
1672
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

PAPER

Byzantine-Tolerant Gathering of Mobile Agents in Asynchronous
Arbitrary Networks with Authenticated Whiteboards∗

Masashi TSUCHIDA†a), Nonmember, Fukuhito OOSHITA†b), Member, and Michiko INOUE†c), Fellow

SUMMARY We propose two algorithms for the gathering of k mobile
agents in asynchronous Byzantine environments. For both algorithms, we
assume that graph topology is arbitrary, each node is equipped with an
authenticated whiteboard, agents have unique IDs, and at most f weakly
Byzantine agents exist. Here, a weakly Byzantine agent can make arbi-
trary behavior except falsifying its ID. Under these assumptions, the first
algorithm achieves a gathering without termination detection in O(m + f n)
moves per agent (m is the number of edges and n is the number of nodes).
The second algorithm achieves a gathering with termination detection in
O(m + f n) moves per agent by additionally assuming that agents on the
same node are synchronized, f < � 1

3 k� holds, and agents know k. To
the best of our knowledge, this is the first work to address the gathering
problem of mobile agents for arbitrary topology networks in asynchronous
Byzantine environments.
key words: mobile agent, gathering problem, Byzantine fault

1. Introduction

Distributed systems, which are composed of multiple com-
puters (nodes) that can communicate with each other, have
become larger in scale recently. This makes it compli-
cated to design distributed systems because developers must
maintain a huge number of nodes and handle the massive
amount of data communication among them. As a way
to mitigate this difficulty, (mobile) agents have attracted a
lot of attention [2]. Agents are software programs that can
autonomously move from node to node and execute vari-
ous tasks in distributed systems. In systems with agents,
nodes do not need to communicate with other nodes be-
cause the agents themselves can collect and analyze data by
moving around the network, which simplifies the design of
distributed systems. In addition, agents can efficiently exe-
cute tasks by cooperating with other agents. Hence, many
studies have investigated algorithms to realize cooperation
among multiple agents.

The gathering problem is a fundamental task needed
to realize cooperation among multiple agents. The goal of

Manuscript received November 22, 2019.
Manuscript revised March 6, 2020.
Manuscript publicized April 15, 2020.
†The authors are with Nara Institute of Science and Technol-

ogy, Ikoma-shi, 630–0192 Japan.
∗This work was supported in part by JSPS KAKENHI

Grant Number 18K11167 and JST SICORP Grant Number
JPMJSC1806. The conference version of this work is published
in The 6th Edition of The International Conference on Networked
systems [1].

a) E-mail: tsuchida.masashi.td8@is.naist.jp
b) E-mail: f-oosita@is.naist.jp
c) E-mail: kounoe@is.naist.jp

DOI: 10.1587/transinf.2019EDP7311

the gathering problem is to make all agents meet at a single
node. When a gathering, all the agents can communicate
with each other at the single node.

However, because agents themselves move on the dis-
tributed system and might be affected by several nodes,
some agents might be cracked so that they do not follow the
algorithm. We call such agents Byzantine agents. A Byzan-
tine agent is assumed to execute arbitrary operations without
following an algorithm. In this paper, we propose two algo-
rithms that can make all correct agents meet at a single node
regardless of the behavior of the Byzantine agents.

1.1 Related Work

The gathering problem has been widely studied in the liter-
ature [10], [11]. Table 1 summarizes some of the results. In
this table, the time complexity in the asynchronous model
is the largest number of moves required for a gathering by
agents. The aim of these studies is to clarify the solvabil-
ity of the gathering problem in various environments, and,
if it is solvable, their aim is to clarify the optimal costs
(e.g., time, number of moves, and memory space) required
to achieve a gathering. To clarify solvability and optimal
costs, many studies have been conducted under various en-
vironments with different assumptions on synchronization,
anonymity, randomized behavior, topology, and the pres-
ence of node memory (whiteboards).

For synchronous networks, many deterministic algo-
rithms to achieve a gathering have been proposed [3]–
[5], [12]. If agents do not have unique IDs, they cannot
gather in symmetric graphs such as rings because they can-
not break symmetry. Therefore, some methods [3]–[5] as-
sume unique IDs to achieve a gathering for any graph. Dess-
mark et al. [3] proposed an algorithm that realizes a gather-
ing in Õ(n5

√
τl + n10l) unit times for any graph, where n is

the number of nodes, l is the length of the smallest ID of
agents, and τ is the maximum difference between the acti-
vation times of two agents. Kowalski et al. [4] and Ta-Shma
et al. [5] improved the time complexity to Õ(n15 + l3) and
Õ(n5l), respectively, independently of τ. In contrast, some
studies [13]–[15] studied the case in which agents have no
unique IDs. In this case, gathering is not solvable for some
graphs and initial positions of agents. Hence, these stud-
ies proposed algorithms only for solvable graphs and initial
positions. They proposed memory-efficient gathering algo-
rithms for trees [14], [15] and arbitrary graphs [13].

If a whiteboard exists on each node, the time required

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

TSUCHIDA et al.: BYZANTINE GATHERING IN ASYNCHRONOUS NETWORKS
1673

Table 1 Gathering of agents with unique IDs in graphs (n is the number of nodes, l is the length of
the smallest ID of the agents, τ is the maximum difference among the activation times of the agents,
m is the number of edges, λ is the length of the longest ID of the agents, fu is the upper bound of the
number of Byzantine agents, D is the diameter of the graph, f is the number of Byzantine agents, k is
the number of agents).

Synchro-
nicity

Graph Knowledge Byzantine Whiteboard
Termination

detection
Time complexity

Other
assumptions

[3]† Sync. Arbitrary – Absence None Achieved Õ(n5
√
τl + n10l) –

[4]† Sync. Arbitrary – Absence None Achieved Õ(n15 + l3) –
[5]† Sync. Arbitrary – Absence None Achieved Õ(n5l) –
[6] Sync. Arbitrary n Presence None Achieved Õ(n9λ) –
[7] Sync. Arbitrary fu Presence Authenticated Achieved O(fum) –

[8]† Async.
Infinite

lines
– Absence None Achieved O((D + λ)3) –

[8]† Async. Rings – Absence None Achieved O(nλ) –
[9]† Async. Arbitrary – Absence None Achieved poly(n, l) –

Trivial Async. Arbitrary – Absence Existence Achieved O(m) –
Proposed 1 Async. Arbitrary – Presence Authenticated Unachieved O(m + f n) –

Proposed 2 Async. Arbitrary k Presence Authenticated Achieved O(m + f n)
f < � 1

3 k� holds and agents on a
single node are sycnronized

for a gathering can be significantly reduced. Whiteboards
are areas prepared on each node at which agents can leave
information. For example, when agents have unique IDs,
they can write their IDs onto the whiteboards on their ini-
tial nodes. Agents can collect all the IDs by traversing the
network [16], and they can achieve a gathering by moving to
the initial node of the agent with the smallest ID. This trivial
algorithm achieves a gathering in O(m) unit times, where m
is the number of edges. In contrast, when agents have no
unique IDs, gathering is not trivial, even if they use white-
boards and randomization. Ooshita et al. [17] clarified the
relationship between the solvability of randomized gather-
ing and termination detection in rings with whiteboards.

