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Air Quality Index Forecasting via Deep Dictionary Learning

SUMMARY  Air quality index (AQI) is a non-dimensional index for
the description of air quality, and is widely used in air quality management
schemes. A novel method for Air Quality Index Forecasting based on Deep
Dictionary Learning (AQIF-DDL) and machine vision is proposed in this
paper. A sky image is used as the input of the method, and the output is
the forecasted AQI value. The deep dictionary learning is employed to au-
tomatically extract the sky image features and achieve the AQI forecasting.
The idea of learning deeper dictionary levels stemmed from the deep learn-
ing is also included to increase the forecasting accuracy and stability. The
proposed AQIF-DDL is compared with other deep learning based methods,
such as deep belief network, stacked autoencoder and convolutional neural
network. The experimental results indicate that the proposed method leads
to good performance on AQI forecasting.

key words: air quality index forecasting, deep dictionary learning, greedy
learning, representation learning paradigm

1. Introduction

With the rapid development of industrialization and urban-
ization, air pollution is increasing. Each year, more than 4
million people die early because of outdoor air pollution [1].
Especially in developing countries, serious air pollution oc-
curred in certain seasons. Li et al. [2] introduced that ambi-
ent air pollution in China poses a multifaceted health threat
to outdoor physical activity. The suggestion that health au-
thorities in China must address the critical dilemma of how
to protect and encourage the active population is also pro-
posed by Li et al. W. James et al. [3] proved that air quality in
southern California is associated with statistically and clini-
cally significant improvements in childhood lung-function
growth. Therefore, the air quality is associated with our
daily life.

Air quality index (AQI) is a non-dimensional index for
the description of air quality, and is based on the level of sev-
eral atmospheric pollutants, namely sulfur dioxide (SO,),
nitrogen dioxide (NO,), suspended particulates smaller than
10 um in aerodynamic diameter (PM10), suspended particu-
lates smaller than 2.5 ym in aerodynamic diameter (PM2.5),
carbon monoxide (CO), and ozone (O3). Different countries
have their own air quality indices, corresponding to different
national air quality standards, and the measurement is at the
monitoring stations. Notably, AQI is essential indicator to
evaluate air quality, the higher the number, the greater the
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health risks and the need for preventive measures. The pub-
lic mainly focus on measuring the AQI conveniently and by
themselves [4], [5]. Kang Z. et al. [6] proposed a BP neu-
ral network based algorithm to predict the AQI via six at-
mospheric pollutants. Wang et al. [7] introduced a hybrid
forecasting model for PM10 and SO, daily concentrations.
The support vector machine (SVM) is used to achieve the
forecasting, a 2-year dataset of daily PM10 and SO, is also
needed. But the forecasting is only focused on the PM10
and SO,, the measurement of dataset is difficult too. Wu
Q. et al. [8] proposed an optimal-hybrid model for daily air
quality index prediction considering air pollutant factors,
but the inputs of the model are the six atmospheric pollu-
tants.

Most existed AQI forecasting methods lack real-time
and universal property in different countries. The public nei-
ther can measure the AQI by themselves as the complexity
of the measurement. For these issues, a new Air Quality In-
dex Forecasting method based on Deep Dictionary Learning
(AQIF-DDL) and machine vision is proposed in this paper.
The input of the method is just an image which only con-
tains the sky region, and the output is the air quality index of
the image. The public can capture the image conveniently
even via their phones, and the AQI is forecasted immedi-
ately. Dictionary learning is a kind of representation learn-
ing paradigm, focuses on learning “basis” and “features” by
matrix factorization, the current popularity dictionary learn-
ing owes to K-SVD[9], [10]. Deep learning is another
kind of representation learning paradigm, focuses on ex-
tracting features via learning “weights” and “features” in a
greedy layer by layer method [11]—[13]. In order to increase
the forecasting accuracy and stability, the proposed AQIF-
DDL combined the two representation learning paradigms,
learned multi-level deep dictionaries.

