
1406
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.6 JUNE 2020

PAPER

Adversarial Metric Learning with Naive Similarity Discriminator

Yi-ze LE†,††, Student Member, Yong FENG†,††a), Da-jiang LIU†,††, and Bao-hua QIANG†††,††††, Nonmembers

SUMMARY Metric learning aims to generate similarity-preserved low
dimensional feature vectors from input images. Most existing supervised
deep metric learning methods usually define a carefully-designed loss func-
tion to make a constraint on relative position between samples in projected
lower dimensional space. In this paper, we propose a novel architecture
called Naive Similarity Discriminator (NSD) to learn the distribution of
easy samples and predict their probability of being similar. Our purpose
lies on encouraging generator network to generate vectors in fitting po-
sitions whose similarity can be distinguished by our discriminator. Ade-
quate comparison experiments was performed to demonstrate the ability of
our proposed model on retrieval and clustering tasks, with precision within
specific radius, normalized mutual information and F1 score as evaluation
metrics.
key words: metric learning, adversarial learning, naive similarity discrim-
inator

1. Introduction

Metric learning is a fundamental problem in a variety of
computer visual tasks, including image retrieval [1], [2],
person re-identification [3]–[5], face recognition [6], [7] and
image classification [8]–[10]. The goal of metric learning is
to learn a distance metric that reflects the similarity of given
data pair, i.e. images with a common label should be adja-
cent to each other and vice versa.

Most existing deep learning approaches deal the metric
learning task in two step. The first is designing loss func-
tion to constraint the relative position between positive pairs
and negative pairs, the second pays attention on mining ben-
eficial samples for faster convergence and stronger perfor-
mance.

Loss functions used in metric learning can be generally
formulated as

L = h(||xa − xp||22, ||xa − xn||22, α) (1)

Manuscript received October 13, 2019.
Manuscript revised January 20, 2020.
Manuscript publicized March 10, 2020.
†The authors are with the College of Computer Science,

Chongqing University, Chongqing 400030, China.
††The authors are with the Key Laboratory of Dependable Ser-

vice Computing in Cyber Physical Society, Ministry of Education,
Chongqing University, Chongqing 400030, China.
†††The author is with the Guangxi Key Laboratory of Trusted

Software, Guilin University of Electronic Technology, Guilin
541004, China.
††††The author is with the Guangxi Key Laboratory of Opto-

electronic Information Processing, Guilin University of Electronic
Technology, Guilin 541004, China.

a) E-mail: fengyong@cqu.edu.cn
DOI: 10.1587/transinf.2019EDP7278

where || · ||2 represents l2-normalization. xa, xp and xn indi-
cate anchor, positive and negative sample respectively. An-
chor sample shares a common label with positive sample
while have a different label to negative sample. The param-
eter α determines the dispersion between anchor-positive
pairs and anchor-negative pairs. Specifically designed func-
tion h aims to shorten the distance between xa and xp mean-
while enlarge distance between xa and xn, with the con-
straint of α. Classical methods build pairwise [11] or triplet
samples [6], [12] in loss functions to control their relations.

Sample mining intends to search for samples that profit
training most to achieve a faster convergence and higher
performance. Generally, we are more likely to select sam-
ples that most against our objective, which are called “hard
samples”. For instance, close pair with different labels and
distant pair with same label are harder to optimized. Rel-
atively, those suitable points that rarely used in optimiza-
tion are called “easy samples”. Existing approaches with
sample mining seek for information with more and harder
classes [1] or harder samples [2] to benefit the training.
Many recent works [13], [14] focus on applying weights on
samples which aims to reflect their importance on optimiza-
tion.

The spirit of adversarial learning comes from the Gen-
erative Adversarial Network (GAN) [15]. Adversarial learn-
ing generally composed of two components called generator
and discriminator. Generator aims to generate features un-
der specific requirements, while discriminator tries to beat
against it to encourage generator to achieve a better per-
formance. There also exists GAN based method [16], [17]
which generate hard samples to augment dataset.

