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PAPER

Joint Adversarial Training of Speech Recognition and Synthesis
Models for Many-to-One Voice Conversion Using Phonetic
Posteriorgrams

Yuki SAITO†,††a), Student Member, Kei AKUZAWA†,††, and Kentaro TACHIBANA†b), Nonmembers

SUMMARY This paper presents a method for many-to-one voice con-
version using phonetic posteriorgrams (PPGs) based on an adversarial
training of deep neural networks (DNNs). A conventional method for
many-to-one VC can learn a mapping function from input acoustic features
to target acoustic features through separately trained DNN-based speech
recognition and synthesis models. However, 1) the differences among
speakers observed in PPGs and 2) an over-smoothing effect of generated
acoustic features degrade the converted speech quality. Our method per-
forms a domain-adversarial training of the recognition model for reducing
the PPG differences. In addition, it incorporates a generative adversarial
network into the training of the synthesis model for alleviating the over-
smoothing effect. Unlike the conventional method, ours jointly trains the
recognition and synthesis models so that they are optimized for many-to-
one VC. Experimental evaluation demonstrates that the proposed method
significantly improves the converted speech quality compared with conven-
tional VC methods.
key words: many-to-one voice conversion, phonetic posteriorgrams, deep
neural networks, over-smoothing, domain-adversarial training, generative
adversarial networks

1. Introduction

Voice conversion (VC) [1] is a technique for transforming
the characteristics of input speech to those of target speech
while keeping its phonetic content. We can use VC for vari-
ous applications such as speaking aids [2] and entertainment
such as singing VC [3].

In statistical VC [4], we train a VC model that con-
verts acoustic features of an input speaker into those of a
target speaker. Specifically, parallel VC constructs a VC
model by using parallel speech corpora (i.e., pairs of the
same utterances spoken by input and target speakers), which
achieves high-quality VC by learning the mapping function
from input to target acoustic features in frame-wise [5]–[7]
or sequence-wise [8], [9] manners. However, recording par-
allel speech corpora requires significant time and cost, and
it is difficult to extend the VC to more practical ones such
as many-to-one VC and many-to-many VC. On the other
hand, non-parallel VC trains a VC model without using
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parallel speech corpora, which enables us to easily increase
the amount of training data and to realize the more practi-
cal VC frameworks. Although the converted speech quality
of non-parallel VC is still limited, recent development of
VC techniques based on deep neural networks (DNNs) has
made the quality closer to that of parallel VC. Restricted
Boltzmann machines [10] and variational autoencoders [11],
[12] are well-known examples of VC models that can be
used for non-parallel VC. The use of DNNs also offers a
way to incorporate other speech processing techniques such
as text-to-speech synthesis [13], automatic speech recogni-
tion [14], and speaker verification [15] into training of a VC
model.

As an example of a VC method that utilizes knowledge
for other DNN-based speech processing, Sun et al. [16] pro-
posed a method that utilizes pre-trained speech recognition
and synthesis models for building a many-to-one VC model
without using parallel speech corpora. In their method,
phonetic posteriorgrams (PPGs) predicted by a DNN-based
speech recognition model act as intermediate representa-
tions for learning the many-to-one mapping from input to
target speech. Their method takes several steps to build the
VC model with different two corpora. Firstly, the recogni-
tion model is trained to predict the phonetic content of input
speech by using a speech corpus including many speakers.
Secondly, a DNN-based speech synthesis model is trained to
generate acoustic features from PPGs with a speech corpus
including only one target speaker. Finally, the two models
are concatenated for building the many-to-one model. This
paper follows the PPG-based many-to-one VC method since
it has a potential for realizing high-quality many-to-one VC
applications without requiring pre-recording of input speak-
ers’ voices whose quality was not always sufficient to adapt
or fine-tune the pre-trained VC model.

Although the conventional PPG-based VC can easily
construct the many-to-one VC model, its separate training
of the recognition and synthesis models cannot deal with
the differences among speakers such as speaking style and
recording conditions. In practice, there is a domain mis-
match between the two training data for the recognition
and synthesis models. The one for the recognition model
training includes a large amount of speakers whose speak-
ing style and recording conditions are not necessarily well-
controlled, while the other consists of many utterances spo-
ken by a single speaker with studio-recording quality. As
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reported in [17], the differences among speakers can affect
PPGs and significantly degrade the converted speech qual-
ity. Also, the statistical differences between the target and
generated acoustic features such as an over-smoothing ef-
fect [5], [18] considerably deteriorate the quality.