2. Related Works

According to different emphasis on the prior knowledge,
most existed AQI forecasting methods can be categorized
into four groups [8]: the deterministic model based, the sta-
tistical model based, the artificial intelligent model based,
the hybrid model based. i) The deterministic model based
methods utilize the atmospheric physics data and model to
calculate the AQI. However, the atmospheric conditions are
complex, the calculation model is relatively deterministic,
which suffers the difficult application problem [14]. ii) The
statistical model based methods achieve the prediction
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via the mathematical statistical algorithms and criteria air
pollutants, but the prediction accuracy is relatively low [15].
iii) The artificial intelligent model based methods also suf-
fer the low prediction accuracy problem as the limitation of
database size and computational ability [16]-[20]. iv) The
hybrid model based methods focus on enhancing the time
series via the signal decomposition technology and com-
bined model, the sub-sequences are obtained by these meth-
ods [21]-[24]. But the hybrid model based methods are lack
of air pollution prediction, the prediction accuracy is also
non-stationary. Wang et al. [25] proposed an AQI forecast-
ing method via support vector machine (SVM), moments
and machine version, but the prediction accuracy is unsat-
isfactory. The main reason of low prediction accuracy in
[25] is the feature extraction problem, only the color mo-
ments and wavelet features are utilized to achieve the AQI
forecasting. Additionally, the convolutional neural network
based methods are not suitable as the amount limitation of
dataset.

In this study, a novel deep dictionary learning based air
quality index forecasting method is developed. The input
of the proposed method is a sky image, and the output is
the corresponding AQI value. The deep dictionary learning
is employed to automatically extract the sky image features
and achieve the AQI forecasting. Dictionary learning is a
kind of representation learning paradigm, focuses on learn-
ing a basis for representation in early studies. The basis of
dictionary learning is to solve the optimization problem:

: _ 2
min 1Y — DXI[; (1)

Where Y is the training data, X is the loading coefficients
and D is a dictionary to be learned. In sparse representation
problem, X is sparse enough to be solved, K-SVD [9], [10]
is one of the most well know methods to achieve the opti-
mization, the common format is:

min ||Y - DX|> subject to [|X]lo < T 2)

The lp-norm is defined on the vectorized version of X.
The solution of ly-norm is a NP-hard [26], [27] problem,
K-SVD utilizes the greedy (sub-optimal) orthogonal match-
ing pursuit (OMP) [28] to achieve the solution. In the dic-
tionary learning step, K-SVD develops an efficient method
to estimate and update the atoms one at a time. The discrim-
inative K-SVD [29] or LC-KSVD [30] is proposed to learn
discriminative sparse representation, which had a good re-
sults on face recognition. The proposed AQIF-DDL method
in this paper extends the state-of-the-art in AQI forecasting.
The public can achieve the AQI forecasting by themselves,
the prediction process is convenient and the accuracy is
satisfactory.

This paper is organized as follows. The first section is
the introduction of air quality index and the forecasting. The
second section describes the main existed AQI forecasting
methods and dictionary learning. The third section intro-
duces the deep dictionary learning and the proposed AQIF-
DDL method. The fourth section is the experimental results
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part, and the last section is the conclusion part.
3. Methods

In this section, we describe the deep dictionary learning
and the proposed AQIF-DDL method. The deep dictio-
nary learning is a kind of greedy layer-wise learning, which
learns the latent representation of data by learning multi-
level dictionaries. The idea of learning deeper levels of dic-
tionaries is employed in deep dictionary learning, which is
the main success reason of deep learning.

