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PAPER

Hybrid of Reinforcement and Imitation Learning for Human-Like
Agents

Rousslan F. J. DOSSA†a), Xinyu LIAN†b), Hirokazu NOMOTO††c), Nonmembers, Takashi MATSUBARA†††d),
and Kuniaki UEHARA††††e), Members

SUMMARY Reinforcement learning methods achieve performance su-
perior to humans in a wide range of complex tasks and uncertain environ-
ments. However, high performance is not the sole metric for practical use
such as in a game AI or autonomous driving. A highly efficient agent per-
forms greedily and selfishly, and is thus inconvenient for surrounding users,
hence a demand for human-like agents. Imitation learning reproduces the
behavior of a human expert and builds a human-like agent. However, its
performance is limited to the expert’s. In this study, we propose a train-
ing scheme to construct a human-like and efficient agent via mixing rein-
forcement and imitation learning for discrete and continuous action space
problems. The proposed hybrid agent achieves a higher performance than
a strict imitation learning agent and exhibits more human-like behavior,
which is measured via a human sensitivity test.
key words: autonomous driving, game AI, human-like behavior, imitation
learning, reinforcement learning

1. Introduction

Reinforcement learning (RL) achieved impressive progress
in several areas including Go [1], autonomous driving [2]–
[5], and video games [6], [7]. The RL trains an agent to
maximize future rewards, and the trained agent occasionally
outperforms human experts. However, high efficiency is not
the sole purpose for practical use. When a non-player char-
acter (NPC) is trained by RL, it can become too strong to
be defeated by human players, and the players are quickly
frustrated and are unable to enjoy the game. Similarly, an
efficient autonomous vehicle can inconvenience surround-
ing cars and pedestrians by taking abrupt turns or more gen-
erally by exhibiting selfish behavior or creating a sense of
fear even when the behavior is efficient and safe in reality.
Hence, an approach to build an agent that behaves like a
human is desirable.
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Imitation learning (IL) trains an agent to learn a policy
from training data provided by a human expert [8], [9]. An
agent trained by IL is expected to exhibit human-like be-
havior. However, IL is not a goal-oriented method and is
dependent on the demonstration data provided by a human
expert. Hence, the performance of an IL agent is likely to
be capped to the former’s. Various studies have leveraged
human expert demonstrations to improve the performance
of the RL agent [10]–[13]. However, there is a paucity of
studies on the human-likeliness factor.

In the study, we aim to produce an agent that behaves
like a human while retaining high performance by RL. We
proposed a hybrid agent based on RL and IL and demon-
strate how the performance level of an RL agent and ten-
dency of human expert behavior can be transferred via IL
to a student agent. We applied our approach to an origi-
nal game and the Atari57 suite’s Gopher game [14] as en-
vironments of discrete action spaces. We also applied our
approach to the TORCS racing simulator [15] as an envi-
ronment of a continuous action space to demonstrate its po-
tential in real-life applications, such as autonomous driving,
where a human-like agent is highly desirable. A perfor-
mance test and sensitivity test (like the “Turing test”) con-
ducted in a double-blind fashion demonstrated that the pro-
posed approach built agents that achieve better performance
and exhibit more human-like behaviors when compared to
those of IL and RL agents, respectively.

The structure of this paper is as follows: we first review
the existing works in the field in Sect. 2, then define the ba-
sics of the methods which were built upon as the proposed
method in Sect. 3. We describe the experiments conducted
using the proposed method, followed by the corresponding
results and discussions in Sect. 4. Finally, we conclude in
Sect. 5.

Preliminary and limited results are given in the confer-
ence proceedings [16].

2. Related Work

2.1 Improving Reinforcement Learning Performance from
Expert Demonstrations

Across several topics such as robotics, general games, or
autonomous driving, several studies have aimed to com-
bine reinforcement learning (RL) and imitation learning
(IL). The precursors of the aforementioned studies include
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Chang et al. [10] who proposed locally optimal learning
to search (LOLS) intended for structured prediction tasks.
This is based on the more general learning to search (L2S)
method [8], [17]–[19]. Specifically, LOLS involves ran-
domly sampling from either the learning policy or reference
policy (expert policy) given an arbitrary state during the roll-
outs. Subsequently, it minimizes the objective loss function
and guarantees convergence to a policy that is at least as
good as the reference policy.

Following this, Nair et al. [11] extended the concept via
the usage of expert demonstrations to overcome the diffi-
culties of exploration in tasks with high dimensional state-
action space or sparse rewards. They introduced a demon-
stration buffer that stores trajectories sampled from an ex-
pert, which are subsequently used in combination with the
trajectories sampled from the learning policy to update the
value function. Thus, the learning policy is oriented toward
more promising avenues and consequently speeds up the
training process. The authors demonstrated the effectiveness
of their method by applying it to a 7-DOF fetch robotic arm
to solve a block stacking problem with a continuous action
space. The proposed method achieved a relatively better ex-
ploration when compared to the baselines. It also exhibited
a performance exceeding the expert’s performance in solv-
ing the stacking task when provided with a few additional
simulator tweaks.

