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SUMMARY The task of image annotation is becoming enormously im-
portant for efficient image retrieval from the web and other large databases.
However, huge semantic information and complex dependency of labels
on an image make the task challenging. Hence determining the seman-
tic similarity between multiple labels on an image is useful to understand
any incomplete label assignment for image retrieval. This work proposes
a novel method to solve the problem of multi-label image annotation by
unifying two different types of Laplacian regularization terms in deep con-
volutional neural network (CNN) for robust annotation performance. The
unified Laplacian regularization model is implemented to address the miss-
ing labels efficiently by generating the contextual similarity between labels
both internally and externally through their semantic similarities, which
is the main contribution of this study. Specifically, we generate similar-
ity matrices between labels internally by using Hayashi’s quantification
method-type III and externally by using the word2vec method. The gener-
ated similarity matrices from the two different methods are then combined
as a Laplacian regularization term, which is used as the new objective func-
tion of the deep CNN. The Regularization term implemented in this study is
able to address the multi-label annotation problem, enabling a more effec-
tively trained neural network. Experimental results on public benchmark
datasets reveal that the proposed unified regularization model with deep
CNN produces significantly better results than the baseline CNN without
regularization and other state-of-the-art methods for predicting missing la-
bels.
key words: multi-label image annotation, regularization, missing labels

1. Introduction

Recently, multi-label image annotation has achieved great
progress in different domains such as multi-object recogni-
tion [21], [22], scene recognition [20], facial action detec-
tion [19], and medical diagnostic prediction [17], [18]. In an
image annotation task, there is usually more than one label
to annotate an image with, and these labels provide signifi-
cant information such as location, features and events. How-
ever, it is difficult to prepare complete labels to ensure cor-
rect predictions for multi-label learning which makes train-
ing of neural networks with missing labels a challenging
problem in automated image annotation.

Several recently developed techniques based on deep
neural networks have produced acceptable annotation per-
formances by utilizing the label relationships. The rela-
tionships between labels are derived using various strate-
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Fig. 1 Example image demonstrating the consistency of predicted label
(arctic) with the given labels (bear, snow, polar, tundra)

gies such as generating a tree-structured graph [30], using a
structured inference neural network [29] and co-occurrence
dependency [13]. However, these methods only implement
internal relations for multi-label learning. To better under-
stand ambiguous examples and minimize false predictions,
multi-label image annotation requires not only internal rela-
tions between labels but also strong relations that are exter-
nal to the ground truth [29].

Incorporating both internal and external label relations
in training a deep CNN could capture diverse contextual re-
lations and specifically infer the remaining missing labels
for a given set of labels for a particular image. For example,
in Fig. 1, the missing label “arctic” can be correctly recov-
ered, which is meaningful and directly related to the given
label subset as well as to the visual content of the image. In
this study, we propose a regularization term that combines
strong dependencies derived from both internal and external
similarities between labels. Regularization enables superior
and effective fine-tuning of the network layers, thus improv-
ing its performance. This could be understood from ear-
lier studies showing that incorporating semantic regulariza-
tion in a deep network improves accuracy and convergence
speed [25], [27], [28].

The contributions of this study can be summarized as
follows: (1) A novel contextual regularization for CNN
models is proposed for improved image annotation, which
differs from conventional approaches, by introducing a uni-
fied internal and external graph Laplacian regularization
term in the objective function of the CNN; (2) a strong con-
textual similarity between labels both internally and exter-
nally is generated by using Hayashi’s quantification method-
type III and the word2vec method, respectively; (3) ex-
tensive evaluation on three different datasets is performed
to confirm whether a unified internal-external label-relation
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regularization graph derived from co-occurrence data could
produce better performance than individual regularization
for an image annotation deep CNN.

2. Related Works

The problem of multi-label learning for data with missing-
labels has been studied in a number of contexts. In this sec-
tion we review related works on multi-label learning with a
focus on label relations followed by a discussion of regular-
ization in neural networks.