3.1 Deep Dictionary Learning

In order to explain the concept of deep dictionary learning
clearly, a two-layer deep dictionary learning is introduced,
then we extend it to a multi-level dictionary [31]. Figure 1
shows the schematic diagram of dictionary learning:

Where the Y is the data, X is the loading coefficients
and D, is a dictionary to be learned. The dictionary learning
follows the representation paradigm:

Y=DX 3

The analysis K-SVD is used to find the solution of (3),
but the result is without redundancy, which cannot extract
the features from the data (Y). The result gained by anal-
ysis K-SVD is only suitable for inverse problems. Hence,
the two-layer deep dictionary learning was developed [31]
to fix that problem. The schematic diagram of two-layer
deep dictionary learning is shown in Fig. 2. The representa-
tion paradigm of (3) can be rewritten as:

Y =DDX “)

Learning two-layer dictionaries (a tri-linear problem) is
really different from learning a single dictionary (a bi-linear

Fig.1  Schematic diagram of dictionary learning

Fig.2  Schematic diagram of two-layer dictionary
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learning problem) [32], [33]. The over-fitting problem oc-
curred in deep learning as the amount limitation of training
data is also existed in learning two-layer dictionaries. How-
ever, the greedy learning has been successfully utilized to
overcome these issues [34]—-[37]. The schematic diagram of
two-layer greedy layer-wise dictionary learning is shown in
Fig. 3.
The Eq. (4) is rewritten as:

Y = D1p(D2X>5) ®)

where ¢ is an activation function, it can be linear or non-
linear. One layer is learned at a time in the employed greedy
dictionary learning. Hence, the D; and X; in Fig.3 are
solved by:

. _ 2
gll’l)?] IY — D1 Xill7 (6)

The solving of (6) has been achieved by the alternating
minimization in [38]. Then, the D; and X are alternating
learned by:

X1 — minlY - Dy X[ (7)
1

Dy « min|[Y - Dy X7 (8)
1

X

D>
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The Eqgs.(7) and (8) are belonged to simple least square
problems, it is easy to be calculated. For the next layer, the
X1, D, and X, have the relation of X; = ¢(D,X5). The rela-
tional expression also can be rewritten as e 1(X) = DX,
it is a single layer dictionary learning. The solution of X; is
dense, it also can be solved by:

. -1 _ 2
min [l™! (X1) = DaXolf ©)

The layers in the greedy dictionary learning are solved
via alternating learning till the penultimate layer. In the last
layer, the relation is ¢! (Xy—1) = DyX. In order to obtain
features, the regulation by /;-norm is employed:

min [l¢g™" (Xy-1) — Dy X[z + X (10)
Dy, X

where A is a coefficient, the Dy and X are alternating
calculated by the Iterative Soft Thresholding Algorithm
(ISTA) [39]:

X < min lle™ (Xn-1) = DnXIZ + AIXI (1)

Dy« min g™ (Xn-1) — D X7 (12)
N

The deep dictionary learning is achieved via the greedy
learning and alternating minimization, the features are auto-
matically extracted via the deep dictionary structure, and it
can be used in the AQI forecasting task with a further im-
provement in structure.

3.2 Air Quality Index Forecasting via Deep Dictionary
Learning (AQIF-DDL)

The flow chart of the proposed AQIF-DDL method is shown
in Fig. 4, it consists of N layers with different dictionary
separately (D;, i = 1,2,...N). The input of the proposed

Fig.3  Schematic diagram of greedy dictionary learning
, [T - 0 cd - 0. -1 >
= N & 4 2
. 2 . 1., 2
min[[¥ - DX, [, min]"' () =D,y ,
— 7 o
Layer1 i D, Layer 2
[iPs 1
> X 5l
vl o 3
aQl oz minle 6, )-poxd 4K
—
I
Classifier ,l, i D, Layer N

Fig.4

Flow chart of the proposed AQIF-DDL with N layers. The dictionary atoms shown in the flow

chart are 3-dimensional, which correspond to the color image RGB channels.
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method is a color image only contains the sky region, the
output is the forecasted AQI value (V4¢;). The trained deep
dictionary structure is used to automatically extract the air
quality features, and a classifier (SVM) is also utilized to
achieve the AQI value forecasting. The dictionary atoms
used in the deep dictionary structure are 3-dimensional,
which correspond to the color image RGB channels.