Similarly, Hester et al. [12] proposed deep Q-Learning
from demonstrations (DQfD) that also leverages a very
small amount of demonstration data to significantly acceler-
ate the training process. The agent is initially pretrained on
the expert’s demonstration data via a combination of both
supervised and temporal difference (TD) losses based on
the vanilla deep Q-learning (DQN) [6] and is subsequently
trained by interacting with the domain with its pretrained
policy as usual. Hence, the agent learns to imitate the ex-
pert’s policy while improving it with the self-learned policy
via RL. The resultant policy outperforms pure reinforcement
learning baseline (double dueling DQN [20]) in 41 out of the
42 games that are experimented on with a significantly faster
convergence rate.

More recently, Balaguer et al. [21] focused on a robotic
arm problem, namely towel folding with cooperative manip-
ulators through momentum fold. Their proposed algorithm
leveraged human demonstrations to reduce the search space
of the RL learner, thereby allowing it to converge faster
to a satisfactory policy. Furthermore, Sun et al. [22] intro-
duced Truncated HORizon Policy Search (THOR), which
is based on the idea of reshaping the reward [23] and lever-
aged even sub-optimal expert demonstrations to shorten the
learner’s planning horizon, thereby significantly accelerat-
ing the learning process. Additionally, their algorithm keeps
track of a disadvantage function between the expert and
learner policy and prioritizes the optimization of the self-
learned policy when the policy induced by the expert is
determined as sub-optimal, and thus the final policy out-
performs the expert.

Le et al. [13] introduced hierarchically guided IL and

RL in the hierarchical reinforcement learning framework
(where a high-level policy or meta-controller is trained to
select a sub-goal to be solved by low-level sub-policies until
the final goal is achieved). By training the meta-controller
following IL of a high-level interactive expert, hierarchical
guidance limits the training of the RL sub-policies to the
relevant state space and consequently improves the sample
efficiency of the training process while reducing the cost of
expert demonstrations.

The aforementioned studies mainly focus on improving
the performance, sampling efficiency, and training speed of
the RL agents. By contrast, the present study investigates
the feasibility of grasping desirable features to characterize
a human expert while improving the performance following
an RL agent or self-learned behavior.

2.2 Building Human-Like Behavior Based on Human
Demonstrations

To the best of the authors’ knowledge, a conceptually close
work was only explored by Hecker et al. [24]. They fo-
cused on autonomous driving and proposed a formalism
to achieve an accurate and comfortable human-like driv-
ing. The method achieves a better driving accuracy by aug-
menting the data set consisting of car-mounted front-facing
images data of human driving with a manually engineered
set of map features. The learning policy also incorporates
long-short term neural networks to consider previously ex-
ecuted maneuvers, and thus its output is sequential as op-
posed to traditional the point-wise predictions. Furthermore,
the driving loss is enhanced with an adversarial loss that dis-
criminates between human-like driving and policy learning
via RL in addition to a loss that penalizes abrupt steering
or acceleration over a short period, thereby resulting in a
final policy that is close to the human expert’s demonstra-
tions. However, the human-likeliness of the behavior is sys-
tematically evaluated by clustering the driving data of the
human expert and learned policy’s predictions and measur-
ing their similarity. Although such an evaluation method is
pragmatic, it does not guarantee a measurement of human
impression, namely because they are equivalent to the met-
rics used for imitation learning of a human expert.

3. Methods

3.1 Preliminaries

3.1.1 Reinforcement Learning

We introduce the reinforcement learning (RL) via the frame-
work of Markov decision processes (MDP). An MDP is de-
fined as a 5-tuple < S,A, P,R, γ >, where S denotes a set
of states, A denotes a set of actions, Ps′ (s, a) = P(st+1 =

s′|st = s, at = a) denotes the probability that state s transits
to state s′ due to action a on time-step t, R(s, a) denotes the
reward received after the transition from state s to the state
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s′, and γ (0 < γ ≤ 1) denotes a discount factor that rep-
resents the importance of future rewards when compared to
the present rewards. On every time-step t during training,
the agent obverses a state st ∈ S and performs an action
at ∈ A. In response, the environment returns the corre-
sponding reward rt and next state st+1.

With respect to a discrete action space case, the deep
Q-network (DQN) algorithm [6] achieved superhuman per-
formance in numerous experiments. From an arbitrary state
st at time-step t, the agent is trained to predict a future return
Rt =

∑T
t′=t γ

t′−trt′ where T denotes the terminal time-step.
The agent subsequently takes an action that maximizes Rt

based on the prediction. The optimal action-value function
is defined as Q∗(st, at) = maxπ E[Rt |s = st, a = at], and
applying the Bellman equation to this yields the following
expression:

Q∗(st, at) = Est+1∼E[rt + γmax
at+1

Q∗(st+1, at+1)|st, at]

where E represents the transition function of the environ-
ment. During training, the agent estimates Rt by iteratively
updating the action-value function Q(φ(s), a) where φ de-
notes a function that produces the fixed length representa-
tion of state s. Thus, the action-value function Q(φ(s), a)
converges to the optimal Qi → Q∗ as the update iteration
i→ ∞ [25].

