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Secure OMP Computation Maintaining Sparse Representations
and Its Application to EtC Systems

Takayuki NAKACHI†a), Member and Hitoshi KIYA††, Fellow

SUMMARY In this paper, we propose a secure computation of sparse
coding and its application to Encryption-then-Compression (EtC) systems.
The proposed scheme introduces secure sparse coding that allows compu-
tation of an Orthogonal Matching Pursuit (OMP) algorithm in an encrypted
domain. We prove theoretically that the proposed method estimates exactly
the same sparse representations that the OMP algorithm for non-encrypted
computation does. This means that there is no degradation of the sparse
representation performance. Furthermore, the proposed method can con-
trol the sparsity without decoding the encrypted signals. Next, we propose
an EtC system based on the secure sparse coding. The proposed secure EtC
system can protect the private information of the original image contents
while performing image compression. It provides the same rate-distortion
performance as that of sparse coding without encryption, as demonstrated
on both synthetic data and natural images.
key words: sparse coding, orthogonal matching pursuit (OMP), random
unitary transform, secure computation, encryption-then-compression (EtC)

1. Introduction

Early work on sparse coding was based on the efficient cod-
ing hypothesis, which states that the goal of visual coding
is to faithfully represent a visual input with minimal neu-
ral effort. The idea originated with Barlow [1]. It repre-
sents observed signals effectively as a linear combination
of a small number of atoms chosen from basis functions
trained by a dictionary learning algorithm. The sparse cod-
ing model has found numerous processing applications [2]
for signals such as images/video [3]–[7], audio [8], biologi-
cal signals [9], and seismic data [10].

Another trend is the adoption of edge/cloud computing
in many fields, including applications that use sparse cod-
ing. Edge/cloud computing, however, poses several serious
issues for end users, such as unauthorized use, data leaks,
and privacy failures due to the unreliability of providers
and accidents [11]. In recent years, considerable effort has
been made in the fields of fully homomorphic encryption
(FHE) [12], [13] and multi-party computation (MPC) [14].
Unfortunately, those methods require high communication,
high computation complexity, or a large ciphertext size,
so further advances are needed for some applications such
as big data analysis and advanced image/video processing.
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Hence, those methods cannot be applied yet for sparse cod-
ing algorithms.

In this paper, we focus on a secure computation of
sparse coding. The proposed scheme is based on a ran-
dom unitary transform, which has much lower communi-
cation, lower computational complexity, and a smaller ci-
phertext size than either FHE or MPC has. Secure com-
putation methods based on random unitary transforms have
been reported for biometric template protection [15]–[17].
A random unitary transform also has some desirable proper-
ties such as being applicable in l2-norm minimization prob-
lems. We thus propose a secure expression for an Orthogo-
nal Matching Pursuit (OMP) algorithm to minimize the l0-
norm of a sparse representation [18], [19]. OMP [20] is a
greedy algorithm that chooses atoms sequentially and calcu-
lates a sparse representation. Our proposed method can con-
trol the sparsity without decoding the encrypted signals. In
the process of secure OMP computation, the sparsity can be
controlled gracefully by adding atoms sequentially, whereas
a conventional l2-norm-based template protection method
cannot control the sparsity.

Next, we propose an encryption-then-compression
(EtC) system using image patches based on secure sparse
coding. EtC systems have been proposed to securely trans-
mit and compress images through an untrusted channel
provider [21]–[26]. Currently, there is no EtC system using
sparse coding. Image compression using sparse coding has
been reported to provide better coding performance than that
of the JPEG and JPEG2000 standards and state-of-the-art
dictionary-learning-based methods [4]–[7]. The proposed
secure sparse coding yields exactly the same sparse repre-
sentations from the original and encrypted signal domains,
resulting in excellent rate-distortion performance. Further-
more, the proposed EtC system achieves a graceful rate-
distortion tradeoff that is inherent to natural images, while
conventional EtC schemes do not have this property. Finally,
we demonstrate the performance both on synthetic data and
on natural images for application to an EtC system.