Usually the image size is larger than the size of dictio-
nary atom. Hence, we utilized the patch extraction [40] to
gain the patches with 5 pixels overlap, the extracted patch
has the same size as dictionary atom. Then, the forecasted
AQI value of the input image is calculated by:

m

1
Vaor = - Z vaor(2) (13)

z=1

Where va0;(z) is the forecasted AQI value of patch z, m
is the total number of patches, V4¢; is the AQI value of the
input image, it is the mean of all patches. In order to extract
the air quality features, we trained the deep dictionary one
layer a time via greedy dictionary learning, the training and
testing algorithms are shown below.

Algorithm 1 : Training AQIF-DDL

(a) Imitialize: D,,i=1,2,..N, [ isthe layer number
(b) The first layer: repeat until convergence
X, <« min|y -D.X, |
X\
D, « min||y - D.X,|[]
Dy

(c) The second layer to penultimate layer: repeat until
convergence

X, < min||p" (X, )- DX
Xl
D, < min lo*x,)-Dx, ||F
(d) The last layer: repeat until convergence
X < min lo"x, ) -D,x| + ]|,
D, < minf¢"(x, )-D,X|
Dy

(e) Train the classifier (SVM).

Algorithm 2 : Testing AQIF-DDL

(a) Calculate the output of the first layer:
-DX

1,test

2

X, <« min ”Z
Xl Jtest

1,test rest

F

(b) The second layer to penultimate layer:

1 test Jtest

F

X, < min|p" (X, )~ DX,
Xl.lml

(c) The last layer:

test test

X, «min|p’ (X, )-D,X

2
A

1

(d) Calculate the V’

AQI

via classifier and Eq.(13).
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4. Results

In order to evaluate the forecasting performance of the pro-
posed method, the RMSE, MAE and MAPE are employed.
The definition of the evaluation indices are shown below:

1 & . 2
RMSE = J - ;(VAQ,J ~ Vagr.i) (14)
I v .
MAE = - ;|VAQI,:‘ - VAQI,i| (15)
1 o Vaori — VAQLi
MAPE = — _— 16
n ; Vaori 1o

The V¢, is forecasted AQI value of image i, the VAQ,,,-
is the actual data. It can be known that the smaller the crite-
rion, the better forecasting performance is. The experimen-
tal results are compared with the state-of-the-art algorithms,
such as deep belief network (DBN)[41], stacked autoen-
coder (SAE) [42], D-KSVD [29], LC-KSVD [30] and con-
volutional neural network [43]. We utilized the linear acti-
vation function for the dictionary learning and SVM.

4.1 Datasets

In the experiment, the dataset consists of 3000 sky images
gained from 500 days in Beijing with the AQI value range
[21,420]. The image size is 100 x 100 x 3, which only con-
tains the sky region. We utilized 2500 sky images to train
the multi-level deep dictionary, and 500 images as the test-
ing set. Figure 5 shows part of the dataset with different AQI
values, it can be observed that the sky region in the image
gradually turns yellow as the AQI value increases. When the
AQI value is larger than 300, the air quality level is moder-
ately polluted. People with breathing or heart problems will
experience reduced endurance in activities. These individ-
uals and elders should remain indoors and restrict activities
in these situation.

The size of dictionary atom is usually smaller than the
input image, we utilized the patch extraction to gain the

(al)AQI=30  (a2)AQI=67 (a3)AQI=92 (ad)AQI=111

(b2)AQI=165 (b3)AQI=209 (b3)AQI=265 (b4)AQI=360
Fig.5  Sky images with different AQI
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Fig.6  Schematic diagram of the image patch extraction

Table 1  The effect of different layers on testing dataset.
. Shallow(1 2 3 4 5
Evaluation
layer) layer layer layer layer
RMSE 13.15 12.40 9.97 9.94 9.91
MAE 8.93 7.62 6.71 6.70 6.69
MAPE 0.152 0.141  0.098  0.096 0.095

patches with 5 pixels overlap. Hence, the dictionary atom
and the input have the same size. The schematic diagram of
the patch extraction is shown in Fig. 6, where the size of the
extracted patch is 20 X 20 x 3. The total number of patches
is 36 in a sky image, where m = 36 in Eq. (13).