2.1 Multi-Label Learning with Label Relations

Co-occurrence distributions learned from the internal label
space have been used to compensate for missing labels [13].
For example, the multi-label local correlation approach en-
codes the local influence of label correlations using the fea-
ture representation of each instance [3]. Other researchers
have proposed parametric models, which combine pair-wise
correlations of class labels to solve the multi-label learn-
ing problem [6]. Several works on multi-label learning have
suggested that external knowledge of label relations could
improve label prediction [4], [5]. For example, [12] gen-
erated the co-occurrence of pairs of labels using external
knowledge for multi-label annotation. Furthermore, to ade-
quately address the problem of missing labels, an integrated
framework can be used to learn the complex correlations
between labels for multi-label classification with missing la-
bels [2]. Lee et al. [7] proposed that label relations observed
in the external space can be used to identify multiple unseen
class labels for each input instance for performing multi-
label classification.

The above-mentioned methods independently handled
internal or external label relations in learning algorithms,
while our proposed model incorporates co-occurrence dis-
tributions of both internal and external label relations. Note
that inter-relations between different labels have already
been exploited in recent techniques by using a mixed graph
to encode a network of label dependencies [16], a unified
correlative multi-label method to classify the labels [24],
and quadratic energy function graphs for constructing com-
plete labels [26]. However, these algorithms are too com-
plex and are not appropriate for large datasets.

2.2 Regularization Techniques in a Neural Network

The introduction of a label relation graph in the regulariza-
tion term of a deep neural network model enables more ef-
ficient training and avoids over-fitting which in turn leads to
better performance. Pengfei et al. [1] used semantic infor-
mation to regularize the combination of two different neural
network layers. Similarly, Yan et al. [28] implemented an
attribute induced semantic regularization to tune the middle
embedding layer. Mojoo et al. [13] combined the original
objective function of a neural network with the graph Lapla-
cian regularization term based on the internal co-occurrence

dependency of the labels. Several works have focused on
the loss function of a neural network to solve the multi-label
learning with missing labels (MLML) problem with large-
scale labels. Wu et al. [15] proposed a sub-modular objec-
tive function to handle the problem of large numbers of neg-
ative labels. Another study [14] exploited the structure of a
specific loss function for the annotation problem. Inspired
by these research techniques, we measure the effectiveness
of a unified label-relation regularization graph in training a
deep CNN for multi-label image annotation.

In our proposed method, we combine two different ma-
trices. One matrix is the graph Laplacian matrix of all the
Word2Vec similarities between labels in the dataset [11].
The Word2Vec similarity is calculated from a model trained
on the Wikipedia dumped data [9]. The second matrix
is the graph Laplacian matrix with all the co-occurrence-
based label similarities calculated by Hayashi’s quantifica-
tion method-type III [10]. The combination of these two ma-
trices is used as a regularization term added to the neural net-
work’s original objective function. Thus, the weights of the
graph Laplacian matrix are calculated by using the similari-
ties between the vectors obtained from both the internal and
external label spaces. Hence, the regularization term in the
proposed objective function introduces correlation informa-
tion between each pair of labels in the training process and
increases the co-occurrence probability of labels with high
observed co-occurrence frequency.

3. Unified Approach to Image Annotation

The framework of the proposed multi-label image anno-
tation model is presented in Fig. 2. We first present an
overview of the label contextual similarity measurement by
Hayashi’s quantification method-type III and the Word2Vec
word-embedding method. The proposed unified approach
for multi-label image annotation is later described in Sect. 4.

3.1 Hayashi’s Quantification Method-Type III

Hayashi’s quantification method-type III (HQ-III) is applied
in the understanding of categorical data, including cross-
tabulation or contingency tables [10]. It is used to calcu-
late the vector representations of each row and column by
utilizing the information of co-occurrences. Suppose the
cross-tabulation that records the frequency of co-occurrence
is represented by T = [ti j], where

i = 1, 2, · · · ,M and j = 1, 2, · · · ,N. Using this table,
we can extract the vector representations qi and q j of the
ith row and the jth column respectively, by applying HQ-III.
Note that the distance between these vectors becomes small
if the pattern of responses in the cross-tabulation is identi-
cal. In this study, HQ-III is used to calculate the distance
between the vectors of each label, which can explain the in-
ternal similarity between each pair of labels.
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Fig. 2 Illustration of the proposed approach

Fig. 3 CNN architecture

3.2 Word2Vec Method

The Word2Vec method was developed by Mikolov et al. [11]
in 2013. The model is trained on a corpus of text (like
Wikipedia or Google News) and then outputs the vector
representations of all words in the text. Unlike the previ-
ous method, where a neural network learns the expression
vectors of words, Word2Vec employs the Skip-gram model,
which reduces the calculation of dense matrix multiplica-
tions. In our proposed method, we use the Word2Vec model
to obtain the vector representations of labels in a dataset and
then calculate the similarity between each pair of labels.

