a credulous/grounded/ideal extension respectively.
Also, it is skeptically accepted by F , (i.e., F �sk π), if the
argument belongs to all extensions of F .

3.5 The Probabilistic Assumption-Based Argumentation
Framework

The Probabilistic assumption-based argumentation (PABA)
framework [36], an extension of the ABA framework, is a
class of probabilistic argumentation.

Definition 4: The PABA framework is a triple, P =

(Ap,Rp,F ) whereAp is a set of probabilistic assumptions,
Rp is a set of probabilistic rules and F is an ABA frame-
work.

The PABA framework contains probabilistic part con-
sisting ofAp and Rp and the logical part consisting of ABA
F . A possible world ω of PABA P is a maximal consistent
subset ofAp ∪¬Ap. A probabilistic rule in Rp is written as
[α0 : x]← α1, . . . , αn (i.e., n ≥ 0) where α0 is a probabilistic
assumption and x (i.e., 0 ≤ x ≤ 1) is the probability of α0.
Its compulsory rule is written as [¬α0 : 1− x]← α1, . . . , αn.
If the probabilistic rules rp : [α0 : x] ← α1, . . . , αn and
r′p : [α0 : y] ← α′1, . . . , α

′
m (i.e., x � y) occur in Rp then

body(rp) ⊆ body(r′p) or body(r′p) ⊆ body(rp). If an argu-
ment concludes probabilistic assumption α from a set of as-
sumptions Q, it is called a probabilistic argument. Other-
wise, it is a non-probabilistic argument. Let Q and Q′ be
two sets of assumptions (i.e., Q � Q′). We can say that an
argument (Q, α) attacks another argument (Q′, α′) satisfying
one of three conditions;

1. if (Q, α) is a non-probabilistic argument and α is a con-
trary of assumptions in Q′

2. if both arguments are probabilistic arguments having

†x is the contrary of the assumption x (i.e., x = ¬x).

Q′ ⊂ Q
3. if argument (Q, α) concludes probabilistic assumption
α and argument (Q′, [α : x]) concludes compulsory of
the probabilistic assumption α′ with its probability.

Let PABA P be a probabilistic acyclic in its depen-
dency graph and W be a set of all possible worlds of P.
Fω = (A,R ∪ Rp ∪ {α ←| α ∈ ω}, ) is defined as an ABA
framework for each possible world ω of PABA P. ABA Fω
is also called the PABA Pω condition to ω. The probabil-
ity of an argument, which concludes a proposition π being
acceptable w.r.t Fω, is computed as follows.

Prob(π) =
∑

ω∈W:ABAFω�π
P(ω) (2)

According to [37], [38], Bayesian PABA framework
is a subclass of the PABA framework when PABA P sub-
sumes a Bayesian network N instead of Rp where N is de-
veloped using a probabilistic logic programming; especially
Problog††. Therefore, the probability of possible world ω;
P(ω), can be computed using the Eq. (1).

Definition 5: A Bayesian PABA is a triple, P =

(Ap,N ,F ) where each α ∈ Ap is a probabilistic assump-
tion that corresponds to a node of Bayesian networkN ,N is
subsumed instead of probabilistic rules and F = (A,R, )
is an ABA framework iff it satisfies that α is not an assump-
tion in F and doesn’t occur in the head of any inference rule
in F .

4. Overview of Our Approach

This section starts with the application areas of our approach
(i.e., an RB and a BN), which are concerned about diagno-
sis of liver disorders and biliary tracts. Then, this section
explains the overview of our approach.

4.1 HEPAR-RB

HEPAR-RB is a rule-based system, which is developed by
LUCAS [24], [25] regarding the diagnosis of liver disorders.
HEPAR-RB has 178 production rules encoding in rule mod-
ules. We apply these production rules in our approach.

Example 1: Provided that the duration of a patient who
suffers from liver disorder is chronic, if the patient abuses
alcohol, then diagnoses are alcoholic hepatitis, alcoholic cir-
rhosis and steatosis hepatitis. If the patient is female, she is
over 40, she does not abuse alcohol and she feels either fa-
tigue or generalized pruritus, then the diagnosis is primary
biliary cirrhosis. These statements are written in two pro-
duction rules in a rule module as below.

††https://dtai.cs.kuleuven.be/problog
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Fig. 1 The segment of HEPAR-NBN

Fig. 2 The overview of our approach

PROVIDED duration(patient, complab, chronic) THEN
R:3680

IF biochemicalsigns(patient) = “alcohol-abuse” THEN
diagnosis(patient, “alcoholic-hepatitis”) AND
diagnosis(patient, “alcoholic-cirrhosis”) AND
diagnosis(patient, “steatosis-hepatitis”)

FI
R:3850

IF sex(patient)=female AND age(patient)>40 AND
disease history(patient, “alcohol- abuse”) AND
complaint(patient, [fatigue, “generalized-pruritus” ]) THEN
diagnosis(patient, “primary-biliary- cirrhosis”)

FI
. . .
END;

4.2 HEPAR Naı̈ve Bayesian Network

A naı̈ve BN is generated from 100 patients’ records us-
ing Genie [39] to original Hepar BN developed by [26] and
name it as HEPAR-NBN. The Fig. 1 shows the segment of
HEPAR-NBN where pbc is referred to primary biliary cir-
rhosis to be classified.