4.2 Effect of Different Layers

The proposed AQIF-DDL consists of multi-level deep dic-
tionary, we first analyzed the effect of increasing the number
of layers. One layer dictionary is usually used in the dic-
tionary learning based works, it is a kind of shallow struc-
ture. We learned 1200, 2400-1200, 2400-1600-1200, 2400-
1600-1200-1200, 2400-1600-1200-1200-1200 atoms for the
shallow dictionary, 2 layer, 3 layer, 4 layer and 5 layer sep-
arately. The A used in Eq.(11) is 0.12 in all layers, Ta-
ble 1 shows the effect of different layers on testing set. In
Table 1, column 6 has the best performance, we observed
that the forecasting results have a positive correlation with
the number of dictionary layers. The main reason of these
phenomenon is that the representations learned from multi-
level dictionaries have a better AQI forecasting accuracy
than the single level. However, the multi-level dictionaries
training time also should be mentioned. The training time
of 4 layer is 10 times that of 3 layer, but the improvement
of AQI forecasting accuracy is limited. Hence, we utilized
3 layer structure in the rest of the experiment as the com-
prehensive consideration of training speed and forecasting
accuracy.
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4.3 Effect of Dictionary Atom Amount in Each Layer

The amount of the dictionary atom in AQIF-DDL also af-
fects the AQI forecasting accuracy, we analyzed the effect
of atom amount via layer by layer. Figure 7 shows the AQI
forecasting results with different atom amounts, the k is a
variable used to represent the value of the dictionary atom
amount, such as 2400-k-1200. The increasing step of the
atom amount is 100, the size of dictionary atom is 20x20x3.
It can be observed that the evaluation indices decrease as the
k increases in all layers, and the rate of decrease is gradu-
ally slowed down after a certain value. In that situation, the
features used for the AQI forecasting had been efficiently
extracted via the deep dictionary structure, the increase of k
has little effect on the forecasting results.

From the comparison of different layers, we also ob-
served that the last layer in the deep dictionary structure
has the maximum effect on the AQI forecasting. Espe-
cially from the first point comparison of MAE in Fig. 7 (al),
(b1) and (c1), the MAE is 8.29 (2400-1600-400 dictionary
atom structure), which is larger than the other structures
(1600-1600-1200 dictionary atom structure and 2400-800-
1200 dictionary atom structure).

4.4 Effect of Dictionary Atom Size

The dictionary atom size is another significant parameter in
the dictionary learning, a suitable value leads to a good per-
formance for the dictionary learning based method. We an-
alyzed the effects of different atom size on AQI forecasting
in this section. The atom size is from 3 X3 x 3 to 30x 30X 3,
and the dictionary atom amount is 2400-1600-1200. Table 2
shows the effect of different dictionary atom size on testing
dataset, the image patch size is same as the atom size. The
overlap pixel used in patch extraction is an integer which
is a quarter of atom size, for instance, the overlap pixel of
15 x 15 x 3 is 4. From the comparison of different dictio-
nary atom size, we observed that the small size do not have
a good performance on the AQI forecasting. The main rea-
son is that the AQI features extracted by these atoms can not
effectively characterize the difference between sky images.
Hence, the 20 x 20 x 3 is the suitable atom size, which has
the best performance on AQI forecasting. At the last row of
Table 2, we also presented the two-dimensional atom, ex-
tracted from the gray image, but the results are not ideal.
The missing of color information may be the main reason.

4.5 Comparison with Other Deep Learning Methods

In order to demonstrate the advantages of the proposed
AQIF-DDL method, five other deep learning based meth-
ods are taken as the comparison, which is deep belief
network (DBN)[41], stacked autoencoder (SAE)[42], D-
KSVD [29], LC-KSVD [30] and convolutional neural net-
work (CNN) [43]. The dictionary atom structure of AQIF-
DDL used in this section is 2400-1600-1200, the atom size
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Table 3  Comparison with other methods on testing dataset.