To deal with the issues in the conventional DNN-
based many-to-one VC using PPGs, this paper proposes a
joint adversarial training for the recognition and synthesis
models. The method introduces two DNN-based discrim-
inative models to the training. One is a domain classifi-
cation model in a domain-adversarial training (DAT) [19]
that distinguishes the target speaker from others by using
their latent variables extracted from the recognition model.
The loss function for training the recognition model is the
weighted sum of the softmax cross-entropy for the phoneme
prediction and the loss for fooling the domain classifier that
makes PPGs more invariant to input speakers. The other
is a speaker verification model that discriminates between
the target and generated acoustic features. The loss func-
tion for training the synthesis model is the weighted sum of
the mean squared error for the acoustic feature generation
and the loss for deceiving the speaker verification that alle-
viates the over-smoothing effect as in the same manner as
a training method for speech synthesis [20] based on gener-
ative adversarial network (GANs) [21]. Unlike the conven-
tional method for many-to-one VC, ours jointly trains the
recognition and synthesis models with a unified framework
so that they are optimized for generating the target acoustic
features from PPGs predicted from input acoustic features.
As a result of the joint training, the proposed algorithm can
take advantage of both the DAT for reducing the speaker
differences (i.e., improving the speaker similarity) and the
GAN for enhancing the naturalness of the converted speech.
Experimental evaluation demonstrates that our method
significantly improves the converted speech quality com-

Fig. 1 Examples of PPGs predicted by input acoustic features of four different speakers who uttered
the same sentences used in subjective evaluation described in Sect. 4.2. The horizontal axes represent the
temporal axis, and the vertical axes represents the phoneme index. Brighter values denote high posterior
probabilities. We modified the ranges of the temporal axes in these figures for clear illustration.

pared with the conventional ones.
The rest of this paper is organized as follows. Sec-

tion 2 describes the conventional algorithm for many-to-one
VC. Section 3 explains the proposed joint adversarial train-
ing for many-to-one VC. Section 4 presents experimental
evaluation. Section 5 concludes this paper with a summary.

2. Conventional Many-to-One VC Method

In the conventional method [16], DNN-based speech recog-
nition and synthesis models are trained to represent mapping
from any arbitrary input speech to the target speech with
using PPGs as the intermediate representation of the VC
process.

2.1 Training of the Speech Recognition Model

The recognition model R(·) is trained to predict a phoneme
label sequence l from an input acoustic feature sequence
x such as mel-frequency cepstral coefficients (MFCCs). A
pair of the phoneme label and input acoustic feature is sam-
pled from a multi-speaker corpus D(M) = {(x(M)

n , l
(M)
n )}N(M)

n=1 ,
where N(M) denotes the amount of training data for the
recognition model. A PPG sequence p̂(M) = R(x(M)) that
represents a sequence of posterior probabilities of the
phoneme label l(M) given input acoustic feature x(M) is pre-
dicted by the recognition model. R(·) is trained to minimize
the phoneme prediction loss defined as the softmax cross-
entropy (SCE) between the phoneme label and PPG, i.e.,
LSCE(l(M), p̂(M)).

2.2 Training of the Speech Synthesis Model

Assuming that R(·) is the speaker-independent speech
recognition model, the speaker-dependent speech synthesis
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Fig. 2 Scatter plots of (a) natural MCEPs and (b)–(d) generated MCEPs
which are extracted from one utterance of the female target speaker not
used for training synthesis model.

model G(·) is trained to generate a target acoustic feature
sequence y such as mel-cepstral coefficients (MCEPs) from
a PPG sequence. A pair of the input and target acoustic
features is sampled from a target speaker corpus D(O) =

{(x(O)
n , y

(O)
n )}N(O)

n=1 , where N(O) denotes the amount of train-
ing data for the synthesis model. A generated acoustic fea-
ture sequence ŷ(O) is obtained through the recognition and
synthesis models, i.e., ŷ(O) = G(R(x(O))). G(·) is trained to
minimize the acoustic feature generation loss defined as the
mean squared error (MSE) between the target and generated
acoustic feature sequences, i.e., LMSE(y(O), ŷ(O)). Note that
model parameters of R(·) (e.g., weights and bias parameters)
are not updated by this training.

2.3 Problems

The conventional method can train the many-to-one VC
model without using parallel speech corpora. However,
as shown in Fig. 1 (a), actual PPGs fed into the synthe-
sis model in the VC process can be different among input
speakers, since training of the recognition model based on
the phoneme prediction loss does not guarantee to learn
speaker-invariant PPGs. The PPG differences can degrade
the converted speech quality because the synthesis model
trained on only PPGs of the target speaker does not necessar-
ily generalize to input PPGs of the source speakers. More-
over, as shown in Fig. 2 (b), generated acoustic features of
the algorithm tend to be over-smoothed, which considerably
deteriorates the quality.

3. Proposed Many-to-One VC Method

3.1 Joint Adversarial Training of the Speech Recognition
and Synthesis Models

3.1.1 DAT of the Speech Recognition Model for Many-to-
One VC

The DAT [19] is a general framework to train DNN-based
recognition models that are more robust towards variation
in their input features by learning domain-invariant latent
variables, and has been applied to accented speech recog-
nition [22] and speaker recognition [23]. Although the DAT
was originally invented for improving recognition accuracy,
Chou et al. [24] demonstrated its efficacy in autoencoder-
based VC that learns speaker-independent latent variables.

Note that their method does not guarantee that the latent
variables represent phonetic content of input speech unlike
many-to-one VC using PPGs. For improving the converted
speech quality of many-to-one VC, our goal is to obtain
PPGs that are invariant to variation in input speakers. In
this paper, we regard the two speech corpora used for the
training of the recognition and synthesis models as the do-
mains, i.e., there are 1) the multi-speaker domain D(M) and
2) the target speaker domain D(O), and minimize the differ-
ence between the two domains by the DAT.