4.3 System Architecture

Our approach takes HEPAR-RB and a dataset, which has
100 patient records, as inputs. The HEPAR-RB is trans-
lated into an ABA framework that is named as HEPAR-
ABA. Moreover, the dataset is learned to create a naı̈ve
BN (i.e., HEPAR-NBN). Given a set of evidences, a
proposition is queried by HEPAR-ABA and HEPAR-NBN
through argumentation and probabilistic reasoning, respec-
tively. HEPAR-ABA and HEPAR-NBN conflict each other
if HEPAR-ABA derives the proposition and HEPAR-NBN
provides the probability of the proposition as less than or
equal to 0.5. Such conflict is solved by formalizing and inte-
grating HEPAR-ABA and HEPAR-NBN into the integrated
one using the PABA framework. Then, the proposition is
also evaluated by the integrated PABA framework that cal-
culates the acceptable probability of the proposition. The
overview of our approach is shown in Fig. 2.

5. Structuring the RB by the ABA Framework

This section includes translation from an RB to an ABA
framework for solving conflicts by ABA’s semantic. There
are two steps in translations: syntactic translation and se-
mantic translation. In the first step, all production rules of
the RB is transformed into logical implications. In the sec-
ond step, these logical implications are transformed into in-
ference rules† of the ABA framework by adding assump-
tions into the bodies of the rules, which become defeasible
rules. Figure 3 illustrates the translation steps to structure
the RB by the ABA framework. For example, an RB con-
tains an production rule of the form IF b THEN a. In the first
step, the production rule is transformed into logical implica-
tion of the form a ← b. In the second step, this implication

Fig. 3 Translation steps

†The inference rule of the ABA framework is classified into
strict rules and defeasible rules.
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Table 1 Translating a RB’s syntax to a logical syntax

RB’s syntax Logical syntax
head(r) body(r)

x x
x1 OR. . .OR xn x1 ∨ . . . ∨ xn

x1 AND. . .AND xn x1, . . . , xn

NOT x ¬x ∼ x

Table 2 Translating a production rule to an inference rule

Production rule Inference rule
IF x THEN y FI y← x

IF x1
1 OR . . . OR x1

m AND . . . yi ←
∨

X1, . . . ,
∨

Xn

AND xn
1 OR . . . OR xn

k THEN (n ≥ 0 and 1 ≤ i ≤ t)
y1 AND . . . AND yt FI
PROVIDED z THEN y← z, x
IF x THEN y FI END;

where X = {x1, . . . , xm} (m ≥ 0) is a set and
∨

X = x1 ∨ . . . ∨ xm is
disjunctive between elements of X.

Table 3 Translating RB’s predicates to literals

Predicates of RB Literals of logical form
f (p1, ..pn−1, v) f (p1, . . . , pn−1, v)

f (p1, . . . , pn−1, [v1, . . . , vm]) f (p1, . . . , pn−1, v1) ∨ . . .∨
f (p1, . . . , pn−1, vm)

Table 4 Translating RB’s functions to literals

Functions of RB Literals of logical form
f (p1, ..pn) = v f (p1, . . . , pn, v)
f (p1, ..pn) ◦ v f (p1, . . . , pn, X), X ◦ v

f (p1, . . . , pn)in[v1, . . . , vm] f (p1, . . . , pn, X), X ≥ v1, X ≤ vm
where ◦ ∈ {<,≤, >,≥} and in is an operator that checks whether a value is
in a range.

is converted into a defeasible rule of the form a ← b, γa

where γa is an assumption.

5.1 Syntactic Translation

Underlying languageL, the syntax of the RB is transformed
into logical syntax as shown in Table 1. Every production
rule of the RB is transformed into an inference rule as shown
in Table 2. Predicates and functions of the RB are translated
into literals as shown in Table 3 and Table 4 respectively.

Example 2: Let du be “duration”, pa be “patient”, cl
be “complab”, cr be “chronic”, bsigns be “biochem-
icalsigns”, diag be “diagnosis”, aabuse be “alcohol-
abuse”, acirr be “alcoholic-cirrhosis”, steatosis be
“steatosis-hepatitis”, ahepat be “alcholic-hepatitis”, sex
be “sex”, female be “female”, age be “age”, dise be “dis-
ease history”, comp be “complaint”, fatigue be “fatigue”,
gpru be “generalized-pruritus” and pbc be “primary-
biliary-cirrhosis”. The production rules from Example 1 is
translated into the following logical implications.

diag(pa, steatosis) ← du(pa, cl, cr), bsigns(pa, aabuse)
diag(pa, ahepat) ← du(pa, cl, cr), bsigns(pa, aabuse)
diag(pa, acirr) ← du(pa, cl, cr), bsigns(pa, aabuse)
diag(pa, pbc) ← du(pa, cl, cr), sex(pa, female), age(pa, X),

X > 40, ∼ dise(pa, aabuse),
(comp(pa, fatigue) ∨ comp(pa, gpru))

5.2 Semantic Translation

Underlying language L, the RB is translated into an ABA
framework, F = (A,R, ), for solving conflicts by ABA’s
semantic. In ABA F , A = {γy | γy is a positive literal for
rebutting an argument that concludes y} ∪{ε | ε is a posi-
tive atom for unknown value} is a set of assumptions (i.e.,
A ⊂ L). For each assumption α ∈ A, ¬α is a contrary of
assumption α (i.e., α = ¬α). R consists of three types of
inference rules; defeasible, strict and fact. Let RD,RS and
RO be a set of defeasible rules, a set of strict rules and a set
of evidences (i.e., observed facts) respectively.