Existing works illustrate relations among samples with
well-designed loss functions, but they rarely use the distri-
bution of given samples and may have restriction on describ-
ing their relations. In this work, we replace these conven-
tional loss function with a neural network called Naive Sim-
ilarity Discriminator (NSD) and the standard binary cross
entropy loss. Meanwhile, we exploit adversarial learning
to encourage our generator to provide similarity-preserved
samples. The main contribution of this work can be de-
scribed as following:

• Learning the distribution of existing easy samples us-
ing a carefully-designed neural network as the discrim-
inator, which exploit the learning ability of this deep
network to illustrate the state of similarity-preserved
samples.

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

LE et al.: ADVERSARIAL METRIC LEARNING WITH NAIVE SIMILARITY DISCRIMINATOR
1407

• Utilizing adversarial learning by mining hard samples
and feed them to discriminators. Huge loss will be pro-
duced and the generator are forced to push hard sam-
ples to easier positions, which exhibiting a novel learn-
ing strategy for metric learning.
• Alternatively applying three individual stages for con-

tinuously encourage the generator network to achieve a
better performance.

2. Related Works

Existing metric learning methods mainly focus on loss func-
tions formulations or sample mining strategies. The well-
designed loss functions describe the relation among sam-
ples. These loss functions build the optimization target to
meet the goal of enlarging distance between samples in dif-
ferent class meanwhile shorten the distance between sam-
ples from the same class. Sample mining approaches can be
generally categorized into hard mining methods, hard sam-
ple synthesis methods and weighted methods.

2.1 Loss Function Formulations

Loss function plays a critical role in metric learning task.
Many existing deep metric learning methods pay more at-
tention on building a proper loss function to illustrate rela-
tion between pairwise samples or among triplet samples.

Contrastive Loss [11] is trained on pairwise samples
with a margin parameter α, which give penalty to those neg-
ative pairs with distances smaller than α:

L =
1
n

n∑
i� j

si j||xi − x j||22 + (1 − si j)[α − ||xi − x j||22]+ (2)

where si j = 1 if xi share a common label with sample x j

otherwise si j = 0. [·]+ is the hinge function.
Semi-hard Triplet Loss [6] further utilizes the relation

among samples by constructing triplets and controls their
discrepancy. Penalty is delivered to those triplet with dis-
crepancy smaller than α:

L =
1
n

∑
(a,p,n)∈T

[||xa − xp||22 − ||xa − xn||22 + α]+ (3)

where T comprises all triplets of a given batch of data.
Instead of comparing samples in Euclidean space, An-

gular Loss [12] measure the distances between samples with
angle relationships with a angle constraint tanα, which in-
troduce scale invariance and capture additional local struc-
ture:

L =
1
n

∑
(a,p,c,n)∈T

[||xa − xp||22 − 4 tan2 α||xn − xc||22]+ (4)

where xc is the middle point of xa and xp.

2.2 Sample Mining Strategies

Appropriate sample mining can bring great benefits in met-
ric learning tasks. Various of methods have been contributed

on hard sample mining, weighted methods and hard sample
sythesis methods.

2.2.1 Hard Sample Mining

N-pair Loss [1] considers more classes to be involved in
training. They firstly choose C classes and pass one or
two examples of theses class to extract embedding vectors.
Then select one class and greedily add new class that mostly
violates triplet constraint until meet the required number
of classes. Finally they draw two examples from chosen
classes to finish the N-pair construction.

Lifted Structured Loss [2] emphasizes the hardest neg-
ative for each sample from all pair wise edges within the
batch and push negative data points further than the margin.
They further optimize the smooth upper bound loss func-
tion to avoid converging to local optimum caused by mining
single hardest negative sample.

These methods try to dig data that have higher demand
to be optimized, but they may be restricted by the lack of
hard samples.

2.2.2 Hard Sample Synthesis

To address the problem of inadequacy hard samples, sam-
ple synthesis methods have been made great contribu-
tions. Hardness-Aware Deep Metric Learning [17] synthe-
sizes new hard sample by exploiting existing samples on
the edge of manifold, and generates a closer sample on
manifold with adaptive hardness controlled by a label-and-
hardness-preserving generator. Deep Adversarial Metric
Learning [16] utilizes a generator with adversarial loss to
synthesize hard samples for training. With a different orien-
tation to these works, our ambition is to force generator to
provide suitable embedding vectors using adversarial learn-
ing.