For clear formulation, we split the recognition model
R(·) into two sub-models, R(·) = Rp(Rf(·)), where Rf(·) is a
feature extraction model that extracts latent variables f̂ rep-
resenting phonetic content of input speech as f̂ = Rf(x),
and Rp(·) is a phoneme prediction model that predicts a
PPG sequence from the latent variables, i.e., p̂ = Rp( f̂ ) =
Rp(Rf(x)). To capture the domain difference, we introduce a
domain classification model Ddc(·) that uses the latent vari-
ables to identify the domains as the training of R(·). Ddc(·)
is trained to minimize the loss function defined as:

Ldc

(
f̂

(M)
, f̂

(O)
)
= − log Ddc

(
f̂

(O)
)

− log
(
1 − Ddc

(
f̂

(M)
))
, (1)

where f̂
(M)

and f̂
(O)

are extracted from x(M) and x(O), re-
spectively. On the other hand, the recognition model R(·) is
trained to minimize the loss defined as follows:

LR

(
l(M), p̂(M), f̂

(M)
, f̂

(O)
)
= LSCE

(
l(M), p̂(M)

)

− ωRLdc

(
f̂

(M)
, f̂

(O)
)
, (2)

where ωR is a hyperparameter that controls the effect of
the second term. The loss function can be regarded as the
weighted sum of the phoneme prediction loss and the loss
to make Ddc(·) misclassify the domains by modifying the la-
tent variables. Therefore, the minimization of Eq. (2) can
be expected to reduce the differences among input speakers
observed in their PPGs.

3.1.2 GAN-Based Training of the Speech Synthesis
Models

The GAN-based training algorithm for statistical paramet-
ric speech synthesis [20] was proposed for dealing with the
over-smoothing effect, which uses a speaker verification
model Dsv(·) that distinguishes natural acoustic features y
from synthetic ones ŷ. Since an objective of the GAN is
matching distributions of natural and synthetic data, the al-
gorithm makes the distribution of ŷ close to that of y. We
introduce this algorithm to the training of the speech synthe-
sis model in many-to-one VC for improving the converted
speech quality.

Referring to [20], we adopt a Wasserstein GAN [25]-
based discriminator for the speaker verification model
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Dsv(·), which is trained to minimize the loss function de-
fined as follows:

Lsv

(
y(O), ŷ(O)

)
= −Dsv

(
y(O)
)
+ Dsv

(
ŷ(O)
)
. (3)

After updating Dsv(·), its model parameters are clamped to
a fixed interval such as [−0.01, 0.01] for satisfying the K-
Lipschitz constraint of the discriminative model. Minimiz-
ing Eq. (3) approximates the earth mover’s distance between
the distributions of y(O) and ŷ(O), and the synthesis model
G(·) tries to reduce the distance by minimizing the loss func-
tion defined as follows:

LG

(
y(O), ŷ(O)

)
= LMSE

(
y(O), ŷ(O)

)
+ ωGLadv

(
ŷ(O)
)
, (4)

where Ladv(ŷ(O)) = −Dsv(ŷ(O)) is the adversarial loss to fool
Dsv(·) and ωG is a hyperparameter that controls its weight.
The minimization of Eq. (4) can be expected to overcome
the over-smoothing effect of generated acoustic features in
many-to-one VC.

3.1.3 Joint Training of the Speech Recognition and Syn-
thesis Models

To optimize both the recognition and synthesis models for
many-to-one VC, we jointly train the two models with a
unified framework. First, we update the two discrimina-
tive models Ddc(·) and Dsv(·) by minimizing Eqs. (1) and
(3), respectively. Then, we jointly update both R(·) and
G(·) by minimizing the sum of Eqs. (2) and (4). Since
the loss for training G(·) is also used for training R(·), the
recognition model can be expected to predict PPGs that are
speaker-invariant and can accurately generate target acous-
tic features. Figure 3 illustrates a schematic diagram of the

Fig. 3 Schematic diagram of proposed training algorithm. We firstly up-
date the two discriminative models Ddc(·) and Dsv(·). Then, we update the
recognition model R(·) = Rp(Rf(·)) and synthesis model G(·) by utilizing
the updated discriminative models. These updates are iterated during the
training, and the final VC model is constructed by concatenating the recog-
nition and synthesis models.

proposed joint adversarial training.

3.2 Discussion

As shown in Figs. 2 (c) and 2 (d), our GAN-based training
algorithm alleviates the over-smoothing effect of generated
acoustic features. However, only using the GAN cannot nec-
essarily reduce the PPG differences as shown in Fig. 1 (b).
On the other hand, our algorithm using both the DAT and
GAN successfully reduces the PPG differences as shown in
Fig. 1 (c), which can be expected to improve the converted
speech quality.

In the GAN-based training, we can also reduce the dis-
tance between the distributions of the target acoustic fea-
tures y(O) and ones predicted by other speakers, i.e., ŷ(M) =

G(R(x(M))). This can be done by approximating the distance
in the training of Dsv(·) and minimizing the distance in the
training of G(·). However, we found that the formulation
considerably degraded the converted speech quality from
our preliminary experiment. It is assumed that the differ-
ences among the target and other speakers in the acoustic
feature domain might be larger than those in the latent vari-
able domain, and minimizing the former by using the GAN
becomes more difficult.