Recently, some studies have considered gathering in
the presence of Byzantine agents in synchronous net-
works [6], [7], [12]. Byzantine agents can perform an ar-
bitrary behavior that does not follow the algorithm because
of system errors, cracking, and similar reasons. In litera-
ture, weakly and strongly Byzantine agents are considered.
Weakly Byzantine agents can behave arbitrarily except fal-
sifying their IDs, and strongly Byzantine agents can be-
have arbitrarily (including falsifying their IDs). Dieudonné
et al. [6] proposed an algorithm to achieve a gathering in
Õ(n9λ) unit times in environments with weakly Byzantine
agents, where λ is the length of the longest agent ID. For
environments with strongly Byzantine agents, Bouchard et
al. [12] minimized the number of correct agents required to
achieve a gathering, but the time required for a gathering is
exponential with respect to the number of nodes and labels
of agents.

Tsuchida et al. [7] focused on environments with
weakly Byzantine agents and reduced the time complexity
to O(fum) unit times using an authenticated whiteboards and
signature function, where fu is the upper bound of the num-

†This algorithm was originally proposed for the rendezvous
problem (i.e., a gathering of two agents). However, it can be easily
extended to the gathering problem by a technique in [4] without
changing its time complexity.

ber of Byzantine agents and m is the number of edges. They
used authenticated whiteboards for each node, on which
each agent is given a dedicated area to write information
with its signature. This is because, if the whiteboard is
not equipped with such authentication function, Byzantine
agents can delete all the contents written by correct agents
and so the whiteboard is useless. They also used a signature
function, which allows an agent to create signed informa-
tion that guarantees its ID and its current node. That is, any
agent can identify the ID of the signed agent and whether
it has been signed at the current node or not from the sig-
nature. These assumptions are practical because we can
use digital signatures to guarantee publishers of the signa-
tures. Note that, even if each node does not publish its ID
to agents (i.e., nodes are anonymous from the viewpoint of
agents), the node can also verify whether signed information
has been signed there by using the some degital signature.
We also assume the authenticated whiteboard and the signa-
ture function in this paper.

For asynchronous networks, many studies consider the
gathering problem with additional assumptions. De Marco
et al. [8] proposed an algorithm to achieve a gathering for
two agents in asynchronous networks without considering
Byzantine agents. They considered infinite lines and rings
under the assumption that agents have unique IDs and can
meet inside an edge. In infinite lines, their algorithm can
achieve a gathering in O((D+λ)3) moves, where D is the dis-
tance between the two agents in the initial configuration. In
rings, they proposed an algorithm to achieve a gathering in
O(nλ) moves. Dieudonné et al. [9] considered the gathering
problem for arbitrary graphs under the same assumptions as
[8]. They realized gathering in polynomial moves with re-
spect to the number of nodes and the minimum length of the
agent ID.

Das et al. [18] assumed Byzantine agent capabilities
that differ from [6], [7], [12], and they realized gathering
in asynchronous ring and mesh networks with Byzantine
agents. In their model, correct agents can distinguish Byzan-

1674
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

tine agents. In addition, correct agents and Byzantine agents
can neither meet on the same node nor pass each other on
edges. Das et al. proposed an algorithm to achieve a gather-
ing in O(n) moves in this model.

Pelc [19] considered the gathering problem with crash
faults under a weak synchronization model. A model was
considered in which each agent moves at a constant but dif-
ferent speed. That is, although each agent has the same
rate clock, the agent cannot know the number of clocks re-
quired for the movement of other agents. In this study, some
agents may crash, that is, they may fail and stop at a node
or an edge. Under this assumption, Pelc proposed algo-
rithms to achieve a gathering in polynomial time for two
cases in which agents do or do not retain their memory con-
tents when they stop.

In other failure models, Chalopin et al. [20] considered
a gathering problem with an asynchronous model in which
no agents but the edges of the networks become faulty. They
considered the case in which some of the edges in the net-
work are dangerous or faulty such that any agent that travels
along one of these edges disappears. They proposed an algo-
rithm to achieve a gathering in O(m(m + k)) moves, where k
is the number of agents, and proved that this cost is optimal.

1.2 Our Contributions

In this work, we propose two algorithms to achieve a gath-
ering in asynchronous networks with weakly Byzantine
agents. In the first algorithm, we adopt the same model
as Tsuchida et al. [7] but without synchronicity. That is,
Byzantine agents exist in an asynchronous network, and an
authenticated whiteboard is attached to each node. Because
most recent distributed systems are asynchronous, the pro-
posed algorithm is suitable for more systems than previous
algorithms for synchronous networks. To the best of our
knowledge, there are no previous methods for asynchronous
networks with Byzantine agents. If Byzantine agents do not
exist, we can use a trivial algorithm with whiteboards in
asynchronous networks. That is, agents can achieve a gath-
ering in O(m) moves using whiteboards in an asynchronous
network. However, this trivial algorithm does not work
when Byzantine agents exist. The first algorithm for asyn-
chronous networks achieves a gathering without termination
detection in at most 2m+3n−3+8 f (n−1) = O(m+ f n) moves
per agent using authenticated whiteboards even if Byzantine
agents exist, where f is the number of Byzantine agents.
By definition, this algorithm also works in synchronous en-
vironments, and achieves a gathering earlier than the algo-
rithm in [7]. However, the algorithm in [7] achieves a gath-
ering with termination detection. This means the first algo-
rithm reduces the time complexity by sacrificing termination
detection.

The second algorithm realizes gathering with termina-
tion by making additional assumptions. By realizing termi-
nation detection, it is possible to notify the upper-layer ap-
plication of the termination, which simplifies the design of
distributed systems. To realize this, we assume that agents

on the same node are synchronized. This assumption is
practical and easy to implement because, in many mobile
agent systems, each node can control the activation times
of agents on the node. In addition, we assume f < � 1

3 k�
holds and agents know k. Under these assumptions, this al-
gorithm achieves a gathering with termination detection in
O(m + f n) moves per agent. Compared with the first al-
gorithm, this algorithm realizes termination detection with-
out additional moves. When we apply the second algorithm
to synchronous networks, the algorithm achieves a gather-
ing with termination detection earlier than the algorithm in
[7]. This means that, by making additional assumptions
(f < � 1

3 k� and each agent knows k), we can improve the
time complexity for a gathering with termination detection
in synchronous networks.

2. Preliminaries

2.1 Distributed System

A distributed system is modeled by a connected undirected
graph G = (V, E), where V is a set of nodes and E is a set of
edges. The number of nodes is denoted by n = |V |. When
(u, v) ∈ E holds, u and v are adjacent. A set of adjacent nodes
of node v is denoted by Nv = {u|(u, v) ∈ E}. The degree of
node v is defined as d(v) = |Nv|. Each edge is labeled locally
by function λv : {(v, u)|u ∈ Nv} → {1, 2, · · · , d(v)} such that
λv(v, u) � λv(v, w) holds for u � w. We say λv(v, u) is a port
number (or port) of edge (v, u) on node v.

Nodes are anonymous, that is, they do not have IDs.
Each node has an (authenticated) whiteboard where agents
can leave information. Each agent is assigned a dedicated
writable area in the whiteboard, and the agent can write
information only in that area. In contrast, each agent can
read the information from all areas (including areas of other
agents) on the whiteboard.

2.2 Mobile Agent

Multiple agents exist in a distributed system. The number
of agents is denoted by k, and a set of agents is denoted by
A = {a1, a2, · · · , ak}. Each agent has a unique ID, and the ID
of agent ai is denoted by IDi. In the first algorithm (Sect. 3),
the agents know neither n nor k. In the second algorithm
(Sect. 4), the agents know k but do not know n.