2.2.3 Weighted Methods

Many recent approaches focus on determining the impor-
tance of samples in training procedure, which can be catego-
rized as weighted methods. These methods can be generally
formulated as

L =
1
n

∑
(a,p,n)∈T

wap||xa − xp||22 − wan||xa − xn||22

w.r.t ||xa − xp||22 − ||xa − xn||22 + α > 0

(5)

where w∗ indicates the weight of a given pair, which is cal-
culated by the relations of distances from a set of sample
pairs. Ranked List Loss [13] chooses samples violate con-
straint and set weight on each anchor-negative pair through
their distances. Multi-Similarity Loss [14] collects informa-
tive pairs and weight these pairs through their own and rela-
tive similarities.

In this work, we introduce a novel training strategy for
metric learning. Instead of constructing a handcraft loss

1408
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.6 JUNE 2020

Fig. 1 An end-to-end architecture of entire model. Our model takes a batch of images as input and
extract features through Inception, followed by sample mining procedure to pick suitable pairwise sam-
ples and apply element-wise distance metric for Naive Similarity Discriminator (NSD), which predict
the probability of being similar of given pairs. A standard binary cross entropy (BCE) loss are applied
to train our model.

function to constraint relative position between samples, we
propose a discriminator that learns the distribution of easy
samples. Our discriminator takes a pair of feature represen-
tations as input, which extracted from two individual images
through the generator network, and outputs the probability
of being similar for the input pair. After training with easy
samples, the discriminator is supposed to accurately clas-
sify easy samples, while contribute large loss when feeding
hard samples. These loss will feedback to the generator net-
work and enhance its performance on metric learning task.
It is worth noticing that our discriminator should not be too
robust for hard samples to guarantee the sufficient loss for
improving generator network.

3. Proposed Method

In this section, we present our model with a feature genera-
tor as metric function, and a similarity discriminator learnt
with a prior element-wise distance metric and labeled simi-
larity. An adversarial learning strategy is applied to encour-
age generator to provide samples that retain the similarity
relations.

3.1 Problem Formulation

Let X = {xi}Ni=1 be the input images and Y = {yi}Ni=1 be the
corresponding labels where yi ∈ {1 . . .C}. We define S =
{si j}Ni, j=1 as a similarity matrix between input instances, with
si j = 1 for xi and x j that from the same class and si j = 0
otherwise. Our ambition is to learn a metric function f that
properly measures the similarity of input pair

D(xi, x j) = f (θ; xi, x j), (6)

where D represents distance between input pairwise samples
under learnt metric and θ is the parameters of function f .

3.2 Model Architecture

Our architecture is shown in Fig. 1. The model accepts
a batch of images as input and go through the following
pipeline:

1. A typical convolutional neural network as generator to
extract meaningful image representations.

2. A sample mining process that selecting similar and dis-
similar pairs with different strategy for three individual
stages.

3. A simple but carefully-designed neural network as dis-
criminator to predict probability of being similar of
given pairs.

3.2.1 Generator

We exploit Inception V1 [18] which pretrained on Ima-
geNet [19] as our backbone network for fairly comparison
to existing deep metric learning approaches. An additional
fully connected layer was added to the Inception V1 network
to project feature embeddings to proper size. We apply l2-
normalization on each output vector zi with m-dimension as
following:

ẑi =
zi√∑m

j=1(z(j)
i)2

(7)

where z(j)
i indicates the j-th element of vector zi. Thus all the

output vectors become unit vectors with a specific direction
in the learnt metric space.

Our purpose is to train a generator as metric function
f that well preserve similarity between input samples, i.e.
instances with the same class label are closer than those in
different classes.

LE et al.: ADVERSARIAL METRIC LEARNING WITH NAIVE SIMILARITY DISCRIMINATOR
1409

3.2.2 Discriminator

Our similarity discriminator is constructed by a simple
multilayer perceptron which is randomly initialized. We
firstly select several similar and dissimilar pairs P =

{(ẑi, ẑ j)}(i, j)∈I from generated features, where I comprises in-
dices of selected embeddings. After that, we apply a prior
element-wise distance metric for each pair to construct a
m-dimension vector vi j as the input of the discriminator to
obtain the predicted pi j, which indicates the probability of
being similar. Formulaically, for k-th element of ẑi, ẑ j and
vi j, we have

v(k)
i j = de(ẑ(k)

i , ẑ
(k)
j) = (ẑ(k)

i − ẑ(k)
j)2 (8)

pi j = g(vi j) (9)

where de is an euclidean-like prior element-wise distance
metric and g represents the discriminator which predict the
probability of ẑi being similar to ẑ j. We adopt typical binary
cross-entropy loss to train our generator and discriminators
as

L(pi j, si j) = −(si j log pi j + (1 − si j) log(1 − pi j)) (10)

3.3 Adversarial Metric Learning

As mentioned above, it is clear that hard samples have
higher demand to be optimized as easy samples have already
in a fitting position. In turn, if the generator always provide
easy samples, the model may be in a good condition for gen-
erating similarity-preserved samples, which meet the goal of
metric learning.