4. Proposed Approach

4.1 Training with Missing Labels

Let {(xi, ti)}Mi=1 = {X,T} be the set of training samples with
missing labels, where

X =
[
x1 · · · xi · · · xM

]T
(1)

T =
[
t1 · · · ti · · · tM

]T
(2)

Here, xi is the ith image used as an input to the CNN and ti =[
ti1 · · · tiN

]
represents the binary vector representation of

the labels for the ith image, where ti j = 1 when the jth label
assigned to the ith image; otherwise, ti j = 0. M and N are
the number of samples and labels, respectively.

Let y = f (x; θ) be the function of the CNN model for
the input image x where θ represents the parameters of the
CNN. AlexNet [23], shown in Fig. 3, is used as the baseline
CNN architecture. The network has five convolutional lay-
ers and two fully connected layers. The acronym “BN” in
the figure denotes batch normalization.

To estimate the posterior probability of each label, a
sigmoid activation function is after the neurons in the out-
put layer and the sum of the sigmoid cross entropies of each
label is used as the loss function. After training the parame-
ters θ, we can estimate the labels ŷ by feeding the test input
image x̂ into the trained CNN model

ŷ = f (x̂; θ) (3)

The value of each component in the estimated vector ŷ is the
probability of the corresponding label.

4.2 Internal Distributions of Label Similarity

The internal similarity distributions of each label in the
dataset is obtained by applying the HQ-III on the frequency
Table T. Let q j, ( j = 1, . . . ,N) be the HQ-III vector rep-
resentation of each label. We calculate the co-occurrence
distance between a pair of labels using the vectors qi and q j

in their internal label space as

dh
i j = ||qi − q j||2 (4)

The similarity using internal co-occurrence distributions is
defined as
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sh
i j = exp(−δ × dh

i j) (5)

where δ controls the influence of the distance.

4.3 External Distributions of Label Similarity

The external similarity of each label in the dataset is derived
using the Word2Vec method. Let u j be the vector of the j-th
( j = 1, . . . ,N) label. The word2vec distance between a pair
of labels ui and u j is defined as

swi j = exp(−ε × dwi j) (6)

where ε controls the influence of the Word2Vec distance.

4.4 Regularization Graph with Unified Co-Occurrence
Distributions

To control the similarities si j between estimated labels, we
introduce the graph Laplacian regularization term, defined
as

G =
1
2

N∑

i, j

(ŷi − ŷ j)
2si j = ŷ

T Lŷ (7)

where ŷ =
[
ŷ1 · · · ŷN

]
and (0 ≤ ŷi ≤ 1]) is the binary

vector representation of the estimated labels. L is the Lapla-
cian matrix defined as L = D − S, where D =

[∑N
j si j

]
and

S =
[
si j

]
.

Since we have two similarities sh
i j and swi j represent-

ing both internal and external similarity, we can define two
Laplacian regularization terms. The regularization term for
the internal co-occurrence similarity graph is defined as

Gh =
1
2

N∑

i, j

(ŷi − ŷ j)
2sh

i j = ŷ
T Lhŷ (8)

Similarly, the regularization term for the external co-
occurrence similarity graph is defined as

Gw =
1
2

N∑

i, j

(ŷi − ŷ j)
2swi j = ŷ

T Lwŷ (9)

where Lh and Lw are the co-occurrence dependency Lapla-
cian matrices from the internal and external label spaces,
respectively. For M training samples, we can define the av-
erage graph Laplacian regularization terms as

Dh =
1
M

M∑

l=1

⎛⎜⎜⎜⎜⎜⎜⎝
1
2

N∑

i, j

sh
i j(ŷli − ŷl j)

2

⎞⎟⎟⎟⎟⎟⎟⎠ =
M∑

l=1

ŷl
T Lhŷl (10)

Dw =
1
M

M∑

l=1

⎛⎜⎜⎜⎜⎜⎜⎝
1
2

N∑

i, j

swi j(ŷli − ŷl j)
2

⎞⎟⎟⎟⎟⎟⎟⎠ =
M∑

l=1

ŷl
T Lwŷl (11)

The values of Dh and Dw become small if the estimated la-
bels are similar for a given pair of labels with similar vec-
tor representations implying high co-occurrence or similar

meaning. Finally we combine the graph Laplacian regular-
ization term from internal and external co-occurrence simi-
larities as

D = αDh + (1 − α)Dw =
M∑

l

ŷT
l (αLh + (1 − α)Lw)ŷl

(12)

where α controls the contribution of each regularization
term.