The organization of this paper is as follows. Section 2
reviews conventional unitary transform-based template pro-
tection methods and Encryption-then-Compression (EtC)
systems. Section 3 overviews sparse coding. In Sect. 4,
we propose the secure OMP computation, and Sect. 5 in-
troduces its application to EtC systems. Section 6 shows the
results of numerical demonstrations. Finally, Sect. 7 gives a
conclusion and discusses future work.
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2. Related Works

In this section, we provide a review of the conventional
unitary transform-based template protection methods and
Encryption-then-Compression (EtC) systems.

2.1 Unitary Transform-Based Template Protection

Secure computation methods based on random unitary
transforms have been reported for biometric template pro-
tection [15]–[17]. Those methods have been shown to have
a property that the l2-norm minimization between templates
protected by a unitary transform is the same as that between
the original ones. Gram-Schmidt orthogonalization is a typ-
ical method for generating random unitary transforms. Ran-
dom phase scrambling and random permutation have also
been considered as schemes for generating random orthog-
onal matrices. Random unitary transform-based template
protection has been applied in face recognition experiments
to verify its effectiveness. Currently, it has not yet been
applied to sparse coding algorithms for minimizing the l0-
norm of sparse representations.

2.2 Encryption-Then-Compression (EtC) Systems

Encryption-then-Compression (EtC) systems have been pro-
posed to securely transmit and compress images through an
untrusted channel provider [21]–[26], while the traditional
way is to use Compression-then-Encryption (CtE) systems.
EtC systems allow us to avoid non-encrypted images with
social networking service (SNS) providers, because en-
crypted images can be directly compressed even when
they are multiply recompressed by SNS providers. One
type of state-of-the-art EtC system is a block-scrambling-
based encryption scheme using the JPEG standard [24]–
[26]. Such schemes in EtC systems mainly use ge-
ometric transformations (block scrambling, block rota-
tion/inversion) and color transformations (negative-positive
transformation, color component shuffling). Currently, there
is no EtC system based on sparse coding.

3. Preparation

In this section, we overview sparse coding as a basis for
secure computation.

3.1 Sparse Representation

As shown in Fig. 1, by using an overcomplete dictionary ma-
trix D = {d1, . . . , dK} ∈ Rn×K , whose columns contain K
prototype atoms di, a signal vector y = {y1, . . . , yn}T ∈ Rn

can be represented as a sparse linear combination of the
atoms:

y = Dx. (1)

Here, the vector x = {x1, . . . , xK}T ∈ RK contains the sparse

Fig. 1 Sparse coding: a linear combination of a small number of bases.

representation of the signal vector y. If n < K and D is
a full-rank matrix, then the representation problem has an
infinite number of solutions. The solution with the fewest
nonzero coefficients is certainly an attractive representation.
This sparsest representation is the solution of

(P0) min
x0

||x||0 subject to y = Dx, (2)

where ||·||0 is the l0-norm, counting the vector’s nonzero en-
tries. Unfortunately, extraction of the sparsest representa-
tion is an NP-hard problem [27].

3.2 Estimation of Sparse Representation

Dictionary atoms are typically selected by a “pursuit algo-
rithm” that finds an approximate solution:

(P0,ϵ) min
x
||x||0 subject to ||y − Dx||2 ≤ ϵ. (3)

Well-known pursuit algorithms include Matching Pursuit
(MP) [28] and Orthogonal Matching Pursuit (OMP) [20].
These methods are simple, as they involve computation of
inner products between the signal and the dictionary atoms.
OMP is a greedy, step-wise regression algorithm. At each
stage, it selects the dictionary atom having the maximal pro-
jection onto the residual signal. After each selection, it ap-
plies least-squares search to find a sparse representation with
respect to the atoms selected so far. Given the signals y ∈ Rn

and the dictionary D with K l2-normalized columns {dk}Kk=1,
the following is a formal description of the OMP algorithm:

[Orthogonal Matching Pursuit (OMP)]

Initialization: Set k = 0, and set

· Initial solution x0 = 0
· Initial residual r0 = y − Dx0 = y
· Initial solution support S0 = ∅
Main Iteration:
Increment k by 1 and perform the following steps:

· Sweep: Compute the errors

ϵ(i) = min
xi

||xidi − rk−1||22 = ||rk−1||22 −
(di · rk−1)2

||di||22
. (4)