With respect to a continuous action space case, we re-
define the action space as A ⊂ RN to be continuous and
set the goal to obtain a policy π that maximizes the ex-
pected return from the start distribution J = Eri,si∼E,ai∼π[R0].
Although DQN achieves strong performance over a high
dimensional state space, it was proven as limited to low
dimension discrete action spaces. The deep deterministic
policy gradient (DDPG) method [26] is based on the de-
terministic policy gradient (DPG) method [27], which de-
fines the policy of the RL agent as an actor function (μ(s|θμ)
parametrized by θμ and mapped from a state st to a corre-
sponding action at) and a critic function Q(st, at) to approx-
imate the value of a state-action pair (st, at). The actor up-
date is subsequently performed based on the policy gradient
as defined by David Silver et al. [27].

The introduction of deep and non-linear approximators
makes the update of the critic function Q(s, a|θQ) prone to
divergence. Thus, the DDPG method leverages “soft” target
updates by creating copies μ′(s|θμ′ ) and Q′(s, a|θQ′ ) to be
used in computing the target values. However, the target
networks are updated by slowly tracking original networks:
θ′ ← τθ + (1 − τ)θ′ with τ << 1 to increase the stability of
the training.

Given that a large action space requires considerably
more exploration to converge to the optimal solution, an ex-
ploration policy μ′(st) = μ(st |θμt ) + N with an added noise
sampled from a noise processN (which is selected based on
the nature of the task or the environment [28]) is adopted.

3.1.2 Imitation Learning

We assume that the policy followed by the expert players

Fig. 1 Procedure of knowledge distillation.

during demonstrations corresponds to the optimal policy π∗,
and the agent learns a policy π that approximates the optimal
policy π∗. A traditional approach involves training an agent
via supervised learning. Expert human players provide tra-
jectories that consist of sequences of state-action pairs be-
cause the training data follows an optimal policy π∗. The
agent’s policy is trained to predict actions based on the pro-
vided states and thereby imitates the behavior of the expert.

In the discrete action space case, knowledge distilla-
tion is an approach that trains a student model based on
teacher model(s) where the teacher model trains the student
model by using soft labels instead of the one-hot label com-
monly used in traditional supervised learning [29]. When
compared to the one-hot label, the values of each dimension
of a soft label include more information. With a visual in-
put of a cat, of course, the probability of it being classified
as “cat” by the model is the highest, and the probability of
“dog” exceeds that of “carrot”, and this matches with the
fact a cat is visually more similar to a dog than to a car-
rot. The procedure of knowledge distillation is shown in
Fig. 1. The approach achieves a higher performance model
with less training data, and it is also useful in terms of com-
pressing large models. An extant study [30] extended the
approach to reinforcement learning area, and this is termed
as policy distillation. Thus, a student model that achieves
higher performance is successfully trained by distilling the
policy of the teacher model. Furthermore, the applicability
of policy distillation to multi-task problems is demonstrated
by distilling policies of teacher models trained for different
tasks.

Furthermore, in the continuous action space case, gen-
erative adversarial imitation learning (GAIL) [31] is an IL
method rooted in both inverse reinforcement learning (IRL)
and classical RL. Specifically, the IRL initially fits a cost
function c from a family of functions C which assigns a low
cost to the expert policy πE and high cost to the other poli-
cies π:

max
c∈C
(

min
π∈Π
−H (π) + Eπ [c (s, a)]

) − EπE [c (s, a)]

where Π denotes the set of all stationary stochastic policies
mapping from S to A, and H(π) � Eπ[− log π(a|s)] denotes
the γ-discounted causal entropy of the policy π [31]. Con-
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versely, classical RL determines the optimal policy from the
cost function c extracted by IRL

RL (c) = argmin
π∈Π

−H (π) + Eπ [c (s, a)]

corresponding to the expert policy πE . To bypass the inter-
mediate IRL step, the original study introduced the concept
of occupancy measure ρπ of a policy π, and this is inter-
preted as the distribution of state-action pairs that an agent
encounters while navigating the environment by the follow-
ing said policy [31]. A function approximator Dw : S×A →
(0, 1) is used to discriminate between the occupancy mea-
sure ρπ of the student policy and expert ρπE by minimizing
the sum of their respective expectations over generated tra-
jectories:

L (π, πE) = Eπ
[
log (Dw (s, a))

]
+EπE

[
log (1 − Dw (s, a))

] − λH (π) for λ ≥ 0

until Dw is unable to distinguish between the π and πE ,
thereby implying that the student learned the expert’s pol-
icy.

The training of the student agent itself is based on Trust
Region Policy Optimization (TRPO) algorithm introduced
in [32] where instead of the classical reward, the algorithm is
provided with the similarity between the trajectories result-
ing from the student’s policy and that of the expert. More
specifically, the student agent is updated using the TRPO
rule with the cost function log (Dw(s, a)) by taking a KL-
constrained gradient step with respect to

Eτ∼π[∇θ log π(a|s)Q(s, a)] − λ∇θH(πθ),

where Q(s̄, ā) = Eτ∼π[log (Dw(s, a)) |s0 = s̄, a0 = ā].