Each agent is modeled as a state machine (S , δ). The
first element S is a set of agent states, where each agent state
is determined by the values of the variables in its memory.
The second element δ is the state transition function that
determines the behavior of an agent. The input of δ is the
states of all agents on the current node, the current node’s
degree, the content of the whiteboard in the current node,
and the incoming port number. The output of δ is the next
agent state, the next content of the whiteboard, whether the
agent stays or leaves, and the outgoing port number if the
agent leaves.

We assume the activations of agents are scheduled by

TSUCHIDA et al.: BYZANTINE GATHERING IN ASYNCHRONOUS NETWORKS
1675

an adversary. The adversary chooses one or more agents at
one time, and each selected agent executes an atomic op-
eration simultaneously. The two atomic operations of an
agent selected by the adversary are detailed below. Note that
two types of atomic operations exist depending on where an
agent is selected by the adversary.

• If agent ai is selected at node v, ai executes the follow-
ing operations as an atomic operation. First, ai takes
a snapshot, that is, ai obtains the states of all agents
at v and contents of the whiteboard at v. After that, ai

changes its own state and the content of the dedicated
writable area in the whiteboard at v. Moreover, if ai

decides to move to an edge as a result of the local com-
putation, it leaves v and moves to the edge.

• If agent a j is selected at edge e, a j arrives at the desti-
nation node as an atomic operation.

From the above definition, when an agent moves to an
adjacent node, it moves to an edge connecting to the adja-
cent node in the first atomic operation and then moves from
the edge to the adjacent node in the second atomic opera-
tion. Since the adversary decides when an agent executes
the atomic operations, it can decide the time required for
an agent to move from a node to its adjacent node. This im-
plies that, while an agent moves from an node to its adjacent
node, another agent can visit multiple nodes.

In the first algorithm (Sect. 3), we assume that agents
operate in an asynchronous manner. To guarantee progress,
we assume that for any agent a, the adversary chooses a
infinitely many times. In the second algorithm (Sect. 4), we
assume that agents on the same node are synchronized. That
is, in addition to the above assumption, we assume that, if
the adversary selects an agent a at a node v, it selects all
agents at node v simultaneously.

In the initial configuration, each agent is located at an
arbitrary different node. We assume that each agent per-
forms an operation on its starting node earlier than other
agents. That is, we assume that the adversary selects all
agents at the same time at the beginning of an execution.

2.3 Signature

Each agent ai can create signed information that guaran-
tees its ID IDi and its current node v by a signature func-
tion S igni,v(). That is, any agent can identify the ID of the
signed agent and whether it has been signed at the current
node or not from the signature. No nodes publish their IDs
because nodes are anonymous. We assume ai can use signa-
ture function S igni,v() at v only. We call the output of signa-
ture function a marker, and markeri,v denotes a marker that
ai signed at node v. The marker’s signature cannot be coun-
terfeited, that is, an agent ai can use a signature function
S igni,v() at v but cannot compute S ign j,u() for either i � j or
v � u when ai is located at v. Agents can copy a marker and
paste it to any whiteboard, but cannot modify it without de-
stroying its validity. In this paper, when an agent processes
a marker, it first checks the validity of the signatures and

ignores the marker if the marker includes the wrong signa-
tures. We omit this behavior from descriptions, and assume
all the signatures of every marker are valid.

When ai creates a signed marker at node v, the marker
contains IDi and the information of node v. That is, when
an agent finds a signed marker, it can identify 1) the ID of
the agent that created it and 2) whether it was created at the
current node or not. Therefore, it is guaranteed that signed
marker markeri,v is created by ai at v. When agent a j is
located at node v, a j can recognize that markeri,v was created
at v, and when a j is located at node u(� v), a j can recognize
that it was created at another node.

2.4 Byzantine Agents

Byzantine agents may exist in a distributed system. The
number of Byzantine agents is denoted by f . Each Byzan-
tine agent behaves arbitrarily without following the algo-
rithm. However, a Byzantine agent cannot change its ID.
In addition, even if agent ai is Byzantine, ai cannot compute
S ign j,u()(i � j or v � u) at node v, therefore ai cannot create
marker j,u(i � j or v � u). Note that, each agent including
Byzantine agent has a unique ID. In this paper, we assume
that the agents do not know the number of Byzantine agents.
In the second algorithm, we assume f < � 1

3 k� holds.

2.5 Gathering Problem

The goal of the gathering problem is that all correct agents
gather at one node. We consider gathering problem with-
out termination detection and gathering problem with ter-
mination detection. We say an algorithm solves gathering
problem without termination detection if all correct agents
meet at a single node and continue to stay at that node after
a certain point of time. Note that, when an algorithm solves
gathering without termination, agents may not detect com-
pletion of gathering and may move again after waiting for
an unexpected period. In the second property, we require
agents to termination. Once an agent terminates, it can nei-
ther change its state nor move to another node. We say an
algorithm solves gathering with termination if each correct
agent has locally terminates and all correct agents exist on
the same node after a certain point of time. To evaluate the
performance of the algorithm, we consider the maximum
number of moves required for any agent to achieve a gath-
ering.

2.6 DFS Procedure

In this subsection, we review the procedure depth-first
search (DFS) used in our algorithm. DFS is a well-known
technique for exploring a graph [21]. In a DFS, an agent
continues to explore an unexplored port as long as it visits
a new node. If the agent visits an already visited node, it
backtracks to the previous node and explores another unex-
plored port. If no unexplored port exists, the agent back-
tracks to the node from which it entered the current node

1676
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

for the first time. By repeating this behavior, each agent
can visit all nodes in 2m moves, where m is the number of
edges. Note that because each agent can realize DFS using
only its dedicated area on the whiteboard, Byzantine agents
cannot disturb the DFS of correct agents. We omit a detailed
explanation for how to use these areas for DFS.

3. Gathering algorithm without termination detection

In this section, we propose an algorithm that solves gather-
ing without termination detection. Here, we assume agents
operate in an asynchronous manner. In addition, f Byzan-
tine agents exist and all agents do not know n, k, or f .

3.1 Our Algorithm

3.1.1 Overview

First, we give an overview of our algorithm. This algorithm
achieves a gathering of all correct agents in an asynchronous
network even if Byzantine agents exist. The basic strategy
of the algorithm is as follows.

When agent ai starts on node vstart, ai creates a marker
markeri,vstart indicating that ai is starting from vstart. We call
this marker a starting marker. This marker contains infor-
mation on the ID of the agent and the node where ai created
the marker. In this algorithm, all agents share their start-
ing markers and meet at the node where the agent with the
minimum ID created the starting marker.

To share the starting marker, ai executes a DFS and
leaves a copy of the marker at all nodes. When agent ai

sees the other agents’ markers, ai stores the markers to its
own local variable. After agent ai finishes the DFS and re-
turns to vstart, ai has all the markers of the correct agents and
may have some markers of Byzantine agents. After that, ai

selects marker markermin,vmin , which was made by the agent
amin with the minimum ID. If Byzantine agents do not ex-
ist, agent ai can achieve a gathering by moving to node vmin,
where marker markermin,vmin was created.

However, if Byzantine agents exist, they may interfere
with a gathering in various ways. For example, Byzan-
tine agents might not write their own starting markers, they
might write and delete starting markers so that only some
correct agents can see the markers, or they might create mul-
tiple starting markers. Because of these operations, agents
may calculate different gathering nodes. To overcome this
problem, in this algorithm, each agent shares the informa-
tion about the starting marker created by the agent with the
minimum ID with all agents to obtain a common marker. If
all correct agents obtain a common marker of the minimum
ID agent, they can calculate the same gathering node. How-
ever, while agents share the markers, Byzantine agents may
make new markers to interfere with sharing. If agents share
all the markers of the Byzantine agents, they may move infi-
nite times to share the markers because Byzantine agents can
create markers infinite times. To prevent such interference,
each agent also shares a blacklist. The blacklist is a list of

Byzantine agents’ IDs. If the markers and the blacklists are
shared, correct agents can identify the common marker that
is created by the agent with the minimum ID from among
the agents not in the blacklist.