Regarding related work, there are several methods
that incorporate the GAN into training of a VC model.
CycleGAN-VC [26], [27] trains a VC model using non-
parallel speech corpora based on the adversarial train-
ing considering cyclic-consistency [28]. StarGAN-VC [29],
[30] extends this VC to many-to-many VC by introducing
the StarGAN [31] into training of a VC model. Although the
GAN-based VC techniques can train the non-parallel VC
models without using any text transcriptions, they cannot
guarantee the quality of converted speech when the input
speaker is not included in the training data. On the other
hand, our method can take any arbitrary speakers as an in-
put speaker of the VC, although it requires a large speech
corpus with text transcriptions and limits the target speaker
to a specific one. We believe that semi-supervised train-
ing of the recognition and synthesis models (e.g., machine
speech chain [32]) and conditional GAN [33] using one-hot
speaker codes [34] can alleviate these limitations. Also, we
can apply the proposed training algorithm to more realistic
and practical VC frameworks based on PPGs such as cross-
lingual VC [35], one-shot VC [36], and WaveNet [37]-based
VC [38], [39].

4. Experimental Evaluation

4.1 Experimental Conditions

We considered two many-to-one VC tasks in this evalua-
tion and compared the proposed method with conventional
ones. We used two professional speakers, i.e., one female
voice actress taken from the NICT Voice Actress Dialogue
Corpus [40] and one male voice actor included in an in-
ternal dataset of DeNA, as the target speakers for the VC
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tasks. For training the speech recognition model R(·), we
used the Spontaneous Speech Corpus of Japanese (CSJ) [41]
that included 1,417 amateur speakers (470 females and 947
males) with various speaking styles such as a monologue,
dialogue, and reading aloud. We used about 99% of the
corpus as the multi-speaker corpus D(M). The remainder
of the CSJ corpus was utilized for objective evaluations de-
scribed in Sects. 4.2.2 and 4.2.3. For training the speech syn-
thesis model G(·), we used 5,174 utterances of the female
target speaker (FT) or 2,211 utterances of the male target
speaker (MT) as the target speaker corpus D(O). The other
50 utterances of the target speakers were used for objective
evaluations described in Sects. 4.2.1 and 4.2.3. Note that
D(M) and D(O) were significantly different in many aspects
such as recording environments (somewhat noisy or defi-
nitely clean), speaking styles, and speaking skills (amateur
or professional). All speech samples were downsampled
at 16 kHz. The WORLD vocoder [42] (D4C edition [43])
was utilized to extract log F0, 40-dimensional MCEPs, and
band aperiodicity. In many-to-one VC, the 1st-through-39th
MCEPs of the target speaker were predicted by DNNs. The
F0 values were extracted by integrating results of multi-
ple F0 extractors [42], [44], [45]. The log F0 was linearly
converted. Band aperiodicity and the 0th MCEP were not
converted.

All DNN architectures were 1D convolutional neu-
ral networks along time axis [46] with a fixed sequence
length of 128 frames. The feature extraction model
Rf(·) extracted 256-dimensional latent variables from 13-
dimensional MFCCs and their dynamic features. The
phoneme prediction model Rp(·) predicted 43-dimensional
Japanese PPGs by using the latent variables. The synthesis
model G(·) generated the 1st-through-39th MCEPs of the
target speaker from the PPGs. MFCCs and MCEPs were
normalized to have zero mean and unit variance. The do-
main classification model Ddc(·) distinguished D(O) from
D(M) by using the latent variables. The speaker verification
model Dsv(·) discriminated natural MCEPs from generated
ones. The activation function for hidden layers was a leaky
rectified linear unit [47]. To avoid overfitting, dropout [48]
was applied to all hidden layers. To accelerate the DNN
training, batch normalization [49] was applied to some hid-
den layers in the synthesis model. Table 1 shows details
of the DNN architectures. In this table, “Conv1D(Cin, Cout,
k, s)” and “Deconv1D(Cin, Cout, k, s)” denote 1D convo-
lutional and deconvolutional layers, respectively. Cin and
Cout mean the number of channels of input and output, re-
spectively. k and s denote the convolution window size and
stride width, respectively.

As an initial setting, we constructed the recognition
model R(·) = Rp(Rf(·)) with the multi-speaker corpus D(M).
The initialization was performed with 1 epoch by using all
utterances inD(M). The optimizer used for the initialization
was AdaGrad [50], with its learning rate set to 0.01. The
frame-wise phoneme prediction accuracy of the initialized
recognition model calculated with the evaluation data of the
CSJ corpus was 80.4%. By using the model, we constructed

Table 1 DNN architectures used in experimental evaluation. In this ta-
ble, “Conv1D(Cin, Cout, k, s)” and “Deconv1D(Cin, Cout, k, s)” denote 1D
convolution and deconvolution layers, respectively. Cin and Cout mean the
number of channels of input and output, respectively. k and s denote the
convolution window size and stride width, respectively