Table 2  The effect of different dictionary atom size on testing dataset. Method RMSE MAE MAPE
Atom size RMSE _MAE _MAPE SAE [41] 11.58 7.61 0.152
3x3%3 1358 397 0161 DBN [42] 11.47 7.48 0.149
x : : : D-KSVD [29] 12.81 8.75 0.181
5x5%3 13.02 875  0.152 LC-KSVD [30] 12.96 8.96 0.19
TxTx3 12.54  8.03 0.146 AQIF-DDL 9.97 6.71 0.098
11x11x3 11.12 7.65 0.131 CNN [43] 9.95 6.78 0.101
13x13x3 10.85 7.48 0.126
15x15x3 1026  7.05  0.108 _ _ o
17x17x3 1025  7.03 0102 is 20 x 20 x 3. Figure 8 shows part of the dictionary atoms
' ' ' in the first layer.
20x20x3 9.97 6.71 0.098 .. .. .
23%23x3 9.08 672 0.098 Slin?llar to deep dictionary learning, the SAE and DBN
7% 273 1001 671 0099 also utilize a three-layer structure, the parameters used in
30x303 1002 672 0100 D-KSVD, LC-KSVD and CNN are similar to [29], [30] and

[43] separately. Table 3 shows the AQI forecasting results
with different methods on testing dataset. It can be observed
that the proposed AQIF-DDL has the best performance on

20 %20 (gray image ) 18.47 12.24  0.456
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Fig.8  The first 625 atoms in the first layer of the proposed AQIF-DDL
method

semi-supervised learning methods (except the CNN based
method [43], which has the smallest RMSE), the MAE is al-
most 25% smaller than the LC-KSVD [30] based method.
The SAE [41] and DBN [42] based methods have the sim-
ilar accuracy on evaluation indices, but the MAPE is al-
most 34% larger than our method. The D-KSVD [29] based
method has the penultimate AQI forecasting results in all
comparison methods.

The CNN based method [43] is a kind of supervised
learning which needs a large training dataset. However, the
training dataset (only contain 2500 sky images) is limited
in the AQI forecasting task, the CNN based method [43]
suffers the overfitting problem. Hence, the semi-supervised
learning methods have a better performance on these appli-
cations as the relatively loose data requirements. The MAE
gained from our method is 6.71, which is better than the
most existed atmospheric pollutants based methods [8]. The
AQI forecasting results via the proposed AQIF-DDL are ac-
curate and stable, the public can achieve the forecasting con-
veniently and immediately. It is not only an AQI forecasting
method to promote urban public health, but also crucial for
sustainable development of environment under the negative
impact of air pollution.

5. Conclusions

In this research, we proposed a novel method for air qual-
ity index forecasting based on deep dictionary learning and
machine vision. The input of the proposed AQIF-DDL is
just a sky image, the output is the forecasted AQI value. A
deep dictionary structure is developed to automatically ex-
tract the sky image features and achieve the AQI forecasting.
The idea of learning deeper dictionary levels is stemmed
from the deep learning, and the greedy learning is employed
to achieve the deep dictionary training. The image patch
extraction is also employed to reduce the dictionary atom
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size and implement the AQI forecasting. In the experimen-
tal part, we analyzed the effect of layer amount, dictionary
atom in each layer and dictionary atom size. We observed
that 3 layer structure has an ideal performance as the com-
prehensive consideration of training speed and forecasting
accuracy. We also found the suitable atom amount and size
via the experiments. From the comparison with other semi-
supervised learning methods, it can be observed that the re-
sults gained by our method is accurate, the proposed AQIF-
DDL has the best performance on AQI forecasting task. The
public can achieve the AQI forecasting conveniently and im-
mediately via the proposed method, it may be a new mea-
sure to promote urban public health. Future work includes
further improving AQI forecasting accuracy, increasing the
collection of AQI image data, and applying it to other air
quality forecasting task.
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