3.2 Proposed Hybrid Agent

Our purpose is to build an agent with a behavior similar to a
human expert while retaining the high performance of an RL
agent. The problem is separated in the two following sub-
problems: (1) building an agent that exhibits a superhuman
performance and (2) building an agent that selects actions
similar to a human expert. The two subproblems are tackled
by RL and IL, respectively, and thus we consider our task
as a multi-task learning problem. In the study, we propose
a method for mixing RL and IL via policy distillation for
the discrete action space case and via adversarial imitation
learning for the continuous action space case.

Generally, we express the objective function of IL as
Lπ∗ (π), where π∗ denotes a teacher policy to be imitated by
the student policy π. Subsequently, the proposed objective
function is as follows:

Lmix (π; πRL, πHE) = αLπRL (π) + (1 − α)LπHE (π) ,

where πRL denotes an optimal policy built by RL, πHE de-
notes a policy of a human expert (HE), and α denotes a
trade-off coefficient between the RL policy and human ex-
pert.

3.2.1 Discrete Action Space

In the case of discrete action space, we define the objective
function of IL as the following cross-entropy loss

Lπ∗ (π) = Es

[
−∑

a
π∗ (a|s) log π (a|s)

]
,

by following previous studies on IL and distillation [29],
[30]. An RL policy πRL is expressed as a mathematically
modeled probability while the policy πHE of a human ex-
pert is given in terms of empirical demonstrations. Previous
studies on distillation demonstrated that a student model im-
proves its performance by a large margin if it reproduces
soft labels (i.e., probability of teacher’s output obtained via
a high temperature T ) in addition to hard labels (i.e., correct
labels expressed by 0 or 1 probabilities). It is not possible
to obtain soft labels of the policy for distillation. Given this,
we used human expert demonstrations πHE as hard labels
and the policy π(T )

RL of a DQN model [6] for soft labels with
a temperature T while a typical policy of a DQN model em-
ploys T = 0.0 (i.e., provides hard labels). Subsequently, the
final objective function is expressed as follows:

Lmix (π) = α Es

[
−∑

a
π(T )

RL (a|s) log π (a|s)

]

+ (1 − α)Es

[
−∑

a
πHE (a|s) log π (a|s)

]
.

It should be noted that the distribution of state s over which
the objective is averaged depends on the trajectories sam-
pled from policies. Naturally, the RL policy πRL and human
expert policy πHE are used for the first and second terms, re-
spectively. However, when the two policies are completely
different, the student policy π encounters a high variance
between their actions and yields poor results. We used the
human expert policy πHE for the sampling state s for both
terms and confirmed that the sampling strategy improves
performance and yields a consistent behavior.

3.2.2 Continuous Action Space

While policy distillation can theoretically be applied to con-
tinuous action space task, depending on the formulation of
the action space itself, simply mixing the actions provided
multiple expert is likely to induce a wrong hybrid policy.
Namely in the autonomous driving task, a common formula-
tion would be as such: the action of steering left is bounded
to −1.0, steering right is bounded to 1.0, while the no steer-
ing is bound to 0.0. Let’s next assume we want to learn
a hybrid of two expert policies when avoiding an obstacle,
but with one expert avoiding said obstacle by steering left,
while the second one avoids the obstacle by steering right.
By mixing those two policies using policy distillation as in
the discrete action space case, the hybrid policy is bound to
going straight ahead, thus crashing into the obstacle and re-
sulting in a failure. We instead aim to imitate the hybrid of
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Fig. 2 Conceptual diagram of the proposed hybrid loss.

the two expert policies, but based on their respective proba-
bility density distribution over the state-action space, there-
fore motivating our choice of the GAIL method introduced
in Sect. 3.1.2.

GAIL requires empirical trajectories τ∗ ∼ π∗ obtained
from a teacher policy π∗ for training. The objective function
of the discriminator that is to be maximized by Dw and to be
minimized by a student policy π is as follows:

Lπ∗ (π) = Eτ∼π
[
log (Dw (s, a))

]
+ Eτ∗∼π∗

[
log (1 − Dw (s, a))

]
,

where τ denotes trajectories τ ∼ π sampled from a student
policy π. With a human expert and an RL agent providing
trajectories τHE ∼ πHE and τRL ∼ πRL, respectively, the hy-
brid loss function is expressed as follows:

Lmix (π) = Eτ∼π
[
log (Dw (s, a))

]
+ α EτRL∼πRL

[
log (1 − Dw (s, a))

]
+ (1 − α) EτHE∼πHE

[
log (1 − Dw (s, a))

]
, (1)

Intuitively, given that the discriminator trained to rec-
ognize an intermediate hybrid policy between the RL and
human expert policies, the student model — which is trained
to learn a policy to fool the discriminator to classify its ac-
tions as being the expert’s — is expected to converge to the
said hybrid policy, thereby exhibiting behaviors inherited
from both experts. In contrast to the discrete action space
case, the results indicated that the proposed method suc-
cessfully trained a hybrid policy although the demonstration
sets of both experts are sampled independent of each other.
We attribute this to the relatively low variation between the
RL and human expert behaviors and the adversarial training
framework. Figure 2 recapitulates the complete procedure
for both action spaces.