Recognition R(·) = Rp(Rf(·)) Synthesis G(·)
Feature extraction Rf(·) Conv1D(43, 256, 15, 1)
Conv1D(26, 256, 15, 1) Conv1D(256, 512, 5, 2)
Conv1D(256, 512, 5, 2) Conv1D(512, 1024, 5, 2)
Conv1D(512, 1024, 5, 2) Deconv1D(1024, 512, 5, 2)
Deconv1D(1024, 512, 5, 2) Deconv1D(512, 256, 5, 2)
Deconv1D(512, 256, 5, 2) Conv1D(256, 39, 15, 1)
Phoneme prediction Rp(·)
Conv1D(256, 43, 15, 1)

Domain classification Ddc(·) Speaker verification Dsv(·)
Conv1D(256, 512, 1, 1) Conv1D(39, 512, 1, 1)
Conv1D(512, 512, 5, 1) Conv1D(512, 512, 5, 1)
Conv1D(512, 512, 5, 1) Conv1D(512, 512, 5, 1)
Conv1D(512, 1, 1, 1) Conv1D(512, 1, 1, 1)

five many-to-one VC models with the following algorithms:

Baseline: Training G(·) with the fixed R(·) [16]
Prop. (Joint): Jointly training R(·) and G(·) with the hyper-

parameter settings ωR = 0 and ωG = 0
Prop. (DAT): Jointly training R(·) and G(·) with the hyper-

parameter settings ωR = 0.25 and ωG = 0.0
Prop. (GAN): Jointly training R(·) and G(·) with the hyper-

parameter settings ωR = 0 and ωG = 0.5
Prop. (DAT-GAN): Jointly training R(·) and G(·) with the

hyperparameter settings ωR = 0.25 and ωG = 0.5

Here, the hyperparameters (ωR, ωG) were empirically cho-
sen. All of the five algorithms were performed with 5 epochs
by using all utterances in the corpus D(O). In the train-
ing of “Prop. (*),” a pair of labeled training data (x(M), l(M))
was randomly sampled from D(M). The optimizers used for
training all DNNs, i.e., R(·), G(·), Ddc(·), and Dsv(·), were
AdaGrad, with their learning rates set to 0.01.

4.2 Objective Evaluations

4.2.1 Logarithmic Global Variance Distance

Since we focused on non-parallel many-to-one VC in this
paper, we could not calculate any objective evaluation met-
rics that require parallel speech utterances of source and tar-
get speakers. Instead, we used global variances (GVs) [5] of
natural and generated speech of the target speakers (MT or
FT), which is defined as the second moment of the speech
parameter sequence and quantifies the degree of the over-
smoothing effect of MCEPs predicted by the VC model.
Here, we calculated logarithmic GV distance (LogGVD) de-
fined as follows:

LogGVD =
1
M
|| log û − log u||22, (5)

where u and û denote GV vectors of natural and gener-
ated MCEPs, respectively. M corresponds to the order of
MCEPs, and we set it to 39 in this evaluation. This eval-
uation result would correspond to the ideal performance of
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Table 2 LogGVDs between natural and generated speech with their
standard deviations

Target speaker
MT FT

Baseline 1.96 ± 0.34 5.05 ± 0.71
Prop. (Joint) 1.98 ± 0.38 3.93 ± 0.78
Prop. (DAT) 1.44 ± 0.26 3.80 ± 0.67
Prop. (GAN) 0.44 ± 0.18 0.21 ± 0.11
Prop. (DAT-GAN) 0.23 ± 0.10 0.11 ± 0.06

Table 3 Frame-wise phoneme recognition accuracy of speech recogni-
tion models [%]

Target speaker
MT FT

Baseline 80.4 80.4
Prop. (Joint) 63.5 77.6
Prop. (DAT) 62.3 77.5
Prop. (GAN) 62.8 77.5
Prop. (DAT-GAN) 62.4 77.0

the PPG-based many-to-one VC methods because there was
no domain mismatch between input features fed into the VC
model in the training and inference. We used the evaluation
data (50 utterances of MT or FT) to calculate the LogGVDs.

Table 2 lists the averaged LogGVDs and their stan-
dard deviations. From the results, we found that “Prop.
(GAN)” significantly reduced the LogGVDs better than
“Baseline,” which demonstrated that the GAN-based al-
gorithm for many-to-one VC using PPGs was effective in
minimizing the distributional differences between natural
and generated MCEPs. Moreover, we observed that “Prop.
(DAT)” also decreased the LogGVDs, and the combination
of the DAT and GAN, i.e., “Prop. (DAT-GAN),” achieved
the lowest value among the five methods. These results in-
dicated that learning speaker-invariant features in the recog-
nition model increased the accuracy in modeling MCEPs
of the target speakers. On the other hand, “Prop. (Joint)”
showed the different tendencies in accordance with the dif-
ferent target speakers, i.e., its LogGVDs were almost the
same as “Baseline” when we used MT and similar to “Prop.
(DAT)” in the other case. One of the reasons might be the
data imbalance of the CSJ corpus that included more male
speakers than female speakers.