4.5 Training with a Combined Objective Function

The original objective function for standard multi-label an-
notation over all the training samples is given by

E =
M∑

l=1

N∑

k=1

{−tlk log(ŷlk) − (1 − tlk) log(1 − ŷlk)}. (13)

Here, the objective function is modified by combining the
original objective function E with the graph Laplacian regu-
larization term D, which gives

Q = E + βD. (14)

The parameter β controls the effect of the regularization
term.

5. Experiments

To validate the proposed approach, we use three stan-
dard image datasets and compare the results to a baseline
CNN without regularization, a CNN using internal similar-
ity alone with HQ-III, and a CNN using external similarity
alone by the Word2Vec method. In this section, we describe
the datasets, model parameter settings, and experimental re-
sults.

5.1 Datasets

We use three benchmark image annotation datasets:
Corel5k, NUS-WIDE-LITE, and ESPGame. To generate the
training dataset with missing labels, we randomly remove
some labels in each training sample such that the number of
labels in each sample is more than two. Table 1 shows the
datasets used in our experiments. The columns in Table 1
named average and missing average represent the average
number of assigned labels in each training sample and the
average number of processed labels respectively.

5.2 Parameter Settings

Before feeding the images into the CNN, we reshape all the
original images to a size of 127 × 127 pixels. The parame-
ter α in Eq. (12) is set to 0.5 and β in Eq. (14) is set to 0.1.
We obtained these values by performing a validated param-
eter sweep in the ranges [0, 1] and [0.001, 10] for α and β
respectively.
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Table 1 Datasets and their corresponding labels.

Dataset Labels #Training #Test Average Missing Average
Corel5k 260 4500 499 3.4 2.5
NUS-WIDE-LITE 81 27807 27808 1.6 1.4
EspGame 268 18689 2081 3.7 3.0

Table 2 Comparison of the micro-F1 score on the Corel5k dataset.

Deep CNN methods Top-3(%) Top-5(%) Probability ≥ 0.1(%)
Without regularization 17.25 17.75 17.12
Regularized with internal similarity alone 18.14 18.23 17.30
Regularized with external similarity alone 17.88 18.13 17.16
Proposed unified regularization 18.52 17.99 17.76

Table 3 Comparison of the micro-F1 score on the NUS-WIDE-LITE dataset.

Deep CNN methods Top-3(%) Top-5(%) Probability ≥ 0.1(%)
Without regularization 5.95 6.31 4.22
Regularized with internal similarity alone 7.35 7.65 5.17
Regularized with external similarity alone 7.26 7.58 5.09
Proposed unified regularization 7.43 7.73 5.37

Table 4 Comparison of the micro-F1 score on the EspGame dataset.

Deep CNN methods Top-3(%) Top-5(%) Probability ≥ 0.1(%)
Without regularization 9.42 10.13 8.49
Regularized with internal similarity alone 9.46 10.40 8.54
Regularized with external similarity alone 9.44 10.39 8.52
Proposed unified regularization 9.68 10.74 8.87

5.3 Performance Measures

The micro-F1 score is used to measure the performance of
the proposed model for estimating multiple labels. This
score measures the accuracy on the test datasets, considering
both precision p and recall r, and is defined as

Micro − F1 = 2 × precision × recall
precision + recall

. (15)

The performance on test datasets is calculated by

Micro − F1 =
1
M

M∑

i=1

2
∑N

j=1 t j
(i)y j

(i)

∑N
j=1 t j

(i) +
∑N

j=1 y j
(i)
. (16)

Here M and N are the number of test dataset samples and la-
bels, respectively. The prediction is considered perfect when
the score is 1 (perfect precision and recall) and worst when
its value is 0. To select the most suitable labels, we use three
kinds of label selection thresholds: labels whose predicted
probability is above 0.1, the top-three ranked labels, and the
top-five ranked labels. We compare the performance of the
deep CNN model with unified regularization to those of a
regularized deep CNN with internal label dependency alone,
external label dependency alone, and a baseline CNN with-
out any regularization term. Furthermore, to confirm the
learning ability with incomplete labels, we remove some la-
bels and observe the performance at different label removal
rates (10%, 30%, and 50%) and compare the results in terms
of the micro-F1-score against the baseline CNN.