4. Experiments and Results

4.1 Apple Game

4.1.1 Experimental Setting

We first applied our approach to an original game termed as

Fig. 3 Screenshot of the Apple game.

Apple game, whose screenshot is provided in Fig. 3. This
environment consists of a two-dimensional plane on which
the agent can move freely in any direction. Additionally
apples are spawned randomly at an unpredictable location
for the player to take. Once the player’s avatar has col-
lected an apple, a new one will spawn in another location
on the two-dimensional plane. In the case an apple is not
picked up in a fixed amount of time, it disappears and an-
other apple is spawned at a different location. The score of
the agent is increased by one point for every apple it picks
up. The objective of the agent is thus to maximize the num-
ber of apples picked up in a limited amount of time. In this
study, we fixed this interval to 30 seconds. Once an apple is
spawned, it is always visible until it disappears. Therefore
the agent can easily find a sequence of actions to collect
it. This environment was select given the straight forward
formulation of the objective and the relative ease of evalu-
ating the optimal trajectory taken by an arbitrary agent, as
well as its behavior. The diverse combinations of actions
give rise to a plurality of behaviors that can help charac-
terize the agent that is playing. Namely, to reach an apple
located in the upper left corner, the agent can sequentially
move “up” then “left”. The agent can also move diagonally
toward the apple by using the combination “up and left”.
The discrete action space A consists of 9 actions, i.e. mov-
ing in either one of the 8 possible directions in a 2D plane
or keeping still. The action space is thus represented by
A = [(−1,−1), (0,−1), . . . , (1, 1)], |A| = 9. From the eval-
uation perspective, given the location of the apple and the
player’s avatar, it is easy to determine the shortest possible
path. This is especially useful to verify whether or not an
agent has converged to an optimal policy.

From the human and RL agent, we collected 16,000
frames of gameplay, which were randomly sampled into
training and test sets with sizes corresponding to 14,500 and
1,500, respectively, during the training process to maximize
the test accuracy. We trained a DQN model to serve as a
baseline for comparison and as the RL teacher. The model
was trained over 8 · 106 frames of gameplay, with a replay
buffer of size 2 ·105, and an exploration coefficient decaying
from 1.0 to 0.1, the other hyperparameters being set to their
respective default values as per the OpenAI Baselines imple-
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Table 1 Results of Apple game.

Game Score Sensitivity Test

Agent Max Min Average Std. Identified as Human (out of 50)

Human 27 11 18.71 2.86 32

DQN (RL) 53 15 36.27 5.44 4
Behavior Cloning (IL) 29 3 17.57 4.37 27

Proposed hybrid agent (RL+IL) 35 11 22.02 3.70 22

Best and second best results are emphasized in bold fonts and underlines, respectively.
The evaluated hybrid model corresponds to a trade-off coefficient of α = 0.93.
The sensitivity test for the Apple game involved 25 participants only.

mentation [33]. The student model was trained using Adam
optimizer [34] with a learning rate of 10−4 and dropout ratio
of 0.5 [35]. Additionally, we performed a preparatory search
for the α parameter to determine the most suitable one for
the task. The duration of one episode is set to 30 seconds,
and the number of apples collected by the player during that
time interval is considered as the return of the episode.

In addition to the performance evaluation of each
model, we also conducted a sensitivity test in a double-blind
fashion to evaluate the human-likeliness of agent behaviors.
The test involved 26 participants (23 males and 3 females)
wherein their age ranged from 27 to 59 with an average age
of 44 years, which had no prior exposure to the research
materials, demonstrations, or previous studies. Each partic-
ipant was initially introduced to the rules of the game and
provided with the opportunity to play the game to get famil-
iar with its mechanics and how a human would play. In the
Apple game case, each participant was presented with two
15 seconds videos of each model playing the game and re-
quested to label it as either a human or a machine, as well as
providing comments which motivated such decision.

4.1.2 Results and Discussion

For the Apple game, the score evaluation process for each
agent consisted in computing the average of the scores
achieved over 400 episodes. In the Apple game, the score
denotes the number of apples collected in a 30-s interval.
The score variation of the proposed hybrid agent with re-
spect to the change in the trade-off coefficient α is shown
in Fig. 4 with the average scores of the human expert, DQN
agent, and imitation of the human expert by using classical
supervised learning.

At α = 0.0 (which represents the distillation of human
expert behavior only), the trained policy achieved lower than
average performance, and this subsequently continued to de-
crease when α increases. With respect to a middle-range
trade-off coefficient α, mixing the probability distributions
over the action space received from the human expert and
RL agent resulted in a flat probability distribution over the
action space, thereby making the agent follow a random pol-
icy and resulting in a lower performance as shown in Fig. 4.
The score subsequently rises progressively from α = 0.7 un-
til it reaches its peak at α = 1.0, and this was equivalent to a
distillation of the DQN agent’s policy only.