We explain how agents identify Byzantine agents.
When ai calculates a gathering node and moves to that node
for the first time, ai refers to marker markermin,v created by
the agent amin with the minimum ID. If other agents copy
marker markermin,u(v � u) and paste it to node v, ai can
determine that the two markers markermin,v and markermin,u

were created by the same agent. Because the starting marker
has been signed, an agent cannot camouflage the starting
marker of other agents. In addition, correct agents create
markers only once when they start the algorithm. There-
fore, when there are two starting markers markermin,v and
markermin,u(v � u) created by a single agent amin, ai can
determine that amin is a Byzantine agent. Note that ai can
confirm it only when ai stays on node u or v. When ai dis-
covers that amin is a Byzantine agent, ai adds IDmin to the
blacklist and shares IDmin with all agents as a member of the
blacklist. To share IDmin, agent ai shares two starting mark-
ers created by the Byzantine agent amin. That is, ai copies
amin’s two markers and pastes them to all the nodes so that
all other agents can also determine that amin is a Byzantine
agent. After that, all correct agents ignore all markers of
amin and identify the marker created by the agent with the
minimum ID from among the agents not in the blacklist.
By these operations, all agents can select the node with the
marker as the common gathering node.

Because we consider an asynchronous network, agent
ai does not know when other agents write a starting marker
on the whiteboard. For this reason, after ai moves to the
gathering node, ai continues to monitor the whiteboard and
check for the presence of new markers. When ai finds a new
agent with the minimum ID or Byzantine agents, ai repeats
the above operation.

3.1.2 Details of the Algorithm

The pseudo-code of the algorithm is given in Algorithm 1.
Variable v.wb[IDi] denotes a variable that is the writable
area of agent ai on the whiteboard on node v. Agent
ai manages local variables ai.All, ai.state, ai.min, ai.tmin,
and ai.Byz. Variable ai.All stores all markers observed by
ai. Variable ai.state stores explore or gather. When
ai.state = gather holds, ai arrives at the current gathering
node and waits for other agents. When ai.state = explore
holds, ai is currently computing the gathering node or mov-
ing to the node. Variable ai.tmin stores the marker created
by the agent with the minimum ID, excluding the Byzan-
tine agents’ IDs that ai has observed. Variable ai.min stores
the ID of the agent that created ai.tmin. Variable ai.Byz
is a blacklist, that is, it stores all Byzantine agent IDs
that ai has confirmed. The initial values are ai.All = ∅,
ai.state = explore, ai.min = ∞, ai.tmin = null, and
ai.Byz = ∅. In addition, function writer(markeri,v) returns
i, that is, the ID of the agent that created markeri,v. Func-

TSUCHIDA et al.: BYZANTINE GATHERING IN ASYNCHRONOUS NETWORKS
1677

Algorithm 1 Gathering procedure without termination de-
tection
1: // Algorithm of agent ai. Node v indicates the node at which ai is

located.
2: ai.marker ← S igni,v(), ai.All← ∅, ai.state← explore
// ai.marker = markeri,v in an explanation of the algorithm

3: ai.All← f irst move(ai.marker, ai.All)
4: ai.tmin ← null, ai.min← ∞, ai.Byz← ∅, ai.TByz ← ∅
5: while True do
6: ai.All← ai.All ∪⋃id v.wb[id]
7: min tmp← min{writer(t) : t ∈ ai.All ∧ writer(t) � ai.Byz}
8: if ai.min > min tmp then
9: ai.state← explore

10: ai.tmin ← t s.t. t ∈ ai.All ∧ writer(t) == min_tmp
11: ai.min← min tmp
12: while ai traverses the network do
13: v.wb[IDi]← v.wb[IDi] ∪ {ai.tmin}
14: Move to the next node
15: end while
16: Move to the node where ai.tmin was created
17: else
18: if ∃x : x ∈ ai.All ∧ writer(x) == ai.min ∧ node check(x) ==

f alse then
19: ai.state← explore
20: ai.TByz ← {x, ai.tmin}
21: while ai traverses the network do
22: v.wb[IDi]← v.wb[IDi] ∪ ai.TByz

23: Move to the next node
24: end while
25: ai.Byz← ai.Byz ∪ {ai.min}
26: ai.min← ∞
27: else
28: ai.state← gather
29: S tay at node v
30: end if
31: end if
32: end while

Algorithm 2 Function: f irst move(marker,marker set).
1: ai.d f s marker ← marker, ai.marker set ← marker set
2: while ai is executing DFS do
3: Activate inactive agents if such agents exist at v
4: v.wb[IDi]← {ai.d f s marker}
5: ai.marker set ← ai.marker set ∪⋃id v.wb[id]
6: S tore the network topology
7: Move to the next node by DFS
8: return (ai.marker set)
9: end while

tion node check(markeri,v) returns true if markeri,v was cre-
ated on the current node, and otherwise returns false. Func-
tion f irst move(markeri,v,marker set) executes a DFS and
copies the marker and pastes it to all nodes. We show the
pseudo-code of function f irst move(markeri,v,marker set)
in Algorithm 2. This function eventually returns the set of
markers that the agent observed during DFS. We explain the
behavior of this function later.

Recall that, in an atomic operation, an agent obtains
the snapshot, updates its state and the whiteboard, and then,
possibly leaves the node. In Algorithm 1, each agent exe-
cutes the operations as an atomic operation until it leaves
(lines 14, 16, and 23) or decides to stay (line 29). Similarly,
each agent executes the operations as an atomic operation

until line 7 of Algorithm 2. When an agent reads from the
whiteboard, it uses the snapshot taken at the beginning of an
atomic operation.

When ai starts the algorithm, it creates starting
marker markeri,v = S igni,v() and enters the explore
state (line 2). After ai creates the starting marker, to
inform other agents about the marker, ai executes func-
tion f irst move(markeri,v,marker set). First, ai stores
function arguments in local variables (ai.d f s marker and
ai.marker set). Then, when ai visits node v, if an inactive
agent a j exists, ai activates a j. In this case, agent a j starts
the algorithm before ai executes the algorithm at v. Thus,
ai can read information written by a j at this time. On every
node, ai adds the other agent’s markers stored at that node to
ai.marker set (line 5 of Algorithm 2). To obtain the network
topology, ai memorizes the connection relation between all
nodes and all edges during the DFS. Consequently, ai can
traverse the network in at most 2n moves after it finishes
DFS. Finally, this function returns ai.marker set and ends
the operation.

After ai finishes the DFS, ai checks the markers col-
lected in ai.All and calculates the gathering node (lines 6 to
33). First, ai stores the markers of the current node in ai.All
to check for new markers. After that, ai selects the ID IDmin

such that IDmin = min{writer(t) : t ∈ ai.All ∧ writer(t) �
ai.Byz} holds (line 7). If ai.min > IDmin, ai executes an
update operation of a gathering node (lines 8 to 16). Oth-
erwise, ai executes an operation to detect Byzantine agents
(lines 17 to 31).