Here, we define an atom di as

di = Dδi, (5)
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where δi = [(0, · · · , 0, δ(i), 0, · · · , 0)]T has all elements equal
to 0 except one (i.e., the i-th element is 1). The approxima-
tion errors ϵ(i) in Eq. (4) are then expressed as

ϵ(i) = ||rk−1||22 −
(Dδi·rk−1)2

||Dδi ||22
. (6)

· Update Support: Find the minimizer

i0 = arg min
i<Sk−1

{ϵ(i)} ,Sk = Sk−1 ∪ {i0} . (7)

· Update Provisional Solution: Compute

x̄k = arg min
xSk

||y − DSk xSk ||22

= {(DSk )T DSk }−1{(DSk )T y}, (8)

where DSk is a submatrix of D consisting of the columns di

with i ∈ Sk, and xSk is the set of columns of x corresponding
to the support Sk.
· Update Residual: Compute

rk = y − DS k x̄k. (9)

· Stopping Rule: If ||rk ||2 < ϵ, stop. Otherwise, perform
another iteration.

Output: The proposed solution x̄ is obtained after k itera-
tions.

3.3 Dictionary Learning

An overcomplete dictionary D that leads to sparse represen-
tations can either be chosen as a prespecified set of func-
tions or designed by adapting its content to fit a given set
of signal examples. Choosing a prespecified transform ma-
trix is the approach used for overcomplete wavelets [29],

Fig. 2 Secure sparse coding computation architecture.

curvelets [30], short-time Fourier transforms, and so on.
On the other hand, dictionary learning algorithms such as
MOD [31] and K-SVD [32] seek a dictionary that yields the
best representations for a given set of training signals under
strict sparsity constraints.

4. Secure OMP Computation

In this section, we propose a secure OMP computation that
allows computation in the encrypted domain. We prove
theoretically that the proposed computation has exactly the
same sparse representation estimation performance as the
non-encrypted variant of the OMP algorithm.

4.1 Secure Computation Architecture

Figure 2 illustrates the architecture of the secure OMP com-
putation. First, Fig. 2(a) shows the preparation by a local
site. The dictionary D is predetermined or designed by us-
ing dictionary learning algorithms with a given set Y that
consists of a number of training signals. Then, a transform
function T (·) with a private key p is applied to D to gener-
ate an encrypted dictionary D̂. The encrypted dictionary D̂
is then sent to the intended edge/cloud site and stored in a
database. Next, Fig. 2(b) shows the running process of the
secure OMP computation for sparse representation selec-
tion. The local site applies the same transform function T (·)
to observed signals y to generate encrypted observed signals
ŷ. The encrypted signals ŷ are then sent to the edge/cloud
site, which uses ŷ and the stored dictionary D̂ sent in ad-
vance to perform secure sparse coding.

4.2 Random Unitary Transform

The vector f i (i = 1, · · · , L) ∈ RN is encrypted by a ran-



NAKACHI and KIYA: SECURE OMP COMPUTATION MAINTAINING SPARSE REPRESENTATIONS AND ITS APPLICATION TO ETC SYSTEMS
1991

dom unitary matrix Qp ∈ CN×N with a private key p in the
following way:

f̂ i = T ( f i, p) = Qp f i, (10)

where f̂ i is the encrypted vector, and L is the number of
vectors. Note that the unitary matrix Qp ∈ CN×N satisfies

Q∗pQp = I, (11)

where [·]∗ and I denote the Hermitian transpose operation
and the identity matrix, respectively. Gram-Schmidt orthog-
onalization is a typical method for generating Qp. In ad-
dition to unitarity, Qp must offer randomness in generating
the encrypted signal. Security analyses of such protection
schemes have been considered in terms of brute-force at-
tack, diversity, and irreversibility [15]–[17]. Furthermore,
the encrypted vector has the following properties.
· Property 1: Conservation of Euclidean distance.∣∣∣∣∣∣ f i − f j

∣∣∣∣∣∣2
2
=
∣∣∣∣∣∣ f̂ i − f̂ j

∣∣∣∣∣∣2
2

(12)

· Property 2: Norm isometry.∣∣∣∣∣∣ f i

∣∣∣∣∣∣2
2
=
∣∣∣∣∣∣ f̂ i

∣∣∣∣∣∣2
2

(13)

· Property 3: Conservation of inner product.

f ∗i f j = f̂
∗
i f̂ j (14)

These properties hold for orthogonal matrices, which are
unitary matrices whose elements have real values.