For each logical implication of the form y ←∨
X1, . . . ,

∨
Xn that is syntactically transformed from the

production rule of the RB, it is converted into the follow-
ing defeasible rule by adding an assumption γy in the body
of the rule. Then the rule is added into RD.

y← ∨X1, . . . ,
∨

Xn, γy

If there is another defeasible rule r′ ∈ RD of the form
y′ ← ∨ Y1, ..,

∨
Ym, γy′ where y′ contradicts y (i.e., ¬y = y)

then the following strict rule, which claims ¬γy (i.e., con-
trary of the assumption γy), is added into RS.

¬γy ← y′

For each assumption ε ∈ A of the form
f (p1, . . . , unknown) for unknown value, the following strict
rule, which claims ¬ f (p1, . . . , unknown) (i.e., contrary of
assumption f (p1, . . . , unknown)), is added into RS.

¬ f (p1, . . . , unknown)← ∨m
1 fi(p1, . . . , vi) (1 ≤ i ≤ m)

Let O = {o1, . . . , on} is a set of literals for evidences
(i.e., observed facts). For each o ∈ O, the following infer-
ence rule (i.e., a fact) is added into RO.

o←

Example 3: Suppose that HEPAR-ABA F = (A,R, ) is
an ABA framework that is transformed from HEPAR-RB.
R consists of the following rules from RD and RS and the
inference rules from RO of Example 4.

RD :
diag(pa, steatosis) ← du(pa, cl, cr), bsigns(pa, aabuse),

γdiag(pa, steatosis)

diag(pa, ahepat) ← du(pa, cl, cr), bsigns(pa, aabuse),
γdiag(pa, ahepat)

diag(pa, acirr) ← du(pa, cl, cr), bsigns(pa, aabuse),
γdiag(pa, acirr)

diag(pa, pbc) ← du(pa, cl, cr), sex(pa, female),
age(pa, X), X > 40, ∼ dise(pa, a abuse),
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(comp(pa, fatigue) ∨ comp(pa, gpru)),
γdiag(pa, pbc)

wl(pa, sig) ← comp(pa, wl), al(pa), γwl(pa,sig)

¬ wl(pa, sig) ← comp(pa, wl), ∼ al(pa), γ¬wl(pa,sig)

disor(pa, begin) ← comp(pa, col), rad(pa, unknown),
comp(pa, vom), γdisor(pa, begin)

RS :
¬γwl(pa,sig) ← ∼ wl(pa, sig)
¬γ¬wl(pa,sig) ← wl(pa, sig)
¬ rad(pa, unknown) ← rad(pa, back) ∨ rad(pa, araq)

A is the set of assumptions having {γdiag(pa,steatosis),
γdiag(pa,ahepat),γdiag(pa,acirr),γdiag(pa,pbc),γwl(pa,sig),γ¬wl(pa,sig),
γdisor(pa,begin), rad(pa, unknown)}. Their contraries are as
follows.

γdiag(pa,steatosis) = ¬γdiag(pa,steatosis)

γdiag(pa,ahepat) = ¬γdiag(pa,ahepat)

γdiag(pa,acirr) = ¬γdiag(pa,acirr)

γdiag(pa,pbc) = ¬γdiag(pa,pbc)

γwl(pa,sig) = ¬γwl(pa,sig)

γdisor(pa,begin) = ¬γdisor(pa,begin)

γ¬wl(pa,sig) = ¬γ¬wl(pa,sig)

rad(pa, unknown) = ¬rad(pa, unknown).

For reasoning through the ABA framework, let Q be a
subset of A that supports an argument A for concluding a
proposition π. Argument A is written as (Q, π). If no ar-
gument attacks argument A then argument A is grounded
acceptable w.r.t ABA F so the proposition π is concluded.

Example 4: (Continue Example 3) Suppose that a set of
evidences for HEPAR-ABA F is OF = {sex(pa, female),
age(pa, 45), ¬ dise(pa, aabuse), comp(pa, fatigue)}. Then
the following rules of RO are added into R as facts.

RO :
sex(pa, female)←
age(pa, 45)←
¬ dise(pa, aabuse)←
comp(pa, fatigue)←

According to HEPAR-ABA F , there is no argument
that concludes diag(pa, pbc). So, the argument isn’t en-
tailed by HEPAR-ABA F (i.e., F �x∈{cr,gr,id} diag(pa, pbc)).