In the update operation of a gathering node, ai calcu-
lates a new gathering node. In this step, ai stores marker
t satisfying writer(t) == min{writer(t) : t ∈ ai.All ∧
writer(t) � ai.Byz} to ai.tmin and stores writer(ai.tmin) to
ai.min. After that, ai copies ai.tmin and pastes it to all nodes
to inform other agents of the marker of the minimum ID
agent (lines 12 to 15). Note that, because ai knows the graph
topology, it can visit all nodes in at most 2n moves. In ad-
dition, because ai visits all nodes, ai knows at which node
ai.tmin was created. That is, ai executes node check(ai.tmin)
at each visited node and memorizes the node where the func-
tion returns true (recall that node check(ai.tmin) returns true
only if ai.tmin is created on the current node). Therefore, af-
ter ai copies ai.tmin and ai pastes it to all nodes, ai can move
to the node where ai.tmin was created. If there are two or
more markers created by an agent with the minimum ID, ai

refers to one of the markers and calculates a gathering node.
Then, in the detection operation of the next while-loop, ai

identifies an agent with the minimum ID as a Byzantine
agent.

In the Byzantine agent detection operation, ai de-
termines whether the minimum ID agent is a Byzantine
agent. If there is a marker x that satisfies x ∈ ai.All ∧
writer(x) == ai.min ∧ node check(x) == f alse, ai de-
termines that writer(x) is a Byzantine agent. This is be-
cause correct agents create markers only once. Hence, only
Byzantine agents can create markers on two nodes. In this
case, ai informs other agents of the ID of the Byzantine

1678
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

agent and executes the update operation in the next while-
loop. To realize this, ai copies the starting markers of the
Byzantine agent and pastes them to all nodes, and then ai

initializes ai.min = ∞.
Finally, if ai executes local computation and deter-

mines that the current node is a gathering node, ai changes
ai.state to gather. After that, if ai decides to change the
gathering node, ai changes ai.state to explore again (lines
9 and 19).

By repeating the above operation, all the correct agents
eventually refer to the starting markers created by the same
minimum ID agent and gather at the same node.

3.2 Correctness of the First Algorithm

Lemma 1: Correct agent ai never adds correct agent a j’s
ID IDj to ai.Byz.

Proof : Correct agent aj creates a starting marker
marker j,v = S ign j,v() only once when it starts the algo-
rithm at node v. In addition, Byzantine agents cannot create
or modify the signed marker of aj. Therefore, there is no
marker marker j,u = S ign j,u() (v � u).

Recall that ai adds IDb to ai.Byz only when agent ai

confirms that agent ab created starting markers markerb,v

and markerb,u (v � u). Thus, ai never adds correct agent
a j’s ID IDb to ai.Byz. �

Lemma 2: For any correct agent ai, after ai finishes func-
tion f irst move(markeri,v,marker set), there exists at least
one marker markerx,v that satisfies markerx,v ∈ ai.All ∧
writer(markerx,v) � ai.Byz.

Proof : Correct agent ai stores all of the starting
markers observed during the execution of function
f irst move(markeri,v,marker set) to ai.marker set. These
markers also include ai’s marker markeri,vstart . From
Lemma 1, correct agent ai never adds correct agents’ IDs
to ai.Byz. In addition, because ai itself is also a correct
agent, ID IDi is never stored in ai.Byz. Therefore, after
ai finishes f irst move(markeri,v,marker set), markeri,vstart ∈
ai.All ∧ writer(markeri,vstart) � ai.Byz holds, which implies
the lemma. �

From Lemma 2, correct agent ai selects a marker cre-
ated by an agent with the minimum ID from among mark-
ers that satisfy markeri,vstart ∈ ai.All ∧ writer(markeri,vstart) �
ai.Byz. After that, ai determines the node where the selected
marker was created as a gathering node.

Lemma 3: After correct agent ai has calculated a gathering
node for the first time, ai updates ai.min at most 2 f times.

Proof : While correct agent ai executes f irst move(mark-
eri,v,marker set) at the beginning of the algorithm, ai can
observe all the markers of correct agents. Therefore, when
ai calculates a gathering node for the first time, ai.min be-
comes the minimum ID of the correct agents or a smaller
ID of some Byzantine agent. After that, ai updates ai.min
when ai observes a marker t satisfying ai.min > writer(t) or

when ai determines that ai.min is an ID of Byzantine agent.
Because ai observes all the markers of correct agents during
f irst move(markeri,v,marker set), ai can observe a marker
t satisfying ai.min > writer(t) only when writer(t) is an ID
of a Byzantine agent. In addition, after ai determines that
ai.min is an ID of a Byzantine agent, ai never updates ai.min
using that ID. Thus, ai updates ai.min at most twice per
Byzantine agent, which implies ai updates ai.min at most
2 f times. �

From Lemma 3, ai updates ai.min at most 2 f times.
That is, there is the last update at which ai calculates the
value of ai.min.

Lemma 4: For any correct agents ai and a j, after the last
updates of ai.min and a j.min, ai.min and a j.min are equal.

Proof : We prove this lemma by contradiction. Assume
that, after the last updates of ai.min and a j.min, ai.min �
a j.min holds for correct agents ai and a j. Without loss of
generality, we assume that ai.min = x < a j.min = y holds.

To satisfy ai.min < a j.min, ai and a j should observe
different markers markerx,v and markery,u. When ai regards
markerx,v as the marker created by the minimum ID agent,
the agent copies the marker markerx,v and pastes it to all the
nodes. After that, a j observes the copied marker markerx,v.
Because we assume that ai.min = x < a j.min = y holds,
a j should update a j.min to x. Therefore, a j should update
a j.min after the last update. This is a contradiction. Thus,
the lemma holds. �

Lemma 5: All correct agents gather at one node with the
gather state within a finite time.

Proof : Correct agent ai finds node v such that the marker
was created by agent with ID ai.min, and then sets v as a
gathering node. From Lemma 2, there is a gathering node.
In addition, from Lemma 3, after correct agent ai calculates
the gathering node for the first time, ai updates ai.min at
most 2 f times. In addition, from Lemma 4, for any cor-
rect agents ai and a j, after the last updates of ai.min and
a j.min, ai.min and a j.min are equal. Therefore, all correct
agents refer to the same marker markermin,v, and calculate
the same node v to be the gathering node. Moreover, be-
cause the time required for agents to move between nodes is
also finite, all correct agents can arrive at gathering node v in
a finite time. Because ai updates the value of ai.min at most
2 f times, there are configurations in which ai.min is not up-
dated within a finite time. In addition, if ai does not change
the value of ai.min, ai becomes gather state. This im-
plies all agents gather at v with gather state within a finite
time. �

Theorem 1: Algorithm 1 solves gathering with termina-
tion. In the algorithm, each agent moves at most 2m + 3n −
3 + 8 f (n − 1) times.

Proof : From Lemma 5, all correct agents gather at one
node with the gather state within finite time. Let us con-
sider the number of moves required for the gathering. Cor-
rect agent ai first visits all nodes by DFS, which requires 2m

TSUCHIDA et al.: BYZANTINE GATHERING IN ASYNCHRONOUS NETWORKS
1679

moves. After that, when ai calculates the gathering node for
the first time, it copies and pastes the marker created by the
minimum ID agent to all nodes and moves to the gathering
node. In this movement, ai can copy the starting marker and
paste it to all nodes with at most 2n − 2 moves because the
agent knows the graph topology while executing DFS. Af-
ter ai copies and pastes the marker, ai moves to a gathering
node with at most n − 1 moves.