4.3 Secure OMP Computation Algorithm

The proposed secure sparse coding computation generates
the encrypted signals ŷ and the dictionary D̂ by the follow-
ing transforms:

ŷ = T (y, p) = Qpy, (15)

D̂ = T (D, p) = Qp D. (16)

Instead of using Eq. (3), we consider the following optimiza-
tion problem containing ŷ and D̂:

(P0,ϵ) min
x
||x||0 subject to

∣∣∣∣∣∣ŷ − D̂x
∣∣∣∣∣∣

2
≤ ϵ. (17)

We focus here on the secure computation of greedy algo-
rithms for minimizing the l0-norm of a sparse representa-
tion, whereas the previous random unitary transform-based
template protection solves an l2-norm minimization prob-
lem. We then prove that the sparse representation yielded
by the secure OMP computation matches the result of un-
encrypted computation. The proof is not straightforward,
because the OMP algorithm provides an approximate so-
lution. Therefore, whether the random unitary transform-
based secure computation provides exactly the same result
as the non-encrypted version depends on the algorithm used.
From Eqs. (15) and (16) and the random unitary transform
properties, the proof is given as follows.

[Secure OMP Computation]

Initialization: Set k = 0, and set

· Initial solution x0 = 0
· Initial residual r̂0 = ŷ − D̂x0 = ŷ = Qpy
· Iinitial solution support S0 = ∅.
Main Iteration:
Increment k by 1 and perform the following steps:

· Sweep: Compute the errors.
In Eq. (4), the dictionary D and residual rk−1 are replaced
with D̂ and r̂k−1, respectively. From Eqs. (15) and (16), the
initial estimation error can be written as

ϵ̂(i) = min
x̂i

∣∣∣∣∣∣x̂i D̂δi − r̂k−1
∣∣∣∣∣∣2

2
=
∣∣∣∣∣∣r̂k−1

∣∣∣∣∣∣2
2
− (D̂δi · r̂k−1)2∣∣∣∣∣∣D̂δi

∣∣∣∣∣∣2
2

.

(18)

Next, we apply the properties of the unitary transform:∣∣∣∣∣∣r̂k−1
∣∣∣∣∣∣2

2
=
∣∣∣∣∣∣rk−1

∣∣∣∣∣∣2
2

(norm isometry), D̂δi · r̂k−1 = Dδi · rk−1

(conservation of inner product), and
∣∣∣∣∣∣D̂δi

∣∣∣∣∣∣2
2
= ||Dδi||22 (norm

isometry). From these properties, Eq. (18) can be rewritten
as

ϵ̂(i) =
∣∣∣∣∣∣rk−1

∣∣∣∣∣∣2
2
− (Dδi · rk−1)2

||Dδi||22
. (19)

Equation (19) is equivalent to Eq. (6), i.e., the relation
ϵ̂(i)=ϵ(i) is satisfied.
· Update Support: Find the minimizer.
From ϵ̂(i)=ϵ(i), the following relation is also satisfied.

i0 = arg min
i<Sk−1

{ϵ̂(i)}

= arg min
i<Sk−1

{ϵ(i)} ,Sk = Sk−1 ∪ {i0} . (20)

· Update Provisional Solution:
The square error between the encrypted observed signal and
the estimation yielded by using the current support xSk is

represented as E2 =
∣∣∣∣∣∣ŷ − D̂Sk xSk

∣∣∣∣∣∣2
2
. From

∂E2

∂xSk
= 0, x̂k,

which provides the minimum square error, is represented by

x̂k = {(D̂Sk )T D̂Sk }−1{(D̂Sk )T ŷ}. (21)

In addition, from the property of conservation of inner prod-
uct in Eq. (14), (D̂Sk )T D̂Sk and (D̂Sk )T ŷ can also be given by
(DSk )T DSk and (DSk )T y, respectively. Therefore, the provi-
sional solution of Eq. (21) can be rewritten as

x̂k = {(DSk )T DSk }−1{(DSk )T y}. (22)