6. Unifying the ABA F and the Naı̈ve BNN

Let OF be a set of evidences for the ABA F , ON be a set of
evidences for the naı̈ve BN N , which is implemented using
Problog. O = OF

⋃
ON contains all evidences from F and

N . Underlying a language L, vocabulary of F has literals
of the form f (p1, . . . , pn) while vocabulary of N has node-
value pairs of the form v(x) where v is a node of N and x is
a value of v. The problem is to determine correspondence
between F and N based on specific domain. Querying a
proposition π to F and N , π is transformed into a literal
denoted as πF and a node-value pair denoted as πN . Intu-
itively, πF and πN are correspondence.

6.1 Interface Specification

This section describes interface specification as a solution
to the previous problem. We apply online terminologies
(SNOMED-CT and WordNet) to determine their correspon-
dence by mapping from node-value pairs of the naı̈ve BNN
to literals of the ABA F .

Definition 6: Interface specification is triple, ⊕ =

(F⊕,N⊕,M⊕) where F⊕ is a set of literals of an ABA F ,
N⊕ is a set of node-value pairs of a naı̈ve BN N and
M⊕ ⊆ N⊕ × F⊕ is a total mapping from N⊕ to F⊕.

The mapping proceeds according to the following steps
of method MapFromBNtoABA.
(i) Assign an empty set into M⊕.
(ii) Take a node-pair δ ∈ N⊕.
(iii) According to SNOMED-CT and WorldNet terminolo-
gies, determine whether literal θ ∈ F⊕ corresponds node-
value pair δ or not.
(iv) If they correspond then (δ, θ) is added into M⊕.
(v) Until there is no literal in F⊕, go to step (iii).
(vi) Until there is no node-value pair in N⊕, go to step (ii).

Example 5: Suppose that we have an HEPAR-ABA F
from Example 3 and Example 4 and HEPAR-NBN N as
shown in Fig. 1. The total mapping from N to F is
a set M⊕ = {(steatosis(present), diag(pa, steatosis)),
(alcoholism(present), bsigns(pa, aabuse)), (alcoholism
(present), dise(pa, aabuse)), (pbc(present), diag(pa, pbc)),
(age(age31 50), age(pa, 45)), (sex(female), sex(pa, female)),
(fatigue(present), comp(pa, fatigue))}.
So the ABA F and the naı̈ve BN N are correspondence.

6.2 Inferring Proposition from Evidences

When the propositions πF and πN are inferred by the ABA
F and the naı̈ve BN N respectively, πF and πN are cor-
respondence according to the mapping MapFromBNtoABA.
There are four conditions to check whether F and N agree
or conflict as shown in Table 5 where x ∈ {cr, gr, sk, id} is a
semantic of the ABA framework.

Example 6: According to Example 4, there is no ar-
gument that concludes diag(pa, pbc) so HEPAR-ABA
F doesn’t entail diag(pa, pbc). Assume that a set of
evidences for HEPAR-NBN N (see Fig. 1) is ON =

{age(age31 50), sex( f emale), alcoholism(absent),
fatigue(present)}. When we infer pbc(present) by
HEPAR-NBN N , the probability of pbc(present) given

Table 5 Reasoning by the ABA F and the naı̈ve BN N
Argumentation Probabilistic Reasoning Statement
F �x πF P(πN ) > 0.5 Agree
F �x πF P(πN ) ≤ 0.5 Agree
F �x πF P(πN ) ≤ 0.5 Conflict
F �x πF P(πN ) > 0.5 Conflict
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ON is 0.7 using Eq. (1). Therefore HEPAR-ABA F and
HEPAR-NBN N conflict.

Suppose that we add du(pa, cl, cr) as an evidence into
OF (i.e., OF=OF ∪{du(pa, cl, cr)}). Firstly, an inference rule
of the form du(pa, cl, cr) ← is added into R. Secondly, an
argument ({γdiag(pa,pbc}, diag(pa, pbc)) is grounded accept-
able by HEPAR-ABA F (i.e., F �gr diag(pa, pbc)). Thus,
HEPAR-ABA F and HEPAR-BN N agree.

7. Conflict Resolution

Given the set of evidences O = OF
⋃

ON , the ABA F and
the naı̈ve BN N conflict iff F entails (resp. doesn’t entail)
πF while the probability of πN ; P(πN|ON ), is less than or
equal to 0.5 (resp. greater than 0.5). We solve the conflicts
by formalizing and integrating F and N using the PABA
framework.

7.1 Structuring the ABA F and the Naı̈ve BN N by the
PABA Framework

The PABA framework includes probabilistic part (i.e., a set
of probabilistic assumptions Ap and a set of probabilistic
rules Rp) and logical part (i.e., an ABA F ). At this point,
we can formalize the ABA F = (R,A, ) and the naı̈ve BN
N in their respective PABAs.

For the ABA F , it does not contain uncertainties so
there is no Ap and Rp (i.e., Ap = ∅ and Rp = ∅). A PABA
framework that structures the ABA F is P1 = (∅, ∅,F ).

Example 7: The PABA framework, which structures
HEPAR-ABA F from Example 4, is denoted as HEPAR-
PABA P1 in which its Ap and Rp are empties. So, the
HEPAR-PABA is P1 = (∅, ∅,F ).