Every time ai updates ai.min, ai copies the starting
marker and pastes it to all nodes with at most 2n − 2 moves
and moves to a new gathering node with at most n−1 moves.
From Lemma 3, ai updates ai.min at most 2 f times. In ad-
dition, when the minimum ID agent is determined to be a
Byzantine agent, ai informs the other agents about the ID
of that Byzantine agent by copying and pasting that starting
marker to all nodes using at most 2n − 2 moves. Therefore,
ai moves at most 2m + 2n − 2 + n − 1 + 2 f ((2n − 2) + (n −
1)) + f × (2n − 2) = 2m + 3n − 3 + 8 f (n − 1) times. �

It seems that we cannot bound the space complexity
because Byzantine agent ab can put an arbitrary number of
markers in v.wb[IDb] on some node v. However, we can
easily modify the algorithm to bound the space complexity.
As the first modification, for every agent ai and every node
v, we forbid ai to write more than two markers with the same
creator into v.wb[IDi]. We can realize this by preparing two
variables for each creator instead of v.wb[IDi]. Since correct
agents write at most two markers with the same creator, such
variables are sufficient to execute the algorithm. Since the
number of creators is at most k, each node requires an O(k ·
|marker|+|auth|)-bit memory for a writable area of one agent
(note that DFS requires a smaller memory), where |marker|
is the maximum number of bits for signed markers and |auth|
is the maximum number of bits required for authentication
of agents. Hence, each node requires an O(k2 · |marker|+ k ·
|auth|)-bit memory in total. As the second modification, we
forbid correct agent ai to store more than two markers with
the same creator into ai.marker set and ai.All. Recall that, if
agent ai knows that a j creates two markers, ai regards a j as
a Byzantine agent. Consequently ai does not have to bring
more than two markers with the same creator. Hence, agent
ai requires an O(k · |marker|)-bit memory for ai.marker set
and ai.All. In addition, ai requires an O(m + n)-bit memory
to store the graph topology. Since other variables require a
smaller memory, ai requires an O(k · |marker| + m + n)-bit
memory.

4. Gathering Algorithm with Termination Detection

In this section, we propose an algorithm that solves gather-
ing with termination detection. To realize the algorithm, we
add the assumptions that agents on a single node are syn-
chronized, f < � 1

3 k� holds, and agents know k. In addition,
we define fu = � k−1

3 �. Note that because fu is the maximum
integer less than � 1

3 k�, fu is an upper bound of f .

4.1 Our Algorithm

4.1.1 Overview

First, we present an overview of our algorithm. This al-
gorithm achieves a gathering with termination detection
in asynchronous networks even if Byzantine agents exist.
Agents execute the same operations as Algorithm 1 until
k − fu agents gather at the same node and enter the gather
state. After at least k − fu agents in the gather state
gather at one node v, all correct agents at v terminate. Note
that, because the k − fu agents execute the algorithm syn-
chronously at v and at most fu Byzantine agents exist, at
least k − 2 fu ≥ fu + 1 correct agents terminate at v from
fu = � k−1

3 �. As we show in Lemma 8, correct agents that
have not terminated yet eventually visit v. When correct
agents visit v, they can see that at least fu + 1 agents have
terminated, and then they also terminate at v. In addition, we
show in Lemma 7 that there is only one node v at which at
least fu + 1 agents have terminated. Thus, all correct agents
have gathered at one node and terminated.

4.1.2 Details of the Algorithm

The pseudo-code of the algorithm is given in Algorithm 3. It
is basically the same as Algorithm 1, but has additional lines
6 to 8 and 17 to 19. Recall that, in an atomic operation, an
agent obtains the snapshot, updates its state and the white-
board, and then, possibly leaves the node. In the pseudo-
code, each agent executes the operations as an atomic op-
eration until it leaves (lines 22, 24, and 31), decides to stay
(line 37), or terminate (lines 8 and 19). Similarly, each agent
executes the operations as an atomic operation until line 7 of
Algorithm 2. When an agent reads from the whiteboard, it
uses the snapshot taken at the beginning of an atomic oper-
ation.

In Algorithm 3, agents execute the same operations as
Algorithm 1 until at least k − fu agents in the gather state
gather at its current node v. After at least k− fu agents in the
gather state gather at node v, correct agents terminate at
node v (lines 6 to 8). If agent ai sees at least k − fu agents in
the gather state or at least fu + 1 agents in the terminate
state at node v, ai terminates at v (lines 17 to 19). Agent
ai executes the above operation while ai visits all nodes
to paste marker ai.tmin to update the gathering node. Note
that ai does not execute the operation while ai visits nodes
to paste ai.TBiz to update the blacklist of Byzantine agents
(lines 26 to 34). This is because ai executes an update oper-
ation of the gathering node after an update operation of the
blacklist.

By repeating the above operation, all the correct agents
eventually refer to the starting marker created by the mini-
mum ID agent and gather at the same node while terminat-
ing.

1680
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

Algorithm 3 Gathering procedure with termination detec-
tion
1: //Algorithm of agent ai. Node v indicates the node at which ai is lo-

cated.
2: ai.marker ← S igni,v(), ai.All← ∅, ai.state← explore
// ai.marker = markeri,v in an explanation of the algorithm

3: ai.All← f irst move(ai.marker, ai.All)
4: ai.tmin ← null, Ai.min← ∞, ai.Byz← ∅, ai.TByz ← ∅
5: while true do
6: if There exist at least k− fu agents o f gather state at node v then
7: ai.state← terminate
8: terminate
9: else

10: ai.All← ai.All ∪⋃id v.wb[id]
11: min tmp← min{writer(t) : t ∈ ai.All ∧ writer(t) � ai.Byz}
12: if ai.min > min tmp then
13: ai.state← explore
14: ai.tmin ← t s.t. t ∈ ai.All ∧ writer(t) == min_tmp
15: ai.min← min tmp
16: while ai traverses the network do
17: if There are at least k − fu agents o f gather state or

at least fu + 1 agents o f terminate state at node v
then

18: ai.state← terminate
19: terminate
20: end if
21: v.wb[IDi]← v.wb[IDi] ∪ {ai.tmin}
22: Move to the next node
23: end while
24: Move to the node where ai.tmin was created
25: else
26: if ∃x : x ∈ ai.All ∧ writer(x) == ai.min ∧ node check(x) ==

f alse then
27: ai.state← explore
28: ai.TByz ← {x, ai.tmin}
29: while ai traverses the network do
30: v.wb[IDi]← v.wb[IDi] ∪ ai.TByz

31: Move to the next node
32: end while
33: ai.Byz← ai.Byz ∪ ai.min
34: ai.min← ∞
35: else
36: ai.state← gather
37: stay at node v
38: end if
39: end if
40: end if
41: end while

4.2 Correctness of the Second Algorithm

Lemma 6: If a correct agent of terminate state exists at
a node v, at least fu + 1 correct agents of terminate state
exist at v.

Proof : Assume that at least one correct agent of
terminate state exists at v. Note that each agent enters
terminate state when it terminates. Let a be the correct
agent that terminates earliest at v. To terminate the algo-
rithm, a must evaluate the predicate of line 6 or 17 as true.
Because at most fu Byzantine agents exist, a does not see
fu + 1 agents in the terminate state at v and thus, it never
evaluates the latter half of the predicate of line 17 as true.
Consequently, when a terminates, it sees at least k− fu agents

in the gather state at v. From fu = � k−1
3 �, k − 2 fu ≥ fu + 1

agents among the k − fu agents are correct. Because all
agents on the same node are synchronized, at least fu + 1
correct agents in the gather state execute lines 6 to 8 (or 17
to 19) at the same time. They also see at least k − fu agents
in the gather state, and thus terminate at v. Therefore, the
lemma holds. �

Lemma 7: At least one correct agent eventually termi-
nates.