Equation (22) is equivalent to Eq. (8), i.e., the relation x̂k =

x̄k is satisfied.
· Update Residual:
The residual on the encrypted signals is expressed by r̂k = ŷ
- D̂Sk x̂k. From Eqs. (15)–(16) and the equality of the provi-
sional residual, x̂k = x̄k, the residual can be rewritten as
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r̂k = Qp(y − DS k x̄k) = Qprk. (23)

· Stopping Rule:
If ||r̂k ||2 < ϵ, stop. From Eq. (23) and the norm isometry
property, this can be expressed as∣∣∣∣∣∣r̂k

∣∣∣∣∣∣
2
=
∣∣∣∣∣∣rk
∣∣∣∣∣∣

2
< ϵ. (24)

The stopping rule is thus equivalent to that of the unen-
crypted version. Unless it is satisfied, perform another it-
eration. An alternative stopping rule is that, if

k = Tk, (25)

then stop, where Tk is the number of specified atoms. Iter-
ation is repeated until the number of selected atoms reaches
Tk.

Output: The proposed solution x̂ = x̄ is obtained after k it-
erations.

The above analysis shows that the secure OMP computa-
tion estimates exactly the same sparse representation as that
obtained by the non-encrypted version of the OMP com-
putation. Furthermore, this algorithm can control the spar-
sity without decoding the encrypted signals. The sparsity is
defined as (K - the number of sparse representations x)/K,
where K is the number of prototype atoms. In the process of
the secure OMP computation, the sparsity can be controlled
gracefully by adding the atom of the support i0 sequentially.
The sparsity is also indirectly controlled by the stopping rule
(“if ||r̂k ||2 < ϵ, stop”), and it can be directly controlled by the
alternative stopping rule (“if k = Tk, stop”).

5. Application to EtC System

The sparse coding model has found numerous applications,
especially in the area of image processing. In this section,
we show an application example of the secure OMP compu-
tation to an EtC system.

5.1 EtC System Using OMP Computation

Regarding the effectiveness of sparse coding for image com-
pression, for example, experimental results [7] show that
sparse coding outperforms JPEG and JPEG2000 by up to
+6 dB and +2 dB, respectively. That work used OMP for
updating an atom. Figure 3 illustrates an EtC system using
the proposed secure OMP computation for image archives
and sharing in an SNS. The figure shows (a) the overall sys-
tem and (b) its encryption process. The basic structure is the
same as that of block-scrambling-based EtC systems using
the JPEG standard [24]–[26]. The system divides an image
into patches (small images) and then performs encryption
and image compression. The main differences from block-
scrambling-based EtC systems using the JPEG standard are
the following:

1. The proposed system applies a random unitary trans-
form to encrypt each image patch, while a conventional

Fig. 3 Encryption-then-compression (EtC) system using secure OMP for
image archiving and sharing in an SNS.

EtC system uses negative-positive transformation and
color component shuffling.

2. The proposed system uses overcomplete dictionary-
based compression, while a conventional EtC system
uses compression based on a discrete cosine transform
(DCT).

By using the random unitary transform, our proposed sys-
tem can provide the same rate-distortion performance as that
of sparse coding without encryption. That is, effective rate-
distortion performance can be obtained by applying the se-
cure OMP computation without decoding the encrypted sig-
nals.

5.2 Encryption Process

The procedure for generating an encrypted image Ŷ is as
follows. yi ∈ Rn

1. Preprocessing: Decomposition into image patches
We consider image patches of size

√
n ×
√

n pixels
that are ordered lexicographically as column vectors yi
∈ Rn(i = 1, · · · ,N), where N is the total number of
patches. The patches are extracted from an image Y
as shown in Fig. 4. We assume that every image patch
yi can be represented sparsely over the overcomplete
dictionary D ∈ Rn×K :

yi = Dxi, (26)

where xi ∈ RK (i = 1, 2, · · · ,N) are sparse representa-
tions, and N is the total number of image patches. In
advance, the dictionary D is designed for the images
by applying training algorithms such as MOD [31] and
K-SVD [32] at the local site.