For the naı̈ve BN N , it is concerned about uncertain-
ties so a PABA framework that structures the naı̈ve BNN is
P2 = (Ap,N , (∅, ∅, ∅)). Here, a node of N may has multi-
ple values (i.e., mutual exclusive) so all node-value pairs† of
N⊕ (instead of nodes) is taken as probabilistic assumptions
of Ap. N†† is subsumed in Rp. There is no ABA frame-
work in P2 so its ABA framework is (∅, ∅, ∅). According to
Definition 5, P2 = (Ap,N , (∅, ∅, ∅)) is a Bayesian PABA.

Example 8: Using the PABA framework, it struc-
tures HEPAR-NBN N of Fig. 1, and it is denoted
as HEPAR-PABA P2. Let pbcp be pbc(present),
pbcab be pbc(absent), sf be sex(female), sm be
sex(male), alcop be alcoholism(present), aab be
alcoholism(absent), age0 be age(age0 age30), age31
be age(age31 age50), age51 be age(age51 age65), age65
be age(age65 100), fp be fatigue(present), fab be
fatigue(absent), amap be ama(present), amaab be
ama(absent), spp be spiders(present), spab be
spider(absent), pap be palms(present), paab be

†Node-value pair is written as v(x) where v is a node of N and
x is a value of v.
††N is implemented using Problog.

palms(absent), hepp be hepatomegaly(present) and
hepab be hepatomegaly(absent). And, they are taken as
probabilistic assumptions of Ap. HEPAR-NBN N is sub-
sumed in Rp but the logical part of PABA P2 is empty. So,
HEPAR-PABA P2 = (Ap,N , (∅, ∅, ∅)) is a Bayesian PABA
framework.

7.2 Integrating Two PABA Frameworks

This section provides some extra notations. ON =

{o1, . . . , ok} and OF = {ok+1, . . . , on} are sets of evidences
for the naı̈ve BN N and the ABA F respectively. π is
a proposition that is converted into πF and πN for in-
ferring the ABA F and the naı̈ve BN N respectively.
According to the method MapFromBNtoABA, πF and πN
are correspondence and OF and ON are correspondence.
p(πN , o1, . . . , ok) and p(o1, . . . , ok) are literals that is re-
ferred to the joint probability of πN , o1, . . . , ok and the
marginal probability of o1, . . . , ok respectively. For instance,
p(pbcp, age31, sf, aab, fp) and p(age31, sf, aab, fp) are liter-
als, which is referred to joint and marginal probabilities
computed by BN’s Eq. (1). probid(X,Y)††† is a literal that
returns a probability Y of X being acceptable by a PABA
framework. pr(πN , o1, . . . , ok,Z) is a literal that is referred
to the posterior probability of πN given o1, . . . , ok where Z is
a probability between 0 and 1. predict(πN , o1, . . . , ok, X) is a
literal denoting that πN is predicted to be true (resp. false)
if Z is greater than 0.5 (resp. if Z is either less than or equal
to 0.5) where X ∈ {true, f alse}. isHasEvidence(o1, . . . , ok)
is an atom for checking whether evidences, o1, . . . , ok, are
included in ON .

Now, we combine PABAs P1 = (∅, ∅,F ) and P2 =

(Ap,N , (∅, ∅, ∅)) into P′ = (A′p,R′p,F ′), where F =

(R,A, ) and F ′ = (R′,A′, ) are ABA frameworks.

Definition 7: P′ = (A′p,R′p,F ′) is a PABA framework,
which integrates PABAs P1 = (∅, ∅,F ) and P2 =

(Ap,N , (∅, ∅, ∅)).

Example 9: (Continue to Example 6) Given a set of ev-
idences O = OF ∪ ON , HEPAR-ABA F from Example
3 to Example 4 and HEPAR-NBN (see Fig. 1) conflicts in
querying whether a patient suffers primary biliary cirrhosis
or not because F doesn’t entail diag(pa, pbc) but probabil-
ity of pbc given a set of evidences ON is 0.7 (see Exam-
ple 6). To solve such conflict, we combine HEPAR-PABAs
P1 = (∅, ∅,F ) from Example 7 and P2 = (Ap,N , (∅, ∅, ∅))
from Example 8 into the integrated HEPAR-PABA P′ =
(A′p,R′p,F ′) where F = (R,A, ) and F ′ = (R′,A′, )
are ABA frameworks.

Ap of P2 is assigned into A′p of P′ so A′p consists of
all probabilistic assumptions of Ap. N of P2 is subsumed
in place of R′p of P′. And F of P1 is assigned into F ′ of P′.
In ABA F ′ = (R′,A′, ), R′ consists of all rules of R of F
†††probid(X,Y) of PRENGINE [37], [38] is used for computing

an acceptable probability Y of X by the PABA framework.
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and the following additional rules.