Our motivation of designing a similarity discriminator
is to encourage generator to provide easy pairs whose sim-
ilarity can be easily distinguished by any simple classifier.
To this end, inspired by the spirit of adversarial learning, we
train our generator and discriminator by selecting samples
in disparate hardness.

Concretely, for training discriminators, we choose eas-
iest samples, i.e. the closest points in the same class and the
furthest points in different classes. We call this discrimina-
tor trained with easy samples Naive Similarity Discrimina-
tor (NSD).

NSD is trained to learn the distribution of easy pairs
and can perfectly distinguish the similarity of easy pairs.
But NSD has a low accuracy on determining hard pairs due
to the lack of knowledge of hard samples. Thus, we train
generator with hard samples and fixed NSD in the purpose
of encouraging our model to produce easier samples by op-
timizing our similarity classification loss. Those hard pairs
that can not be distinguished by NSD will be misclassified
and deliver large loss, thus the generator are intend to push
them to a easier place. It is worth noticing that our model
is an end-to-end architecture and both training procedure
are employed under the guidance of standard binary cross-
entropy loss described in Eq. (10).

Specifically, we implement three stages in training pro-
cedure for different components of our model:

• Warm-up stage to train the randomly initialized addi-
tional layer and the discriminator with easy samples.
• Generator stage to train the generator network with

hard samples.
• Discriminator stage to train the discriminator with

easy samples.

It is worth noticing that the only difference between
warm-up stage and discriminator stage is the optimization
on the additional layer. The goal of warm-up stage is to opti-
mize all the randomly initialized parameter at the beginning
of training procedure.

Concretely, we firstly adopt warm-up stage to train all
the randomly initialized parameters. Then we alternately
employ generator stage and discriminator stage to train these
two components in turn.

3.4 Naive Similarity Discriminator

The effect of NSD is to learn the distribution information of
easy pairs which can be exploited to make a classification
on similarity of these samples. The ideal state for metric
learning is all pairs constructed from dataset ought to be
easy pairs. Our destination is to leave NSD to learn this
ideal state on warm-up and discriminators stages, and make
judgement and punishment on generator stage, which en-
courage all samples in dataset to get closer to this ideal state.

Considering the role of NSD played in different stage,
it is supposed to design a discriminator that obeying the fol-
lowing rules:

• Converged within a few epochs for distinguish easy
pairs with nearly perfect accuracy, which enabling
NSD to learn current distribution of easy samples on
every alternation of stages.
• Relative weak in predicting hard samples to guarantee

adequate misclassified samples and sufficient loss for
training generator.

To achieve these goals, two key requirements must be
met when designing the architecture of NSD.

1. Must not too simple to unsuccessfully reach a satisfied
performance on easy pairs judgement.

2. Not too complicated to guarantee the large number
of misclassified samples and enough loss is provided,
with a relative weak ability on determining hard pairs.

To make a balance between these two requirements,
an unusual composition of multilayer perceptron was em-
ployed as NSD. Concretely, we build a three fully connected
layers network with batch normalization [20]. But the differ-
ence to general neural network is that our model do not have
any activation function in hidden layers.

Theoretically, a three-layer structure with batch nor-
malization has a higher speed on convergence than a single-
layer structure, though they can be transformed to each

1410
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.6 JUNE 2020

Fig. 2 Architecture of Naive Similarity Discriminator, which is com-
posed of three fully connected layers with 512, 256 and 1 neurons respec-
tively, which are shown as the gray square marked with number of neurons.
The first two layers are followed a by batch normalization (BN) layer re-
spectively, while a sigmoid function is applied after the output layer to
come up with a probability.

other through matrix decomposition and matrix multiplica-
tion technology. The main principle of speeding up in con-
vergence is that batch normalization guarantees the stability
on distribution for each hidden layer inside discriminators.