Fig. 4 Effect of the trade-off coefficient α on the proposed hybrid agent’s
score for the Apple Game. The average scores of the other agents are also
provided for reference purposes.

Given the limited availability of the sensitivity test, the
representative trade-off coefficient alpha was selected based
on the corresponding performance. Following the perfor-
mance of the hybrid agent obtained across various values of
α (Fig. 4), we can see that the proposed method works bet-
ter with larger values in this environment. We hypothesis
this is due to the wide gap in performance between the RL
agent and the human expert. More specifically, the gap in
performance between the RL agent and the human experts
suggests the policies they respective follow are different.
Furthermore, given the high variance of the human expert
behavior, their policies become hard to mix, thus resulting
in a poor hybrid policy. The goal of this study being not
just a high performing agent, but also an agent that retains
a human-like behavior, we settled on α = 0.93 as the small-
est experimented value that performs better than the human
expert.

Following the results documented in Table 1 and given
the simple principle of the game (i.e., moving the player
avatar to the spawning apples), the DQN method achieved
the highest scores, and this was followed by the proposed
method and finally the human agent and its imitation. With
respect to the human-likeliness, the human agent was placed
first. The proposed hybrid agent exhibited more human-like
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Fig. 5 A screenshot of Gopher.

behavior than the RL agent. It also surpassed the human
expert and IL agent in terms of the score and was followed
by the human imitation agent. The DQN agent achieved the
least human-like behavior.

Additionally, the hybrid agent mitigated a few of the
behaviors that gave out the DQN agent, namely a rapid reac-
tion time and mechanical movement towards the apple. This
was corroborated by the comments collected from the sur-
vey participants including “a moderate reaction span when
the apple spawns”, “the player takes some time before mov-
ing toward the apple”, or “keeps going on even after collect-
ing the apple”. Similar comments were also used to char-
acterize the behavior of the human expert, thus further il-
lustrating the similar of the proposed hybrid agent with the
later.

Hence, we concluded that the proposed approach
balances the human-like behavior and exhibited high-
performance in the game.

4.2 Atari57 Suite: Gopher Game

4.2.1 Experimental Setting

We also applied our method to the game of the Atari57
suite [14] termed as Gopher. The dynamics and the observa-
tion space of the Gopher game are more complex than those
of the Apple game. This enables us to evaluate the effec-
tiveness of the proposed method in the context of a wider
state-action space. An optimal agent in the Gopher game
is also expected to act strategically which further raises the
complexity of the task. Namely, the goal consists in prevent-
ing the “gopher” — a mole-like creature — from digging
its way out of the ground and stealing the carrots under the
protection of the player, the latter being tasked of moving
laterally and filling up the holes as the gopher digs them.
A screenshot of the game is shown in Fig. 5. The training
data provided by the human expert and RL agent consisted
of 55,000 frames each, which were also randomly sampled
in training and test sets with sizes of 50,000 and 5,000, re-

Fig. 6 Effect of the trade-off coefficient α on the proposed hybrid agent’s
score for Gopher. The average scores of the other agents are also provided
for reference purposes.

spectively. The DQN model that served as an RL teacher
was trained over 1.001 · 107 frames of gameplay, a replay
buffer of 106, and the exploration coefficient decaying from
1.0 to 0.01 while the other hyperparameters remained set to
their respective default value as per the OpenAI Baselines
implementation [33]. The student model was also trained by
following the same method used for the Apple game.

Similarly to the Apple game, we conducted a sensi-
tivity test in a double-blind fashion on top of the perfor-
mance evaluation of each model. After being introduced to
the rules of the game and familiarizing themselves with the
game mechanics, each participant was also presented with
two 15 seconds videos of each model playing the game and
requested to label it as either a human or a machine, as well
as providing comments which motivated such decision.

4.2.2 Results and Discussion

We experimented on the Atari57 suite’s Gopher game
namely by investigating the trade-off coefficient α varia-
tion’s effect on the performance of the proposed hybrid
agent, the results being documented in Fig. 6. The score of
the hybrid agent remained around the human expert’s aver-
age score for α ∈ [0.1, 0.6] before rising from α = 0.7.

As for the Apple game, the gap in performance be-
tween the RL agent and the human expert was also high.
Henceforth, relatively large values of α are needed to off-
set the difficulty of mixing the policies that arise given said
gap. As a representative of the hybrid agents, we settled for
α = 0.8, which was the smallest value of αwe experimented
on that performed better than the human expert.

From a performance viewpoint, the DQN agent ob-
tained the highest score by a large margin. This was fol-
lowed by the hybrid agent that was trained via the proposed
method and finally by the human agent and its imitation.

Table 2 compares the hybrid agent with the others.
The hybrid agent (despite prioritizing the RL label by us-
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Table 2 Results of Gopher.