• For literal p(πN , o1, . . . , ok), we add the following in-
ference rule is added into R′.

p(πN , o1, . . . , ok)← πN , o1, . . . , ok

• For literal p(o1, . . . , ok), we add the following inference
rule into R′.

p(o1, . . . , ok)← o1, . . . , ok

• For literal pr(πN , o1, . . . , ok,Z), we add the following
inference rule into R′.

pr(πN , o1, . . . , ok,Z)← probid(p(πN , o1, . . . , ok), X),

probid(p(o1, . . . , ok),Y),

Z is X/Y

• For each literal predict(πN , o1, . . . , ok, X), we add the
following inference rules are added into R′.

predict(πN , o1, . . . , ok, X)←pr(πN , o1, . . . , ok,Z),

Z > 0.5, X is true

predict(πN , o1, . . . , ok, X)←pr(πN , o1, . . . , ok,Z),

Z =< 0.5, X is false

• Since the naı̈ve BNN predicts either πN or ¬πN based
on the set of evidences ON , we create the following de-
feasible rules by putting two assumptions γbn predict(πN )

and γbn predict(¬πN ) in the bodies of the rules respec-
tively. And they are added into R′.

bn predict(πN )← predict(πN , o1, . . . , ok, true),

γbn predict(πN )

bn predict(¬πN )←predict(πN , o1, . . . , ok, f alse),

γbn predict(¬πN )

• Similarly, since ABA F entails either πF or ¬πF based
on the set of evidences OF , we create the following de-
feasible rules by putting two assumptions γaba predict(πF )

and γaba predict(¬πF ) in the bodies of the rules respec-
tively. And they are added into R′.

aba predit(πF )← πF , γaba predit(πF )

aba predit(¬πF )←∼ πF , γaba predit(¬πF )

• Actually, we can say that the naı̈ve BN N predicts πN
(resp. ¬πN ) is wrong if ABA F entails ¬πF (resp. πF )
andN is insufficient. The following inference rules are
added into R′.

¬γbn predict(πN ) ←∼ πF ,∼ bn su f f icient

¬γbn predict(¬πN ) ← πF ,∼ bn su f f icient

• Similarly, ABA F predicts πF (resp. ¬πF ) is wrong if
the naı̈ve BNN predicts ¬πN (resp. πN ) andN is suffi-
cient. So we add the following defeasible rules into R′
in which we assume bn su f f icient as an assumption.

¬γaba predict(πF ) ← predict(πN , o1, . . . , ok, f alse),

bn su f f icient

¬γaba predict(¬πF ) ← predict(πN , o1, . . . , ok, true),

bn su f f icient

• The naı̈ve BN N is insufficient if evidences of ON
aren’t related to node-value pairs of N⊕ or there is
no evidences in ON . Then we assume that evidences
of ON are unknown. So, we add a defeasible rule
of the form ¬bn su f f icient ← bn evidence(unknown)
into R′ where bn evidence(unknown) is taken as an
assumption.

• If ON contains node-value pairs of N⊕ as a set of
evidences then we can say that evidences of ON are
known. So we add the following inference rule into
R′.

¬bn evidence(unknown)←isHasEvidence(o1, . . . ,

ok)

• Since π is the original proposition that is transformed
into πF and πN , we infer π as a query into PABA P′.
We added the following four inference rules into R′.

π←bn predict(πN ) ¬π←bn predict(¬πN )

π←aba predict(πF ) ¬π←aba predict(¬πF )

A′ consists of all assumptions of A of F and new
assumptions; γbn predict(πN ), γbn predict(¬πN ), γaba predict(πF ),
γaba predict(¬πF ), bn su f f icient and bn evidence(unknown).
F ′ contains contraries of F and additional contraries of new
assumptions. The additional contraries are

γbn predict(πN ) = ¬γbn predict(πN )

γbn predict(¬πN ) = ¬γbn predict(¬πN )

γaba predict(πF ) = ¬γaba predict(πF )

γaba predict(¬πF ) = ¬γaba predict(¬πN )

bn su f f icient = ¬bn su f f icient and

bn evidence(unknown) = ¬bn evidence(unknown).

Example 10: (Continue Example 9) In the integrated
HEPAR-PABA P′ = (A′p,R′p,F ′), A′p consists of all as-
sumption of Ap (see Example 8). R′p subsumes N (see
Fig. 1). Let pa pbc be a proposition to be queried by P′.
R′ contains all rules of R of HEPAR-ABA F (see. Example
3 and Example 4) and additional rules, which are as follows.

p(pbcp, age31, sf, aab, fp) ← pbcp, age31, sf, aab, fp
p(age31, sf, aab, fp) ← age31, sf, aab, fp
pr(pbcp, age31, sf, aab, fp, Z) ← probid(p(pbcp, age31, sf, aab,

fp), X)), probid(p (age31, sf,
aab, fp), Y)), Z is X/Y

predict(pbcp, age31, sf, aab, ← pr(pbcp, sf, aab, fp, Z),
fp, X) Z > 0.5, X is true

predict(pbcp, age31, sf, aab, ← pr(pbcp, sf, aab, fp, Z),
fp, X) Z ≤ 0.5, X is false

bn predict(pbcp) ← predict(pbcp, age31, sf, aab, fp,
true), γbn predict(pbcp)
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bn predict(¬ pbcp) ← predict(pbcp, age31, sf, aab, fp,
false), γbn predict(¬pbcp)

aba predit(diag(pa, pbc)) ← diag(pa, pbc),
γaba predit(diag(pa, pbc))

aba predit(¬diag(pa, pbc)) ← ¬diag(pa,pbc),
γaba predit(¬diag(pa, pbc))