Our concern of removing activation on hidden layers is
to decline the ability of discriminator on determining sim-
ilarity between hard pair for providing adequate misclas-
sified samples and sufficient loss to reinforce capability of
producing similarity preserved feature of generator. Com-
plete architecture of NSD is shown in Fig. 2.

Noticing that a critical destination of performing a
NSD is to continuously reinforce generator through misclas-
sified hard samples, rather than accurately distinguish those
pairs. The ideal state on generator stage is that the input
hard samples yield a large classification loss and rarely dis-
tinguish similarities. Concretely, if the accuracy on deter-
mining hard samples stays around 0.1, the model will con-
tinuously improve performance on all experimental metrics.
We observed from experiments that once the NSD fail to
provide adequate misclassified samples and sufficient loss
on discriminator stage, especially when the accuracy reach
the uncertain stage, i.e. around 0.5, the improvement of per-
formance would stand still or even drop down.

3.5 Implementation Details

We utilized PyTorch framework with 32GB memory and
NVIDIA 1080Ti through the experiment. We resized in-
put images into 256 × 256 followed by standard randomly
resized crop to 224 × 224 and horizontal flipping for data
augmentation. Our backbone Inception was pretrained on
ImageNet ILSVRC [19] dataset with a randomly initialized
additional fully connected layer, which was optimized with
10 times learning rate compared to other layers.

For NSD, we built a network with 512, 256 and 1 neu-
rons for three layers respectively and the learning rate was

set to 0.1. We applied standard stochastic gradient descent
(SGD) with momentum set to 0.9. We performed learning
rate decay as 0.8 on NSD and Inception with different fre-
quency. Concretely for NSD, we applied learning rate decay
on each stage alternation, while for Inception, we decay the
learning rate five times in each generator stage. We opti-
mized warm-up stage and discriminator stage for 3 epochs,
followed by 70 epochs on generator stage. We fixed the em-
bedding size to 512 as a fair comparison to other approaches.
We set 20000 iterations on training with batch size as 120.

We apply the same sampling strategy for each dataset.
Concretely for each batch, we randomly select 40 classes
from training set, and randomly choose 3 images for each
class to comprise the batch. We calculate pairwise dis-
tance within a batch. Formulaically for class ci, we select
the closest pair within ci, and find the furthest pair consists
of instances from ci and other classes {c j} j�i as easy sam-
ples. Oppositely, hard samples are selected from furthest
pair within the class and the closest pair to other classes.

4. Experiments

We implemented our experiment on two well-known
datasets for metric learning on both retrieval and clustering
task to verify the impact of our adversarial learning with
NSD and make a comparison to existing approaches.

4.1 Datasets and Evaluation

Our experiments was employed on widely-used CUB-200-
2011 [21] dataset and Cars196 [22] dataset. We followed
the dataset configuration of existing approaches [1], [2], [6],
[12], [13] for fairly comparison as following:

• CUB-200-2011 [21] dataset contains 11,788 bird im-
ages in 200 categories. We exploited the first 100 cate-
gories with 5,684 images as training set and the rest for
testing.
• Cars196 [22] dataset includes 16,185 car images with

196 categories. We used the first 98 categories with
8,054 images for training and save the rest for building
test set.

The purpose of dividing dataset based on categories is to
evaluate the robustness to unseen classes.

We evaluated proposed method and existing methods
on both retrieval and clustering task.

For retrieval task, we calculated percentage of retrieved
samples with the same label to the query image in K nearest
neighbors, where K ∈ {1, 2, 4, 8}, marked as R@K.

For clustering task, we employed standard K-means al-
gorithm in test set, which evaluated with normalized mutual
information (NMI) and F1 score. NMI consists of the ra-
tio of mutual information divided by the average entropy of
clusters and the average entropy of labels. F1 score com-
putes the harmonic mean of precision and recall on deter-
mining whether sample attribution to a specific cluster.