NAKACHI and KIYA: SECURE OMP COMPUTATION MAINTAINING SPARSE REPRESENTATIONS AND ITS APPLICATION TO ETC SYSTEMS
1993

Fig. 4 Sparse coding for image patches.

2. Intra-Patch Scrambling: Random unitary transform
The secure OMP computation proposed in the previous
section is applied to each image patch yi. It generates
an encrypted image patch ŷi and a dictionary D̂ by the
following transforms:

ŷi = T (yi, p) = Qpyi, (27)

D̂ = T (D, p) = Qp D, (28)

where p and Qp are a private key and a random unitary
transform, respectively, for image patch yi. Sparse rep-
resentations x̂i are then estimated for each image patch
yi.

3. Inter-Patch Scrambling: Patch permutation The en-
crypted image patches ŷi (i = 1, 2, · · · ,N) are ran-
domly permuted using a random integer generated by
a private key q. Finally, the permuted patches are com-
bined to form an encrypted image Ŷ, which is fed to
the OMP computation.

The proposed method provides enhanced security by com-
bining the intra-patch scrambling using the random unitary
matrix with the inter-patch scrambling using the permuta-
tion. Security analyses of using the random unitary matrix
have been considered in terms of brute-force attack, diver-
sity, and irreversibility [15]–[17]. Regarding the permuta-
tion, we can evaluate its security in terms of its key space,
assuming that an attacker performs a brute-force attack. The
key space of the random permutation is N!. For example,
in the setting of the numerical demonstrations described in
Sect. 6, N = 4096 (as calculated for a 512×512 pixel image
with 8 × 8 pixel image patches). The key space N! is thus
larger than that of the 256-bit key, i.e., N! > 2256.

5.3 Image Compression with Rate-Distortion Control

By feeding the encrypted dictionary D̂ and the encrypted
image Ŷ to the secure OMP computation, we obtain the
sparse representation x̂i for each image patch. The de-
compressed/decrypted image patch is then obtained as ẏi =

Q∗p D̂x̂i. The rate-distortion tradeoff between the compres-
sion ratio and decompressed/decrypted image quality of
each image patch can be controlled by altering the threshold
ϵi or Tk without decoding the encrypted image. The thresh-
old ϵi determines the stopping condition of the secure OMP
algorithm, i.e.,

∣∣∣∣∣∣r̂k
i

∣∣∣∣∣∣
2
< ϵi. Rate-distortion control can be

done gracefully by adding atoms sequentially. Applications
that use graceful rate-distortion control can benefit from the

capability to adapt the bitstream according to network con-
ditions. This allows more graceful degradation as compared
with nonscalable coding, in which reductions in bitrate typi-
cally cause more severe drops in image quality, often rapidly
reaching unacceptable quality for viewing.

Finally, the prominent features of the proposed OMP-
based EtC system are summarized as follows.

1. The rate-distortion performance exceeds that of EtC
systems based on a predefined transform (DCT,
wavelet, etc.), because the dictionary is trained to fit
the images.

2. The rate-distortion tradeoff can be controlled grace-
fully by adding atoms sequentially without decoding
the encrypted image.

6. Numerical Demonstrations

To evaluate the effectiveness of the proposed secure OMP
computation, we demonstrated its performance on both syn-
thetic data and natural images, assuming EtC system appli-
cation in the latter case.

6.1 Synthetic Data

We created a random matrix D of size 30 × 50. Each col-
umn was normalized to a unit l2-norm. We generated sparse
vectors x with independent and identically distributed (iid)
random support candidates in the range [1,10], and nonzero
entries drawn as random uniform variables in the range [-2,-
1] ∪ [1,2]. Once x was generated, we computed y = Dx.
We performed 1000 trials per cardinality and report the av-
erage results here in terms of two measures: the l2-error and
the support recovery. The l2-error is computed as the ratio
||x - x̂||2/||x||2. The support recovery means the l2 proximity
between the two solutions. Denoting the two supports as Ŝ
and S , we define the distance between them by

dist(Ŝ , S ) =
max{ ˆ|S |, |S |} − |Ŝ ∩ S |}

max{|Ŝ |, |S |}
. (29)

We applied the three algorithms below to find x:

· OMP
· Secure OMP
· Nonunitary OMP

Here, “OMP” is simply the non-encrypted version of OMP,
while “secure OMP” is the proposed method. “Nonunitary
OMP” is a method in which the encrypted signals ŷ and
the encrypted dictionary D̂ are transformed by using a ran-
dom nonunitary transform, instead of the random unitary
transform Qp. All these algorithms look for the solution

until triggering the stopping rule, ||r̂k ||2 < ϵ, where we set
ϵ =
√

1e − 4.
Figure 5 plots the average of the l2-norm residual ||rk ||2

as a function of the iteration number. By the time the stop-
ping rule is satisfied, adequate convergence is achieved. The
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Fig. 5 Average of l2-norm residual ||rk ||2. Fig. 6 Average of ||x - x̂||2/||x||2. Fig. 7 Recovery of (Ŝ,S).

Fig. 8 Samples of sparse representations x (for 6 representations).

averages of the l2-error ||x - x̂||2/||x||2 and the support recov-
ery dist(Ŝ,S) are shown in Figs. 6 and 7, respectively. These
figures show that secure OMP gives exactly the same perfor-
mance as OMP does. On the other hand, nonunitary OMP
performs poorly. Lastly, Fig. 8 shows samples of sparse
representations x when the number of representations is 6.
These results confirm that the proposed method estimates
exactly the same sparse representations as OMP does. This
shows the importance of the transform’s unitarity property.

Next, we evaluated secure OMP with regard to security.
We assumed that the number of users was 100 and a private
key pi (i = 1, 2, · · · , 100) was created for each user at the
encoding step. We compared the following two cases:

· Secure OMP by authorized users (pi = p j),
· Secure OMP by unauthorized users (pi , p j),

where p j ( j = 1, 2, · · · , 100) is a private key at the decoding
step. Table 1 lists the average and minimum of the l2-error
||y - ẏ||2/||y||2 for authorized/unauthorized users. The results
show that signals encrypted by secure OMP cannot be de-
crypted by unauthorized users.

6.2 Natural Images

Next, we conducted experiments on natural images to show
the practicality of the secure OMP computation for EtC sys-
tems. Specifically, we processed the Barbara and Mandrill
images shown in Fig. 9. Both images are 512 × 512 pixels,
with 8 bits/pixel in grayscale. In the preparation process,
we trained a dictionary D by K-SVD to sparsely represent
patches of 8 × 8 pixels. Then, the images Y and the trained

Table 1 l2-norm error ||y - ẏ||2/||y||2 for authorized (pi = p j) and unau-
thorized (pi , p j) users.

(a) Average
Secure OMP (pi = p j) Secure OMP (pi , p j)

0.0000 1.9251

(b) Minimum
Secure OMP (pi = p j) Secure OMP (pi , p j)

0.0000 1.9195

Fig. 9 Original images.

dictionary D were transformed by a 64 × 64 random uni-
tary transform Qp to produce encrypted images Ŷ and an

encrypted dictionary D̂. The random unitary transform Qp
was designed by Gram-Schmidt orthogonalization. Figure
10 shows the dictionary and the corresponding encrypted
dictionary. Figure 11 shows the encrypted images Ŷ, con-
firming that we cannot see any visible information from the
encrypted dictionary D̂ or the encrypted images Ŷ.
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Fig. 10 Trained and corresponding encrypted dictionaries.

Fig. 11 Encrypted images Ŷ.

Fig. 12 Rate-distortion performance of secure OMP: average number of
sparse representations, S̄ , vs. decompressed/decoded image quality.

By feeding the encrypted dictionary D̂ and the en-
crypted images Ŷ to the secure OMP computation, we
obtained a sparse representation x̂i for each image patch.
For both the Barbara and Mandrill images, Fig. 12 shows
the rate-distortion performance in terms of the average
number of sparse representations, S̄ , vs. the decom-
pressed/decrypted image quality measured by PSNR [dB],
when compared to the non-encrypted version of OMP,
nonunitary OMP, and an non-encrypted version of the over-
complete DCT. The average number of sparse representa-
tions, S̄ , is defined by S̄=