¬ γbn predict(pbcp) ← ¬ diag(pa, pbc),
∼ bn sufficient

¬ γbn predict(¬pbcp) ← diag(pa, pbc), ∼ bn sufficient
¬ γaba predict(diag(pa, pbc)) ← predict(pbcp, age31, sf, aab,

fp, false), bn sufficient
¬ γaba predict(¬diag(pa, pbc)) ← predict(pbcp, age31, sf, aab,

fp, true), bn sufficient
¬bn sufficient ← bn evidence(unknown)
¬bn evidence(unknown) ← isHasEvidence(age31, sf,

aab, fp)
pa pbc ← bn predict(pbcp)
¬pa pbc ← bn predict(¬ pbcp)
pa pbc ← aba predict(diag(pa, pbc))
¬pa pbc ← aba predict(¬diag(pa, pbc))

A′ contains all assumptions of A of HEPAR-ABA
F and six new assumptions, which are γbn predict(pbcp),
γbn predict(¬pbcp), γaba predict(diag(pa,pbc)), bn sufficient and
γaba predict(¬diag(pa,pbc)) and bn evidence(unknown).

F ′ contains contraries from F and the following con-
traries of new assumptions.

γbn predict(pbcp) = ¬γbn predict(pbcp)

γbn predict(¬pbcp) = ¬γbn predict(¬pbcp)

γaba predict(diag(pa,pbc)) = ¬γaba predict(diag(pa,pbc)

γaba predict(¬diag(pa,pbc) = ¬γaba predict(¬diag(pa,pbc)

bn sufficient = ¬bn sufficient
bn evidence(unknown) = ¬bn evidence(unknown)

Using PRENGINE [37], [38], our approach is imple-
mented to investigate a conflict resolution when ABA F
and the naı̈ve BN N conflict each other. After PABAs P1

for ABA F and P2 for the naı̈ve BN N have been com-
bined into the integrated PABA P′, the conflicts between
ABA F and the naı̈ve BN N are solved. Assume that
probidIntegrate(π, πF , πN , o1, .., ok,R) is a literal that re-
turns the probability R of proposition π which is entailed
by the integrated PABA P′.

Example 11: (Continue Example 10) Using
PRENGINE [37], [38], proposition pa pbc is being ac-
ceptable by the integrated HEPAR-PABA P′ with accept-
able probability 1. When atom probidIntegrate(pa pbc,
diag(pa, pbc), [pbcp], [age31, s f , aab, f p],R) is called, it
results 0.73. So, our approach determines that the diagnosis
of the patient is PBC.

According to Definition 5, the integrated PABA P′ is
a Bayesian PABA because it subsumes the naı̈ve BN N in
Rp and probabilistic assumptions correspond to all nodes of
N as node-value pairs. And PABA P′ satisfies that each
probabilistic assumption of A′p is not an assumption in F ′
and doesn’t occur in the head of any inference rule in F ′.

8. Experimental Result

We implement our approach, which combines HEPAR-ABA
and HEPAR-NBN (i.e., inputs of our approach), regrading
to the diagnosis of liver disorders and biliary tract. HEPAR-
ABA is an ABA framework, which structures HEPAR-RB.
HEPAR-RB is a rule-based system, which is developed by
LUCAS [24], [25], having 178 rules about the diagnosis of
liver disorders and biliary tracts. Meanwhile, we construct
HEPAR-NBN (i.e., a naı̈ve BN) by learning one hundred
records† of liver disorders patients.

The testing dataset of our approach contains forty-two
patients’ records for primary biliary cirrhosis and seven pa-
tients’ records for steatosis hepatitis in which two patients
suffer both disorders. The dataset also includes fifty-three
patients’ records for other liver disorders. We evaluate our
approach by comparing its performance with the perfor-
mance of HEPAR-NBN and HEPAR-ABA testing on the
diagnosis of primary biliary cirrhosis and steatosis hepatitis.
We compute confusion matrix, recall, precision, f-measure
and accuracy for each HEPAR-NBN, HEPAR-ABA and our
approach. For the diagnosis of primary biliary cirrhosis, Ta-
ble 6 and Table 7 show the confusion matrix and the results
of recall, precision, f-measure and accuracy of HEPAR-
NBN, respectively. Table 8 and Table 9 show the confu-
sion matrix and the results of recall, precision, f-measure

Table 6 Confusion matrix of HEPAR-NBN for primary biliary cirrhosis

Actual

Pr
ed

ic
tio

n Present Absent Total
Present 39 5 44
Absent 3 53 56
Total 42 58 100

Table 7 Recall/precision/f-measure/accuracy of HEPAR-NBN for pri-
mary biliary cirrhosis

Recall Precision F-measure Accuracy
Present 92.86% 86.64% 90.70%

92%
Absent 91.38% 94.64% 92.98%

Table 8 Confusion matrix of HEPAR-ABA for primary biliary cirrhosis

Actual

E
nt

ai
lm

en
t diag(pa, ¬ diag(pa, Total

pbc) pbc)
diag(pa, pbc) 35 11 46
¬ diag(pa, pbc) 7 47 54
Total 42 58 100

Table 9 Recall/precision/f-measure/accuracy of HEPAR-ABA for pri-
mary biliary cirrhosis