4.2.2 Speech Recognition Accuracy

Although improving accuracy of speech recognition is not
the final goal of the PPG-based many-to-one VC, whether
the proposed algorithms affected the accuracy or not de-
serves to be reported. Here, by using the evaluation data
of the CSJ corpus, we calculated the frame-wise phoneme
recognition accuracy of the recognition models after train-
ing the many-to-one VC models.

Table 3 lists the evaluation results. From the results,
we observed that “Baseline” achieved the highest recogni-
tion accuracy, which was a natural result since we fixed the
recognition model trained to minimize the recognition er-
ror during the synthesis model training. Meanwhile, all the

Table 4 MCCs of domain classification models

Target speaker
MT FT

Baseline 0.36 0.33
Prop. (Joint) 0.22 0.16
Prop. (DAT) 0.02 0.04
Prop. (GAN) 0.18 0.18
Prop. (DAT-GAN) 0.04 0.04

proposed algorithms decreased the accuracy, which sug-
gested that the loss functions for training the speech syn-
thesis did not necessarily improve the speech recognition
accuracy.

4.2.3 Speaker Invariance of the Speech Recognition
Model

To evaluate the robustness of the speech recognition model
against the variation in input speakers, we calculated the
Matthews correlation coefficients (MCCs) [51] of the do-
main classification model. The MCC quantifies the perfor-
mance of a binary classification model and is defined as:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

(6)

where TP, TN, FP, and FN denote the numbers of true pos-
itives, true negatives, false positives, and false negatives
of a binary classification, respectively. The MCC takes a
value between −1 (complete misclassification) and +1 (per-
fect classification), and their mid-value (i.e., 0) corresponds
to no better than random classification. Therefore, our goal
in the PPG-based many-to-one VC is to cause the speech
recognition model to learn features that make the MCC of
the domain classification model become close to 0. To cal-
culate the MCCs, we used 50 utterances of the target speaker
MT or FT as positive examples and 500 utterances (50 utter-
ances × 10 speakers) taken from the evaluation data of the
CSJ corpus as negative examples.

Table 4 lists the evaluation results. From the results, we
found that all the proposed algorithm decreased the MCCs
compared with “Baseline.” In particular, the use of DAT
made the MCCs almost zero, while the other methods did
not. Therefore, we concluded that the proposed algorithm
using the GAN and DAT not only reduced the distributional
differences between natural and generated MCEPs, but also
made the speech recognition model more invariant to the
domain mismatch between the target and other speakers.

4.3 Subjective Evaluations

We conducted subjective evaluations on the naturalness and
speaker similarity of the converted speech for a comparison
with conventional methods and ours. Since the speech cor-
pora for building many-to-one VC systems were completely
non-parallel, we used the ATR Japanese Speech Database
(set C) [52] that included 291 amateur speakers (143



1984
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.9 SEPTEMBER 2020

Table 5 MOS scores on naturalness of converted speech with their 95%
confidence intervals. Here, we compared “Baseline” with proposed algo-
rithms using GAN

(a) Results of FSs/MSs-to-FT VC

FSs-to-FT MSs-to-FT
Baseline 2.70 ± 0.12 2.51 ± 0.11
Prop. (GAN) 3.00 ± 0.13 2.55 ± 0.12
Prop. (DAT-GAN) 2.95 ± 0.13 2.75 ± 0.12

(b) Results of FSs/MSs-to-MT VC

FSs-to-MT MSs-to-MT
Baseline 2.63 ± 0.10 2.55 ± 0.11
Prop. (GAN) 2.94 ± 0.11 3.01 ± 0.12
Prop. (DAT-GAN) 2.96 ± 0.12 2.96 ± 0.11

females and 148 males) with a reading-aloud style for
choosing source speakers in many-to-one VC. To investi-
gate the effects of variation in source speakers, we selected
one parallel speech utterance (phonetically balanced sen-
tence A01) of randomly selected 10 male speakers (MSs)
and 10 female speakers (FSs) for evaluating many-to-one
VC. Here, we evaluated the performances of conventional
and proposed VC algorithms in FSs-to-FT, MSs-to-FT, FSs-
to-MT, and MSs-to-MT VC tasks.

4.3.1 Evaluation of Naturalness of Converted Speech Gen-
erated by Proposed Algorithms with the GAN

Firstly, we compared “Baseline” with the proposed algo-
rithms using the GAN, i.e., “Prop. (GAN)” and “Prop.
(DAT-GAN),” in terms of the naturalness of their converted
speech. We conducted five-point scaled mean opinion score
(MOS) tests on the naturalness. The converted speech gen-
erated by the three many-to-one VC systems was presented
to listeners in random order. In the evaluation of FSs-to-FT
and MSs-to-FT VC, thirty listeners participated in the as-
sessment by using our crowdsourced subjective evaluation
systems. Each listener evaluated 60 converted speech sam-
ples (20 source speakers × the three algorithms). Similarly,
we conducted the evaluation of FSs-to-MT and MSs-to-MT
VC with 25 listeners.

Table 5 shows the experimental results. From the
results, we found that “Prop. (DAT-GAN)” outperformed
“Baseline” in the all VC tasks, which demonstrated that our
algorithm combined the DAT and GAN was effective in im-
proving the naturalness of the converted speech. A note-
worthy fact was that the proposed algorithm using only the
GAN did not always yield the significant improvement, as
shown in Table 5 (a). This result suggested that just using
the GAN-based training was insufficient to deal with the dif-
ferences among speakers observed in PPGs.