LE et al.: ADVERSARIAL METRIC LEARNING WITH NAIVE SIMILARITY DISCRIMINATOR
1411

Table 1 Experimental results on CUB-200-2011 dataset

Method R@1 R@2 R@4 R@8 NMI F1

Semi-hard 0.3621 0.4693 0.5930 0.7108 0.4880 0.2807
N-pair 0.4147 0.5418 0.6634 0.7714 0.5509 0.3475
Lifted 0.4932 0.6120 0.7265 0.8256 0.5691 0.3902
Angular(N-pair) 0.4799 0.6041 0.7268 0.8210 0.5827 0.4136
Ranked List 0.5712 0.6877 0.7873 0.8661 0.6302 0.4647
NSD(Ours) 0.5833 0.6987 0.7984 0.8754 0.6559 0.5162

Table 2 Experimental results on Cars196 dataset

Method R@1 R@2 R@4 R@8 NMI F1

Semi-hard 0.2399 0.3507 0.4859 0.6205 0.4297 0.2226
N-pair 0.3924 0.5288 0.6498 0.7606 0.5159 0.3086
Lifted 0.5630 0.6606 0.7470 0.8249 0.4585 0.2654
Angular(N-pair) 0.6729 0.7368 0.8542 0.8917 0.5773 0.4306
Ranked List 0.7544 0.8385 0.8975 0.9382 0.6174 0.4740
NSD(Ours) 0.7303 0.8320 0.8845 0.9246 0.5829 0.4434

4.2 Comparisons

We compared our adversarial metric learning with NSD to
some famous deep metric learning approaches. We im-
plemented the famous Semi-hard triplet loss [6] and An-
gular loss [12], the classical sample mining method N-pair
loss [1], Lifted Structured loss [2], and the recent weighted
method Ranked List loss [13]. We followed the settings
mentioned in these original papers through the comparison
experiments. Noticing that we applied Angular loss with the
N-pair sampling strategy, as they mentioned in their works.

Table 1 and Table 2 shows the result of NSD com-
pared to other baseline methods in two benchmark dataset
respectively. Compared to methods with standard handcraft-
designed loss functions [1], [2], [6], [12], we outperformed
them on both datasets with a large margin on both retrieval
and clustering task. Rather than set a specific margin and
optimize objective with constraint, we leave our discrimina-
tor to decide what kind of pairs should be optimized, which
break the restriction of these loss functions. For the state-
of-the-art Ranked List loss, we reach a higher performance
on the smaller CUB-200-2011 dataset, but failed to achieve
their performance on the larger Cars196 with a small mar-
gin. We analyse that with the increase of samples in each
class, we fail to collect sufficient information within a fix
sampling number, while setting weight for each individual
sample provided more information.

4.3 Impact of Naive Similarity Discriminator

The architecture of our NSD has a critical impact on the
performance in our model. As mentioned above, the ideal
model should converge fast for easy samples and provide
sufficient loss for hard samples. We take various of archi-
tecture into consideration including

• A three fully connected layers network with only batch
normalization on hidden layers, which we finally ap-
plied on our model.

• Standard three-layers fully connected neural network
with batch normalization and ReLU function on hidden
layers, marked as NSD-A.
• Two layers architecture variant of original NSD, with

256 units in hidden layer, marked as NSD-T.
• A single node layer composited with sigmoid function,

i.e. logistic regression, marked as NSD-L.
• Three layer neural network with no activation func-

tion and batch normalization on hidden layers, which
is theoretically equal to NSD-L if sufficiently trained,
marked as NSD-B.

We evaluated the effect of these variants with four met-
rics on CUB-200-2011 dataset, including

1. Convergence speed and accuracy with easy samples on
warm-up stage.

2. Loss provided on generator stage.
3. Accuracy with hard samples on generator stage, which

reflects the percentage of correctly classified samples
within a batch.

4. Percentage of samples with the same label in 8 nearest
neighbors, i.e. R@8, during the first 5000 iteration.

Figure 3 shows the experiment result of four variants
and original NSD on three metrics mentioned above, respec-
tively.

Separately discussing, for networks without batch nor-
malization, i.e. NSD-L and NSD-B, failed to achieve a per-
fect prediction at the very beginning while other variants
early gained the ability of judging easy pairs. As a high gen-
erator loss with a low accuracy on distinguishing hard pairs
leads to continuously reinforce the performance, we can see
from Fig. 3 (b) and (c) that these two variants with nearly
zero loss and an nearly uncertain judgement, i.e. with accu-
racy as 0.5, and failed to improve performance on precision
metric.