Proof : We prove this lemma by contradiction. Assume
that no correct agent terminates. In Algorithm 3, a correct
agent terminates if and only if it evaluates the predicate of
line 6 or 17 as true. This implies no correct agent evaluates
the predicate as true.

Recall that only lines 6 to 8 and 17 to 19 in Algorithm 3
have been added to Algorithm 1. Thus, if predicates of lines
6 and 17 of Algorithm 3 are always false, agents perform
the same behaviors as those of Algorithm 1. Consequently,
from Theorem 1, all correct agents gather at the same node
within a finite time. Therefore, at least k − fu correct agents
enter gather state at the node and they evaluate the predi-
cate of line 6 in Algorithm 3 as true. This is a contradiction.
�

We define a f as the correct agent that terminates earli-
est of all agents. Let t f be the time at which a f terminates
and v f be the node where a f terminates.

Lemma 8: Each agent moves at most O(m + f n) times be-
fore time t f .

Proof : Before time t f , correct agents always evaluate
predicates of lines 6 and 17 as false (otherwise they termi-
nate). Consequently, all correct agents perform the same be-
haviors as Algorithm 1. From Theorem 1, each agent moves
at most O(m + f n). �

Lemma 9: No correct agent terminates at node v′ (v′ � v f).

Proof : We prove this lemma by contradiction. Assume
that some correct agent terminates at v′ (v′ � v f). Let as be
the earliest correct agent that terminates at v′.

From Lemma 6, at least fu + 1 correct agents terminate
at node v f . When as terminates at v′, it sees at least k − fu
agents in the gather state at v′. However, because at least
fu + 1 agents have already terminated at v f , at least k − fu
agents cannot gather at v′. This is a contradiction, and thus
the lemma holds. �

Corollary 1: After time t f , fu+1 agents in the terminate
state exist at v f . For any node v′ (v′ � v f), the number of
agents in the terminate state at v′ is at most fu.

Proof : Because fu+1 correct agents terminate at the same
time as a f from Lemma 6, the first part clearly holds. From
Lemma 9, no correct agent terminates at v′ (v′ � v f). Thus,
the second part holds. �

Lemma 10: Each correct agent not in v f at time t f termi-
nates at v f after moving O(m) times.

TSUCHIDA et al.: BYZANTINE GATHERING IN ASYNCHRONOUS NETWORKS
1681

Proof : Let a be a correct agent not in v f at time t f . Let idv f

be the ID of the agent that starts the algorithm from node v f .
We consider three cases depending on the status of

agent a at time t f : 1) a considers v f as a gathering node,
2) a considers a node other than v f as a gathering node, and
3) a has not finished the f irst move(markeri,v,marker set).
In the first case, a.min = idv f holds. Agent a visits node
v f within a finite time because, from Corollary 1, v f is the
unique node at which fu + 1 agents terminate.

In the second case, we assume that a considers v′ (v′ �
v) to be the gathering node. In addition, we define id′v f

to
be the ID of the agent that starts the algorithm from node
v′. Here, there are two subcases: idv f > idv′ or idv f < idv′ .
When idv f > idv′ holds, we consider two cases.

• Agent a f does not consider idv′ to be an ID of a Byzan-
tine agent (i.e., idv′ � a f .Byz) at time t f . In this case, a
marker of idv′ or smaller ID must not exist at v f at time
t f because, if such a marker existed at v f , a f would
move to the corresponding node as the new gathering
node. Because a must paste a marker of idv′ or a smaller
ID to all nodes before entering the gather state, a vis-
its v f after t f .

• Agent a f considers idv′ to be an ID of a Byzantine agent
(i.e., idv′ ∈ a f .Byz) at time t f . In this case, a f has pasted
two markers of idv′ to all nodes before it terminated.
Consequently, v′ contains two markers of idv′ . At time
t f , agent a executes an update operation of gathering
node v′ or a Byzantine agent detection operation. In
the former case, after a completes pasting a marker of
idv′ to all nodes, it moves to v′. Then, at v′, a under-
stands that idv′ is an ID of a Byzantine agent. Conse-
quently, a pastes two markers of idv′ to all nodes and
then executes the update operation for a new gathering
node. During the update operation, a visits v f . In the
latter case, a already knows idv′ is an ID of a Byzantine
agent, and explores the network to paste two markers
of idv′ . Hence, after a arrives at v′, it executes the up-
date operation for a new gathering node. During the
update operation, a visits v f .

When idv f < idv′ holds, the marker of idv f must exist
in v′ at time t f because a f pasted a marker of idv f to all
nodes before terminating at v f . At time t f , agent a executes
an update operation of the gathering node v′ or a Byzantine
agent detection operation. In the former case, after a has
completed pasting a marker of idv′ to all nodes, a moves to
v′. Then, at v′, a finds a marker of idv f or a smaller ID and
executes an update operation for the gathering node. During
the update operation, a visits a f . In the latter case, a knows
idv′ is an ID of a Byzantine agent, and explores the network
to paste two markers of idv′ . Hence, after a arrives at v′,
a executes an update operation for a new gathering node.
During the update operation, a visits v f .

In the third case, a eventually finishes DFS and
goes back to the starting node of a in function
f irst move(markeri,v,marker set). Then, a executes an up-
date operation for the gathering node. During the update

operation, a visits v f .
For all cases, when a visits v f after time t f , correct

agent a f has already terminated. From Lemma 6, a sees
at least f + 1 agents in the terminate state and terminates
there. In addition, from the above cases, a terminates at
v f before it explores the network twice. Hence, the lemma
holds. �

Theorem 2: Algorithm 3 achieves a gathering with termi-
nation within a finite time. In the algorithm, each agent
moves at most O(m + f n) times.

Proof : From Lemma 8, each agent moves O(m+ f n) times
before time t f . After time t f , from Lemma 10, each correct
agent not in v f at time t f terminates at v f after moving O(m)
times. Therefore, all correct agents gather at v f and termi-
nate, and each agent moves O(m + f n) times. �

Since the behavior of agents in Algorithm 3 is the same
as in Algorithm 1 except for termination, the memory re-
quirement of Algorithm 3 can be discussed similarly to Al-
gorithm 1.

4.3 Remarks

In this section, we have assumed that terminated agents do
not move to other nodes. However, the terminated agents
may execute other algorithms and hence want to move to
other nodes. In this subsection, we describe a method to
deal with this situation.

Algorithm 3 requires terminated agents to stay at the
gathering node because other agents determine the gathering
node by the number of terminated agents at a node. To treat
this, we propose a method that uses a signed marker instead
of a terminated agent. If an agent terminates at the gathering
node, the agent makes a signed marker and puts it at the
node. After that, if agents executing Algorithm 3 see this
marker at a node, they recognize that an agent that created
the marker stays at the node with terminate state.

Of course Byzantine agents can also create their signed
markers, and they can put and delete their signed markers at
any node. In addition, a Byzantine agent can put its marker
on multiple nodes. This is equivalent to the situation that
the Byzantine agent exists on multiple nodes at the same
time, however this does not disrupt the algorithm. In asyn-
chronous environments, agents cannot recognize whether
agents on other nodes execute operations at the same time
or not. Hence we can assume that agents on different nodes
execute operations at different times. In this case, immedi-
ately before agents on a node execute operations, a Byzan-
tine agent can visit the node. Since Algorithm 3 works cor-
rectly for such an execution, it also works correctly even if
a Byzantine agent puts its marker on multiple nodes.