4.3.2 Evaluation of Speaker Similarity of Converted
Speech Generated by Proposed Algorithms with
GAN

Secondly, we compared “Baseline” or “Prop. (GAN)” with
“Prop. (DAT-GAN)” in terms of the speaker similarity of

Table 6 Preference scores of speaker similarity of converted speech with
their p-values. Here, we compared “Prop. (DAT-GAN)” with “Baseline” or
“Prop. (GAN)”

(a) Results of FSs-to-FT VC

Method A Score p-value Method B

Baseline 0.317 vs. 0.683 < 10−9 Prop. (DAT-GAN)
Prop. (GAN) 0.387 vs. 0.613 < 10−6 Prop. (DAT-GAN)

(b) Results of MSs-to-FT VC

Method A Score p-value Method B

Baseline 0.283 vs. 0.717 < 10−9 Prop. (DAT-GAN)
Prop. (GAN) 0.373 vs. 0.627 < 10−9 Prop. (DAT-GAN)

(c) Results of FSs-to-MT VC

Method A Score p-value Method B

Baseline 0.328 vs. 0.672 < 10−9 Prop. (DAT-GAN)
Prop. (GAN) 0.348 vs. 0.652 < 10−9 Prop. (DAT-GAN)

(d) Results of MSs-to-MT VC

Method A Score p-value Method B

Baseline 0.308 vs. 0.692 < 10−9 Prop. (DAT-GAN)
Prop. (GAN) 0.276 vs. 0.724 < 10−9 Prop. (DAT-GAN)

their converted speech. We conducted preference XAB tests
on the speaker similarity. Three speech utterances of MT
or FT not included in the training data were used as refer-
ence “X” for evaluating the similarity. The converted speech
pairs of the method “A” (“Baseline” or “Prop. (GAN)”) and
the method “B” (“Prop. (DAT-GAN)”) were presented to lis-
teners in random order. In the evaluation of FSs-to-FT and
MSs-to-FT VC, thirty listeners participated in the assess-
ment by using our crowdsourced subjective evaluation sys-
tems. Each listener evaluated 40 converted speech samples
(20 source speakers × the two comparisons). Similarly, we
conducted the evaluation of FSs-to-MT and MSs-to-MT VC
with 25 listeners.

Table 6 shows the experimental results. From this ta-
ble, we found that “Prop. (DAT-GAN)” achieved signifi-
cantly higher preference scores than not only “Baseline”
but also “Prop. (GAN)” in the all VC tasks. These results
demonstrated that the algorithm was effective in improving
the speaker similarity of the converted speech.

4.3.3 Effects of Joint Training and the DAT without the
GAN

Thirdly, we further investigated the effects of the other pro-
posed algorithms (“Prop. (Joint)” and “Prop. (DAT)”). As
shown in Table 2, these proposed algorithms were unable to
reduce LogGVDs to the extent that GAN-based proposed al-
gorithms were able to do so. However, other objective eval-
uations revealed that there were clear differences between
“Baseline” and the two proposed algorithms. Therefore, we
compared 1) “Baseline” with “Prop. (Joint)” and 2) “Base-
line” with “Prop. (DAT)” by preference AB tests on the nat-
uralness and preference XAB tests on the speaker similarity
to clarify the effects caused by the joint training or the DAT-
based algorithms. The converted speech pairs of the method
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Table 7 Preference scores of naturalness of converted speech with their
p-values. Here, we compared “Baseline” with “Prop. (Joint)” or “Prop.
(DAT)”

(a) Results of FSs-to-FT VC

Method A Score p-value Method B
Baseline 0.468 vs. 0.532 0.153 Prop. (Joint)
Baseline 0.448 vs. 0.552 0.002 Prop. (DAT)

(b) Results of MSs-to-FT VC

Method A Score p-value Method B
Baseline 0.512 vs. 0.488 0.592 Prop. (Joint)
Baseline 0.492 vs. 0.508 0.721 Prop. (DAT)

(c) Results of FSs-to-MT VC

Method A Score p-value Method B

Baseline 0.420 vs. 0.580 < 10−3 Prop. (Joint)
Baseline 0.408 vs 0.592 < 10−3 Prop. (DAT)

(d) Results of MSs-to-MT VC

Method A Score p-value Method B

Baseline 0.388 vs. 0.612 < 10−6 Prop. (Joint)
Baseline 0.400 vs. 0.600 < 10−3 Prop. (DAT)

Table 8 Preference scores of speaker similarity of converted speech with
their p-values. Here, we compared “Baseline” with “Prop. (Joint)” or
“Prop. (DAT)”

(a) Results of FSs-to-FT VC

Method A Score p-value Method B
Baseline 0.500 vs. 0.500 1.000 Prop. (Joint)
Baseline 0.484 vs. 0.516 0.475 Prop. (DAT)

(b) Results of MSs-to-FT VC

Method A Score p-value Method B
Baseline 0.456 vs. 0.544 0.049 Prop. (Joint)
Baseline 0.432 vs. 0.568 0.002 Prop. (DAT)

(c) Results of FSs-to-MT VC

Method A Score p-value Method B
Baseline 0.424 vs. 0.576 0.001 Prop. (Joint)
Baseline 0.404 vs. 0.596 < 10−3 Prop. (DAT)

(d) Results of MSs-to-MT VC

Method A Score p-value Method B

Baseline 0.408 vs. 0.592 < 10−3 Prop. (Joint)
Baseline 0.396 vs. 0.604 < 10−3 Prop. (DAT)

“A” (“Baseline”) and the method “B” (“Prop. (Joint)” or
“Prop. (DAT)”) were presented to listeners in random order.
Twenty five listeners participated in the evaluations and each
listener evaluated 40 converted speech samples (20 source
speakers × the two comparisons).