Game Score Sensitivity Test

Agent Max Min Average Std. Identified as Human (out of 52)

Human 81 2 23.87 19.81 29

DQN (RL) 246 0 40.30 36.81 17
Behavior Cloning (IL) 126 0 23.91 23.79 31

Proposed hybrid agent (RL+IL) 132 0 26.05 24.31 31

Best and second best results are emphasized in bold fonts and underlines, respectively.
The evaluated hybrid model corresponds to a trade-off coefficient of α = 0.8

ing α = 0.8 to compute the weighted sum of the teachers’
labels during the training) only exhibited an improvement
of 3 points over the human agent and was still considerably
behind the DQN agent’s score. The RL agent achieved the
best results although only a few participants identified it as
a human. In the game, the hybrid agent performs compara-
tively or superiorly to the IL agent in terms of both criteria,
namely game score and human-like behavior. Also, the pro-
posed hybrid agent and IL agent were recognized as humans
in the sensitivity test at a similar level to the human agent.
This is supported by the comments collected from the par-
ticipant of the sensitivity test such as “the player seems to
move strategically to fill up the holes”, “the player follows
the movement of the gopher and fills the holes as they are
dug out”, or “the reaction of the player to the movement of
the gopher is slow”, which also match the comments char-
acterizing the demonstrations of the human expert.

Meanwhile, the DQN agent was identified as the least
human-like by the participants, which transpired in com-
ments such as “the player systematically fills the holes with
great precision”, “the movements are machine-like”, “the
reaction time is very high”, “unnatural lateral movement
while filling the holes”, or “tries to needlessly fill regions
without holes”.

Hence, we conclude that the proposed method builds
an agent with a human-like behavior by combining the goal-
oriented learning scheme of RL and the tendency of the hu-
man expert’s behavior.

4.3 Torcs

4.3.1 Experimental Setting

The Apple and Gopher game being cases of discrete action
space environment, we sought to verify the effectiveness of
the proposed method in a continuous action space case. Ad-
ditionally, considering the potential real-world applicabil-
ity and social impact of the proposed method, the rise in
popularity of the autonomous driving task, as well as the
need for autonomous agents to be able to interact with other
human agents, we opted for the Torcs Racing Car Simula-
tor [15], which is a well-known environment that is used for
autonomous driving AI research (see [36], [37], as the rep-
resentative task for the continuous action space case). A
screenshot of the game is shown in Fig. 7. With respect to
the experiment, we used the Gym Torcs environment [38] as

Fig. 7 A screenshot of Torcs.

a basis.
The agent observations consisted of 65 features includ-

ing LIDAR-like sensors keeping track of the distance be-
tween the car and edges of the track or the opponents, cur-
rent speed and acceleration with a bi-dimensional continu-
ous action space to control the steering and throttling of the
car while using the raced distance as the reward function.
This format allows for more precision when used as state
representation for the agent, when compared to 2D pictures
of the road for example. As a result, the potential noise
and error caused by feature extractors can be virtually elimi-
nated. This allows us to objectively train the different agents
as well as evaluate their performance.

Furthermore, we upgraded the racing car simulator
Torcs to simulate a situation where the human decision fac-
tor would stand out more. This was performed by gener-
ating obstacles in the form of stationary bots and adding
player demonstration recording support, which was used
to record 220 episodes of 60 s of gameplay, which corre-
sponded to 792,000 transitions. The RL agent was based
on the DDPG implementation in the OpenAI Baselines [33]
and was adapted to the autonomous driving problem. This
DDPG agent was first trained for 107 training timesteps by
using the Adam [34] optimizer, learning rates of the critic
and the actor components set to 10−4 and 10−3, and a re-
play memory of size 106, before being used to generate the
necessary trajectories needed to train the proposed hybrid
model.
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Table 3 Results of Torcs.

Game Score Sensitivity Test

Agent Max Min Average Std. Identified as Human (out of 52)

Human 696.7 588.6 637.2 31.1 26

DDPG (RL) 823.4 818.8 819.6 0.5 16
GAIL (IL) 608.8 23.4 527.3 72.4 27

Proposed hybrid agent (RL+IL) 817.8 107.4 661.2 179.2 32

The best and second best results are emphasized by bold fonts and underlines, respectively.
The evaluated hybrid model corresponds to a trade-off coefficient of α = 0.5

A strict IL part consisted in imitating a human ex-
pert based on recorded data of the latter while driving in
the same environment configuration as the RL experiment
via the OpenAI [33] implementation of the GAIL method
and its default hyperparameter values except for the train-
ing timestep limit that was set to 5 · 106, empirically de-
termined to allow convergence. The proposed hybrid agent
based on the GAIL implementation with the discriminator
loss modified based on Eq. (1) as described in Sect. 3.2 was
also trained with the same environment configuration. The
GAIL-based human imitation agent and hybrid agent were
trained with the discriminator learning rate set to 10−3 and
a KL constraint of 10−2 via the Adam optimizer [34] over
5 · 106 and 7.5 · 106 training timesteps, respectively. Fur-
thermore, we explored the impact of the trade-off coefficient
via experimenting with several values to determine the most
appropriate value for the sensitivity test, following which
we conducted a sensitivity test in a double-blind fashion to
evaluate the human-likeliness of each reference method as
well as the proposed one. Similarly to the Apple and Go-
pher games, the sensitivity test was also preceded by a trial
phase, during which each participant got to know the rule
of the game, as well as familiarize himself with the controls
and game mechanics. In the Torcs Racing Car Simulator
case, each participant was presented with two 30 seconds
videos of each model playing the game and requested to la-
bel it as either a human or a machine, as well as providing
comments which motivated such decision.