∑N
i=1 si/N, where si is the number

of nonzero sparse representations of x̂i, i.e., si = ||x̂i||0.
The rate-distortion control was done gracefully

by adding atoms sequentially in the order of ϵi =

{15.0, 10.0, 7.0, 5.0, 3.0}. From Fig. 12, we can confirm that
secure OMP provides the same results as OMP does. The
equivalence between the original and encrypted image do-
mains ensures that an original image and its encrypted ver-
sion yield exactly the same sparse representations, resulting
in the same rate-distortion tradeoff, depending on how many
sparse representations are preserved. On the other hand,
nonunitary OMP provides poor performance. Furthermore,
we can see that secure OMP can represent images with a
smaller number of sparse representations than the overcom-
plete DCT can.

Figure 13 shows the sparse representations for the Bar-
bara image (threshold ϵi = 10.00). For comparison, the fig-
ure also shows the sparse representations estimated by OMP

Fig. 13 Sparse representations x̂i (i = 1, 2, · · · ,N = 4096) for the Bar-
bara image (ϵi=10.00).
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Fig. 14 Decompressed/decrypted images obtained by an authorized user
for the Barbara image (ϵi=10.00).

Table 2 Decompressed/decrypted image quality obtained by authorized
and unauthorized users for the Barbara image.

(a) Authorized user (Qpi
= Qp j

)

ϵi 15.0 10.0 7.0 5.0 3.0

S̄ 0.85 1.63 2.82 4.80 9.79
PSNR [dB] 28.13 30.85 33.12 35.56 39.12

(b) Unauthorized user (Qpi
, Qp j

)

ϵi 15.0 10.0 7.0 5.0 3.0

S̄ 0.85 1.63 2.82 4.80 9.79
PSNR [dB] 10.46 10.39 10.34 10.54 10.40

Table 3 Decompressed/decrypted image quality obtained by authorized
and unauthorized users for the Mandrill image.

(a) Authorized user (Qpi
= Qp j

)

ϵi 15.0 10.0 7.0 5.0 3.0

S̄ 1.26 2.35 3.73 5.68 10.56
PSNR [dB] 26.85 29.73 32.36 34.98 39.12

(b) Unauthorized user (Qpi
, Qp j

)

ϵi 15.0 10.0 7.0 5.0 3.0

S̄ 1.26 2.35 3.73 5.68 10.56
PSNR [dB] 13.27 13.22 13.15 13.19 13.15

(a). We can see that the proposed secure OMP (b) estimates
exactly the same sparse representations x̂i as OMP does.
Moreover, authorized users can decompress and decrypt the
image to obtain the decompressed/decrypted image Ẏ shown
in Fig. 14.

Next, we evaluated the security of secure OMP from
a viewpoint of objective image quality (PSNR) and the vis-
ibility of decompressed/decrypted images. We considered
both (a) access by authorized users (pi = p j), and (b) ac-
cess by unauthorized users (pi , p j). Tables 2 and 3 list the
decompressed/decrypted image quality obtained by autho-
rized and unauthorized users for the Barbara and Mandrill
images, respectively. From these tables, we can see that
the decompressed/decrypted image quality obtained by an
unauthorized user is very low regardless of the threshold ϵi.
Figure 15 shows decompressed/decrypted image examples
obtained by an unauthorized user for the Barbara and Man-
drill images (ϵi=10.0). These results show that the encrypted
images cannot be decrypted by an unauthorized user.

Fig. 15 Decompressed/decrypted images obtained by an unauthorized
user for the Barbara and Mandrill images (ϵi=10.00).

7. Conclusion and Future Work

In this paper, we proposed a secure OMP computation us-
ing a random unitary transform. We proved theoretically
that the proposed method estimates exactly the same sparse
representations as the non-encrypted version of OMP does.
Furthermore, this method can control sparsity without de-
coding encrypted signals. Thus, we applied the method in an
EtC system. The proposed secure EtC system achieves bet-
ter rate-distortion performance than an overcomplete DCT
does. The rate-distortion tradeoff can be controlled by
adding atoms sequentially, without decoding the encrypted
image.

Regarding the use of secure OMP in image compres-
sion, the experiments described herein are merely the first
step. Further study is required to deploy the proposed secure
OMP computation in EtC systems, including implementa-
tion of quantization and entropy coding.
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