Tables 7 and 8 shows the evaluation results on the
naturalness and speaker similarity, respectively. From the
results, we found that the preference scores of the two
proposed algorithms were comparable or superior to those
of “Baseline.” In particular, we observed two remarkable
points: 1) “Prop. (DAT)” improved the speaker similar-
ity in the inter-gender VC (i.e., MSs-to-FT VC and FSs-to-
MT VC) and 2) the two proposed algorithms outperformed
“Baseline” in FSs-/MSs-to-MT VC with regard to both the

Table 9 Preference scores of naturalness of converted speech with their
p-values. Here, we compared “StarGAN-VC” with “Prop. (DAT-GAN)”

(a) Results of FSs-to-FT VC

Method A Score p-value Method B

StarGAN-VC 0.168 vs. 0.832 < 10−9 Prop. (DAT-GAN)

(b) Results of MSs-to-FT VC

Method A Score p-value Method B

StarGAN-VC 0.152 vs. 0.848 < 10−9 Prop. (DAT-GAN)

(c) Results of FSs-to-MT VC

Method A Score p-value Method B

StarGAN-VC 0.300 vs. 0.700 < 10−9 Prop. (DAT-GAN)

(d) Results of MSs-to-MT VC

Method A Score p-value Method B

StarGAN-VC 0.400 vs. 0.600 < 10−3 Prop. (DAT-GAN)

Table 10 Preference scores of speaker similarity of converted speech
with their p-values. Here, we compared “StarGAN-VC” with “Prop. (DAT-
GAN)”

(a) Results of FSs-to-FT VC

Method A Score p-value Method B

StarGAN-VC 0.140 vs. 0.860 < 10−9 Prop. (DAT-GAN)

(b) Results of MSs-to-FT VC

Method A Score p-value Method B

StarGAN-VC 0.096 vs. 0.904 < 10−9 Prop. (DAT-GAN)

(c) Results of FSs-to-MT VC

Method A Score p-value Method B

StarGAN-VC 0.132 vs. 0.868 < 10−9 Prop. (DAT-GAN)

(d) Results of MSs-to-MT VC

Method A Score p-value Method B

StarGAN-VC 0.176 vs. 0.824 < 10−9 Prop. (DAT-GAN)

naturalness and speaker similarity in spite of decreasing the
speech recognition accuracy as shown in Table 3. These
results suggested that 1) without using the GAN, the DAT
had the effect of improving the speaker similarity by learn-
ing speaker-invariant features in the recognition model and
2) the high speech recognition accuracy does not guarantee
the quality of converted speech and the proposed joint train-
ing had potential to optimize the recognition model for the
many-to-one VC task.

4.3.4 Comparison with Another Non-Parallel VC Method

Finally, we compared the best proposed algorithm, i.e.,
“Prop. (DAT-GAN),” with another state-of-the-art non-
parallel VC method. Here, we used StarGAN-VC [29] as the
competitive VC method that can achieve high-quality many-
to-many VC without using any parallel speech corpora. We
built the StarGAN-VC model by using an open-source im-
plementation† and 100 utterances of 22 speakers (MSs, FSs,
MT, and FT) for the training. Similar to Sect. 4.3.3, we

†https://github.com/hujinsen/pytorch-StarGAN-VC
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conducted preference (X)AB tests with 25 listeners.
Tables 9 and 10 show the evaluation results on the nat-

uralness and speaker similarity, respectively. From the re-
sults, we concluded that “Prop. (DAT-GAN)” outperformed
not only the conventional PPG-based many-to-one VC but
also state-of-the-art non-parallel VC method.

5. Conclusion

We proposed a joint adversarial training algorithm for
speech recognition and synthesis models used in deep neural
network (DNN)-based many-to-one voice conversion (VC).
For making the recognition model more robust towards the
differences among input speakers, we introduced a domain-
adversarial training of the recognition model. We also in-
corporated a generative adversarial network-based training
of the synthesis model for overcoming the over-smoothing
effect of generated acoustic features. We formulated a uni-
fied objective function for jointly training the recognition
and synthesis models so that they are optimized for many-
to-one VC. Experimental evaluation demonstrated that our
algorithm significantly improved the converted speech qual-
ity compared with a conventional algorithm for DNN-based
many-to-one VC and StarGAN-based non-parallel VC. In
the future, we will investigate the effect of the hyperparam-
eters of the proposed algorithm and introduce sequence-to-
sequence modeling [53] into our algorithm.
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