Recall Precision F-measure Accuracy
diag(pa, pbc) 83.33% 76.09% 79.54%

82%¬ diag(pa, pbc) 81.03% 87.04% 83.93%

†Using GENIE/SMILE software, one hundred patients’
records are extracted from the orignal HEPAR-BN, which is de-
veloped by ONIESKO [26].
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Table 10 Confusion matrix of our approach for primary biliary cirrhosis

Actual
E

nt
ai

lm
en

t pa pbc ¬ pa pbc Total
pa pbc 39 5 44
¬ pa pbc 3 53 56
Total 42 58 100

Table 11 Recall/precision/f-measure/accuracy of our approach for pri-
mary biliary cirrhosis

Recall Precision F-measure Accuracy
pa pbc 92.86% 86.64% 90.70%

92%¬ pa pbc 91.38% 94.64% 92.98%

Table 12 Confusion matrix of HEPAR-NBN for steatosis hepatitis

Actual

Pr
ed

ic
tio

n Present Absent Total
Present 6 1 7
Absent 1 92 93
Total 7 93 100

Table 13 Recall/precision/f-measure/accuracy of HEPAR-NBN for
steatosis hepatitis

Recall Precision F-measure Accuracy
Present 85.71% 85.71% 85.71%

98%
Absent 98.92% 98.92% 98.92%

Table 14 Confusion matrix of HEPAR-ABA for steatosis hepatitis

Actual

E
nt

ai
lm

en
t diag(pa, ¬ diag(pa, Total

steat) steat)
diag(pa, steat) 4 17 21
¬ diag(pa, steat) 3 76 79
Total 7 93 100

Table 15 Recall/precision/f-measure/accuracy of HEPAR-ABA for
steatosis hepatitis

Recall Precision F-measure Accuracy
diag(pa, 57.14% 19.05% 28.57%
steat)

80%¬ diag(pa, 81.72% 96.20% 88.37%
steat)

and accuracy of HEPAR-ABA, respectively. Table 10 and
Table 11 show the confusion matrix and the results of re-
call, precision, f-measure and accuracy of HEPAR-ABA,
respectively. For the diagnosis of steatosis hepatitis, Let
diag(pa, steat) be a proposition to be entailed by HEPAR-
ABA and pa steat be a proposition to be entailed by our
approach. Table 12 and Table 13 show the confusion ma-
trix and the results of recall, precision, f-measure and ac-
curacy of HEPAR-NBN, respectively. Table 14 and Ta-
ble 15 show the confusion matrix and the results of recall,
precision, f-measure and accuracy of HEPAR-ABA, respec-
tively. Table 16 and Table 17 show the confusion matrix and
the results of recall, precision, f-measure and accuracy of
HEPAR-ABA, respectively.

The main objective of our approach is to combine total

Table 16 Confusion matrix of our approach for steatosis hepatitis

Actual

E
nt

ai
lm

en
t pa steat ¬ pa steat Total

pa steat 6 1 7
¬ pa steat 3 53 56
Total 7 93 100

Table 17 Recall/precision/f-measure/accuracy of our approach for
steatosis hepatitis

Recall Precision F-measure Accuracy
pa steat 85.71% 85.71% 85.71%

98%¬ pa steat 98.92% 98.92% 98.92%

conflict and different knowledge representations efficiently,
especially an RB and a naı̈ve BN. So, our approach out-
performs the other methods in the combination as a conflict
resolution for these representations. One of the advantages
of our approach is that the performance of HEPAR-NBN
can be improved when the evidences for HEPAR-NBN are
insufficient to predict liver disorders. In the base case, we
assume that HEPAR-NBN does not have evidence to pre-
dict a diagnosis. Then the accuracy of HEPAR-NBN de-
creases to 0. However, our approach predicts the liver dis-
order from HEPAR-ABA. So, the accuracy of our approach
gets 82% and 80% for the diagnosis of primary biliary cir-
rhosis and steatosis hepatitis, respectively. We approve that
our approach is comparative to the accuracy of the BN and
more accurate than the result of the ABA framework.

9. Conclusion

Even there exist some frameworks on handling probability
in logic programing, there are very few works on knowledge
integration for probabilistic argumentation. We combine an
ABA framework, which is converted from an RB, with a
naı̈ve BN using a probabilistic Argumentation, especially
the PABA framework. Based on a specific domain, the ABA
framework is certain, while the naı̈ve BN covers uncertain-
ties so we investigate an approach to integrate them. The
conflict between the RB and the naı̈ve BN is solved by the
semantics of the PABA framework using PRENGINE [37],
[38]. As an application area, we integrate HEPAR-RB and
HEPAR-NBN, which are related to the diagnosis of liver
disorders. However, our approach has two limitations. Our
approach requires either a naı̈ve BN or a dataset to generate
the naı̈ve BN. One limitation is that unreliable naı̈ve BN or
dataset may impact the performance of our approach. An-
other limitation is that mapping from the naı̈ve Bayesian
network to the ABA framework may vary based on the
terminologies.
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