5. Conclusions

In this work, we proposed two gathering algorithms for mo-
bile agents in asynchronous Byzantine environments with

1682
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.7 JULY 2020

authenticated whiteboards. Each algorithm achieves a gath-
ering in O(m + f n) moves per agent. Algorithm 1 achieves
a gathering without termination detection. Algorithm 3 re-
alizes termination detection by making additional assump-
tions. The additional assumptions are that agents on a single
node are synchronized and each agent knows f and k, where
f is the number of Byzantine agents and k is the number of
total agents.

Open problems are as follows: 1) whether it is possible
to terminate for the same assumptions of Algorithm 1 and
2) whether it is possible to relax the additional assumptions
used in Algorithm 3.

References

[1] M. Tsuchida, F. Ooshita, and M. Inoue, “Gathering of mobile
agents in asynchronous Byzantine environments with authenticated
whiteboards,” The international conference on networked systems
(NETYS2018), pp.85–99, Springer, 2018.

[2] J. Cao and S.K. Das, “Mobile Agents in Networking and Distributed
Computing,” Wiley, 2012.

[3] A. Dessmark, P. Fraigniaud, D.R. Kowalski, and A. Pelc, “Determin-
istic rendezvous in graphs,” Algorithmica, vol.46, no.1, pp.69–96,
2006.

[4] D.R. Kowalski and A. Malinowski, “How to meet in anonymous net-
work,” Theoritical Computer Science, vol.399, no.1-2, pp.141–156,
2008.

[5] A. Ta-Shma and U. Zwick, “Deterministic rendezvous, treasure
hunts, and strongly universal exploration sequences,” ACM Trans-
actions on Algorithms (TALG), vol.10, no.3, pp.12:1–15, 2014.

[6] Y. Dieudonné, A. Pelc, and D. Peleg, “Gathering despite mischief,”
ACM Transactions on Algorithms (TALG), vol.11, no.1, pp.1:1–28,
2014.

[7] M. Tsuchida, F. Ooshita, and M. Inoue, “Byzantine-tolerant gather-
ing of mobile agents in arbitrary networks with authenticated white-
boards,” IEICE TRANSACTIONS on Information and Systems,
vol.E101-D, no.3, pp.602–610, 2018.

[8] G. De Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, and U.
Vaccaro, “Asynchronous deterministic rendezvous in graphs,” The-
oretical Computer Science, vol.355, no.3, pp.315–326, 2006.

[9] Y. Dieudonné, A. Pelc, and V. Villain, “How to meet asynchronously
at polynomial cost,” SIAM Journal on Computing, vol.44, no.3,
pp.844–867, 2015.

[10] E. Kranakis, D. Krizanc, and E. Markou, “The mobile agent ren-
dezvous problem in the ring,” Synthesis Lectures on Distributed
Computing Theory, vol.1, no.1, pp.1–122, 2010.

[11] A. Pelc, “Deterministic rendezvous in networks: A comprehensive
survey,” Networks, vol.59, no.3, pp.331–347, 2012.

[12] S. Bouchard, Y. Dieudonné, and B. Ducourthial, “Byzantine gather-
ing in networks,” Distributed Computing, vol.29, no.6, pp.435–457,
2016.

[13] J. Czyzowicz, A. Kosowski, and A. Pelc, “How to meet when you
forget: log-space rendezvous in arbitrary graphs,” Distributed Com-
puting, vol.25, no.2, pp.165–178, 2012.

[14] J. Czyzowicz, A. Kosowski, and A. Pelc, “Time versus space
trade-offs for rendezvous in trees,” Distributed Computing, vol.27,
no.2, pp.95–109, 2014.

[15] P. Fraigniaud and A. Pelc, “Delays induce an exponential mem-
ory gap for rendezvous in trees,” ACM Transactions on Algorithms
(TALG), pp.224–232, 2010.

[16] Y. Sudo, D. Baba, J. Nakamura, F. Ooshita, H. Kakugawa, and
T. Masuzawa, “A single agent exploration in unknown undirected
graphs with whiteboards,” IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, vol.E98-A,
no.10, pp.2117–2128, 2015.

[17] F. Ooshita, S. Kawai, H. Kakugawa, and T. Masuzawa, “Random-
ized gathering of mobile agents in anonymous unidirectional ring
networks,” IEEE Transactions on Parallel and Distributed Systems,
vol.25, no.5, pp.1289–1296, 2014.

[18] S. Das, F.L. Luccio, and E. Markou, “Mobile agents rendezvous in
spite of a malicious agent,” International Symposium on Algorithms
and Experiments for Sensor Systems, Wireless Networks and Dis-
tributed Robotics, vol.9536, pp.211–224, Springer, 2015.

[19] A. Pelc, “Deterministic gathering with crash faults,” Networks,
vol.72, no.2, pp.182–199, 2018.

[20] J. Chalopin, S. Das, and N. Santoro, “Rendezvous of mobile agents
in unknown graphs with faulty links,” International Symposium on
Distributed Computing, pp.108–122, Springer, 2007.

[21] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to algorithms, MIT press, 2009.

Masashi Tsuchida received the B.E. de-
gree from Osaka Prefecture University College
of Technology in 2015, and received M.E. and
D.E. degrees from Nara Institute of Science and
Technology in 2017 and 2020, respectively. His
research interests include distributed algorithms.

Fukuhito Ooshita received the M.E. and
D.I. degrees in computer science from Osaka
University in 2002 and 2006. He had been an
assistant professor in the Graduate School of
Information Science and Technology at Osaka
University during 2003–2015. He is now an as-
sociate professor of Graduate School of Science
and Technology, Nara Institute of Science and
Technology (NAIST). His research interests in-
clude parallel algorithms and distributed algo-
rithms. He is a member of ACM, IEEE, and

IPSJ.

Michiko Inoue received her B.E., M.E, and
Ph.D. degrees in computer science from Osaka
University in 1987, 1989, and 1995 respectively.
She worked at Fujitsu Laboratories Ltd. from
1989 to 1991. She is a Professor of Graduate
School of Science and Technology, Nara Insti-
tute of Science and Technology (NAIST). Her
research interests include distributed computing
and dependability of LSI. She is a member of
Science Council of Japan, IPSJ, and JSAI, and a
senior member of IEEE.

http://dx.doi.org/10.1007/978-3-030-05529-5_6
http://dx.doi.org/10.1002/9781118135617
http://dx.doi.org/10.1007/s00453-006-0074-2
http://dx.doi.org/10.1016/j.tcs.2008.02.010
http://dx.doi.org/10.1145/2601068
http://dx.doi.org/10.1137/1.9781611973099.45
http://dx.doi.org/10.1587/transinf.2017fcp0008
http://dx.doi.org/10.1016/j.tcs.2005.12.016
http://dx.doi.org/10.1137/130931990
http://dx.doi.org/10.2200/s00278ed1v01y201004dct001
http://dx.doi.org/10.1002/net.21453
http://dx.doi.org/10.1007/s00446-016-0276-9
http://dx.doi.org/10.1007/s00446-011-0141-9
http://dx.doi.org/10.1007/s00446-013-0201-4
http://dx.doi.org/10.1145/1810479.1810524
http://dx.doi.org/10.1587/transfun.e98.a.2117
http://dx.doi.org/10.1109/tpds.2013.259
http://dx.doi.org/10.1007/978-3-319-28472-9_16
http://dx.doi.org/10.1002/net.21810
http://dx.doi.org/10.1007/978-3-540-75142-7_11