4.3.2 Results and Discussion

Finally, to evaluate the performance of a given agent in the
Torcs Racing Car Simulator, we compute the average dis-
tance traveled by the said agent during a time frame of 5 sec-
onds, to gauge the effective progress of the agents across the
racing track. Also, the score for a time frame is set to 0 if the
agent crashes or exits the racing track. We then investigated
the impact of the trade-off coefficient on the hybrid agent.
For α = 0.0, the hybrid agent is equivalent to the default
imitation of the human expert with the GAIL method. The
hybrid agent’s score then rises progressively with α → 0.5,
thereby demonstrating a gain in performance obtained from
the DDPG agent’s demonstrations. From α = 0.5 onward,
the performance of the hybrid agent comes closer to that of
the RL agent, but with moderate results for extreme values
of α. Specifically, the deterministic nature of the DDPG

Fig. 8 Effect of the trade-off coefficient α on the proposed hybrid agent’s
score for Torcs. The average scores of the other agents are also provided
for reference purposes.

agent’s trajectories caused the hybrid agent to overfit the
DDPG agent behavior, and thus it performed poorly during
the testing phase.

In contrast to the Apple and the Gopher game, the per-
formance gap between the RL agent and the human expert in
this context was relatively lower. Moreover, the constraint
of the “steering” and “acceleration” action to the [−1, 1]
range, as well as their continuous nature, resulted in eas-
ier to mix demonstrations for the hybridization process. A
hybrid agent that performs better than the human expert can
thus be obtained with smaller values of the trade-off coef-
ficient α. Consequently, the hybrid agent corresponding to
α = 0.5 was used as the representative agent in the following
experiments.

The first evaluation phase consisted in measuring the
performance of the proposed model and comparing it rela-
tive to the human, GAIL human imitation, and DDPG agent
respectively, as listed in Table 3.

The GAIL method can imitate expert trajectories gen-
erated by RL policies (results of [31]) or the deterministic
bots coming with the Torcs Racing Car Simulator. How-
ever, it was less effective when applied on a human expert’s
trajectories and achieved approximately half the score of the
latter at best. We hypothesized that this was because the hu-
man expert’s policy was relatively more complex and diffi-
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cult to approximate with standard neural network structures.
Furthermore, the proposed hybrid agent captured and

demonstrated specific behaviors of the human expert and RL
agent, namely a higher speed than the imitated human expert
and deceleration during turns respectively. This was sup-
ported by the recurring comments collected from the partic-
ipants of the sensitivity test, such as “the player decelerates
before taking a turn or passing opponents”, or “maintains a
relatively constant speed overall, but with acceleration when
the path follows a straight line”. Similar comments were
also given by the sensitivity test participants when charac-
terizing the human expert demonstrations. Additionally, it
also completed full laps like the human expert and DDPG
agent.

The DDPG agent was least likely to be recognized as a
human due to its high-performance behavior with comments
such as “drives really fast” or “take turns at high speed”. The
other three agents were recognized as a human at a similar
level. We thus concluded that the hybrid model was at least
more likely to be recognized as a human than the DDPG
agent, while still achieved a higher performance than the
human agent and its imitation.

5. Conclusion

The study proposed a method to build a hybrid agent that
behaves in a human-like fashion imitated from a human ex-
pert while retaining some of the high performance displayed
by pure reinforcement learning agents with the ultimate aim
of obtaining the best of both worlds. We based our method
on state-of-the-art reinforcement and imitation learning al-
gorithms and proposed two variants for discrete and contin-
uous action spaces, respectively.

We applied the aforementioned method to an original
game and a game of the Atari57 suite for the discrete ac-
tion space case and the Torcs Racing Car Simulator for
the continuous action space case. We evaluated its perfor-
mance before evaluating its human-likeliness via a sensitiv-
ity test. While human-acceptable agents can be considered
as the goal of this study, we used the human-likeliness of
an agent as an alternative, albeit narrower measure for a
human-acceptable behavior. The rationale is that an agent
behaving in a way deemed human-like is also likely to be
deemed as acceptable by other human players, when used
as game AI for example. The “human-acceptable” criterion,
however, would require a definition from scratch for each
task, and its evaluation correspondingly difficult.

The agents trained using the proposed method suc-
cessfully exhibited behaviors borrowed from both experts,
namely an increase of performance following the reinforce-
ment learning agent and a human-like behavior following
the human counterpart. More specifically, the performance
of the hybrid agents surpassed that of the human expert in
each environment experimented on. A thorough analysis
of comments collected from the participants of the double-
blind sensitivity test further showcased the similarity in be-
havior of both the proposed agents and the corresponding

human expert. In the light of the conducted experiments,
the sensitivity evaluation approach adopted in this study
would benefit from a larger population sample, and prefer-
ably formed with participants that are familiar enough with
the games and simulations that were used to train the differ-
ent agents.
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