Specifically for NSD-A, though it provided adequate
loss, but the accuracy on predicting hard pairs early reach
an uncertain level, which reflected that it may determine the
input pair in a random state and rarely feed beneficial infor-
mation to the generator, resulting the bad performance.

1412
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.6 JUNE 2020

Fig. 3 Result of comparison experiments on three variants of NSD on (a) accuracy with easy pairs
on warm-up stage, (b) loss provided on generator stage, (c) accuracy with hard pairs on generator stage
and (d) percentage of samples with same label in 8 nearest neighbors. Noticing that in (b), NSD-L and
NSD-B are overlapping around a rare small value.

It is worth discussing a special phenomenon performed
by the two layer structured variant NSD-T, which reach a
good performance but slightly weaker than original NSD.
NSD-T provided relative lower loss on generator stage with
an unstable accuracy on determining hard pairs. We can
see that the accuracy went up at the first 2000 iterations and
suddenly dropped down around 2500 iteration. This sud-
den change resulted from the alternation of stage, and the
fresh randomly initialized NSD assisted this model out of
the puzzle zone of distinguishing hard pairs, which guar-
antee the number of misclassified samples and leads to the
stable performance.

From the analysis above, we can conclude that high
loss with low accuracy on generator stage can frequently
boosting the ability of generating easy pairs of generator,
which leads to a better performance on adversarial metric
learning with NSD.

5. Conclusion

In this paper, we have proposed a novel training strategy on
metric learning task by building a carefully-designed neu-
ral network called Naive Similarity Discriminator, with the
spirit of adversarial learning. The main principle of out
model is to encourage generator network to generate eas-
ier samples that can be distinguished by simple classifier by
exploiting the amount of misclassified samples with large
loss provided by NSD. Experimental results on CUB-200-
2011 and Cars196 indicate strong performance of our NSD
model with adversarial learning. While the essentially prin-

ciple on influence of architecture of NSD and the strategy of
sampling more information are needed further study on our
future works.

Acknowledgments

Supported by National Key R&D Program of China (No.
2017YFB1402400), National Nature Science Foundation of
China (No. 61762025), Guangxi Key Laboratory of Trusted
Software (No. kx201701), Guangxi Key Laboratory of Op-
toelectroric Information Processing (No. GD18202), and
Frontier and Application Foundation Research Program of
CQ CSTC (No. cstc2017jcyjAX0340).

References

[1] K. Sohn, “Improved deep metric learning with multi-class n-pair
loss objective,” Advances in Neural Information Processing Sys-
tems, pp.1857–1865, 2016.

[2] H.O. Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep
metric learning via lifted structured feature embedding,” Proc.
IEEE Conference on Computer Vision and Pattern Recognition,
pp.4004–4012, 2016.

[3] J. Zhou, P. Yu, W. Tang, and Y. Wu, “Efficient online local metric
adaptation via negative samples for person re-identification,” Proc.
IEEE International Conference on Computer Vision, pp.2420–2428,
2017.

[4] H.-X. Yu, A. Wu, and W.-S. Zheng, “Cross-view asymmetric met-
ric learning for unsupervised person re-identification,” Proc. IEEE
International Conference on Computer Vision, pp.994–1002, 2017.

[5] Z. Liu, D. Wang, and H. Lu, “Stepwise metric promotion for un-
supervised video person re-identification,” Proc. IEEE International
Conference on Computer Vision, pp.2429–2438, 2017.

http://dx.doi.org/10.1109/cvpr.2016.434
http://dx.doi.org/10.1109/iccv.2017.265
http://dx.doi.org/10.1109/iccv.2017.113
http://dx.doi.org/10.1109/iccv.2017.266

LE et al.: ADVERSARIAL METRIC LEARNING WITH NAIVE SIMILARITY DISCRIMINATOR
1413

[6] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified em-
bedding for face recognition and clustering,” Proc. IEEE conference
on computer vision and pattern recognition, pp.815–823, 2015.

[7] W. Deng, J. Hu, Z. Wu, and J. Guo, “From one to many: Pose-aware
metric learning for single-sample face recognition,” Pattern Recog-
nition, vol.77, pp.426–437, 2018.

[8] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka, “Metric
learning for large scale image classification: Generalizing to new
classes at near-zero cost,” European Conference on Computer Vi-
sion, vol.7573, pp.488–501, Springer, 2012.

[9] G. Cheng, C. Yang, X. Yao, L. Guo, and J. Han, “When deep learn-
ing meets metric learning: Remote sensing image scene classifica-
tion via learning discriminative cnns,” IEEE Trans. Geosci. Remote
Sens., vol.56, no.5, pp.2811–2821, 2018.

[10] Z. Wang, Y. Li, R. Hong, and X. Tian, “Eigenvector-based distance
metric learning for image classification and retrieval,” ACM Trans-
actions on Multimedia Computing, Communications, and Applica-
tions (TOMM), vol.15, no.3, p.84, 2019.

[11] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” 2006 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (CVPR’06),
pp.1735–1742, IEEE, 2006.

[12] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin, “Deep metric learning
with angular loss,” Proc. IEEE International Conference on Com-
puter Vision, pp.2593–2601, 2017.

[13] X. Wang, Y. Hua, E. Kodirov, G. Hu, R. Garnier, and N.M. Robert-
son, “Ranked list loss for deep metric learning,” Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp.5207–5216,
2019.

[14] X. Wang, X. Han, W. Huang, D. Dong, and M.R. Scott, “Multi-sim-
ilarity loss with general pair weighting for deep metric learning,”
Proc. IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp.5022–5030, 2019.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adver-
sarial nets,” Advances in Neural Information Processing Systems,
pp.2672–2680, 2014.

[16] Y. Duan, W. Zheng, X. Lin, J. Lu, and J. Zhou, “Deep adversarial
metric learning,” Proc. IEEE Conference on Computer Vision and
Pattern Recognition, pp.2780–2789, 2018.

[17] W. Zheng, Z. Chen, J. Lu, and J. Zhou, “Hardness-aware deep metric
learning,” Proc. IEEE Conference on Computer Vision and Pattern
Recognition, pp.72–81, 2019.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with con-
volutions,” Proc. IEEE conference on computer vision and pattern
recognition, pp.1–9, 2015.

[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Ima-
genet: A large-scale hierarchical image database,” 2009 IEEE con-
ference on computer vision and pattern recognition, pp.248–255,
Ieee, 2009.

[20] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” International
Conference on Machine Learning, pp.448–456, 2015.

[21] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
caltech-ucsd birds-200-2011 dataset,” Tech. Rep. CNS-TR-2011-
001, California Institute of Technology, 2011.

[22] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representa-
tions for fine-grained categorization,” 4th International IEEE Work-
shop on 3D Representation and Recognition (3dRR-13), Sydney,
Australia, 2013.

Yi-ze Le is a master at the College of Com-
puter Science, Chongqing University. His re-
search interest is Deep Learning and Big Data
Retrieval.

Yong Feng is a Professor at the College
of Computer Science, Chongqing University.
His research interest covers Big Data Analysis
and Data Mining, Artificial Intelligence and Big
Data Processing, Deep Learning and Big Data
Retrieval. Corresponding author of this paper.

Da-jiang Liu is a Lecturer at the Col-
lege of Computer Science, Chongqing Univer-
sity. His research interest covers Deep Rein-
forcement Learning, Software Definition Hard-
ware, and Deep Learning Compilation.

Bao-hua Qiang is a Professor at the
Guangxi Cooperative Innovation Center of
cloud computing and Big Data, Guilin Univer-
sity of Electronic Technology. His research in-
terest is Big Data Processing and Information
Retrieval.

http://dx.doi.org/10.1109/cvpr.2015.7298682
http://dx.doi.org/10.1016/j.patcog.2017.10.020
http://dx.doi.org/10.1007/978-3-642-33709-3_35
http://dx.doi.org/10.1109/tgrs.2017.2783902
http://dx.doi.org/10.1145/3340262
http://dx.doi.org/10.1109/cvpr.2006.100
http://dx.doi.org/10.1109/iccv.2017.283
http://dx.doi.org/10.1109/cvpr.2019.00535
http://dx.doi.org/10.1109/cvpr.2019.00516
http://dx.doi.org/10.1109/cvpr.2018.00294
http://dx.doi.org/10.1109/cvpr.2019.00016
http://dx.doi.org/10.1109/cvpr.2015.7298594
http://dx.doi.org/10.1109/cvpr.2009.5206848
http://dx.doi.org/10.1109/iccvw.2013.77