5.4 Results and Discussion

We found that the model trained by the new combined ob-
jective function has better prediction ability than the one
using the original objective function. To evaluate our re-
sults comparatively, we set up the experimental analyses ac-
cording to previous works utilizing external [12] and inter-
nal [13] label similarity. Tables 2, 3 and 4 show the results
evaluated by measuring the micro-F1 score at 30% label re-
moval rates on different datasets based on the three kinds
of label selection criteria. The proposed deep CNN model
with unified regularization achieves higher F1-scores than
the other methods, as highlighted in the tables. Further-
more, it can be observed that the deep CNN model with ei-
ther internal similarity regularization or external similarity
regularization produces better scores than the baseline CNN
without a regularization term. On the Corel5k dataset, the
micro-F1 score for labels with probability over 0.1% for the
proposed method is higher than that of the baseline CNN,
by more than 0.64%. Similarly, the score of the proposed
method is higher than the deep CNN model with a regular-
ization term of internal [13] and external [12] similarity by
more than 0.30% and 0.6%, respectively. The approach pre-
sented in [31], using pairwise label correlations for multi-
label classification achieved lower accuracy (12.1%) on the
Corel5k dataset. Our unified approach modelling label re-
lations on the same dataset achieves an acceptable improve-
ment on label prediction. On the NUS-LITE, and EspGame
datasets, the micro-F1 scores based on the labels with prob-
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Fig. 4 Example image of Corel5k dataset and predicted labels with prob-
ability ≥ 0.1%. Given labels: cat, tiger, tree. Baseline CNN: cat, tiger,
flowers, grass. Proposed: cat, tree, grass, tiger, forest

Fig. 5 Example image from NUS-WIDE-LITE dataset and predicted la-
bels with probability ≥ 0.1%. Given labels: lake. Baseline CNN: clouds,
mountain. Proposed: clouds, mountain, valley, sky

Fig. 6 Example image from EspGame dataset and predicted labels with
probability ≥ 0.1%. Given labels: guitar, woman, music, hair, sing. Base-
line CNN: guitar, man, music, light, hair, sing, singer. Proposed: guitar,
music, hair, sing, singer, man, light, band

ability over 0.1% are higher (in the range of 5.37%-8.87%)
for the unified regularization and lower (in the range of
4.22%-8.49%) for the baseline CNN, demonstrating the ef-
ficiency of the proposed unified regularization technique in
deep CNN for predicting missing labels.

Furthermore, to evaluate the performance of the uni-
fied regularization model against the baseline CNN without
regularization, we visualize and compare the predicted la-
bels across three different dataset images used in this study,
as shown in Figs. 4, 5 and 6. The labels with predicted
probability over 0.1 are considered for the comparison of
the methods. The additional labels predicted by the pro-
posed method are shown in bold. The results show that the
proposed model can accurately capture labels that are re-
lated to the original given label set as well as to the visual
content of the objects appearing in Fig. 4. The proposed
model notably predicts “tree“ and “forest“, which are not
predicted by the baseline CNN. It clearly demonstrates ex-
emplars on which our proposed method improves the base-
line predictions. Similarly, the proposed method detects the
missing labels “valley“ and “sky“ for the given label “lake“
in Fig. 5. However, the baseline CNN without regularization

Fig. 7 Comparison of the micro-F1 score of the proposed method with
that of the baseline CNN using different missing-label rates on the Corel5K
dataset (probability ≥ 0.1%)

Fig. 8 Comparison of the micro-F1 score of the proposed method with
that of the baseline CNN using different missing-label rates on the Corel5K
dataset (Top-3)

Fig. 9 Comparison of the micro-F1 score of the proposed method with
that of the baseline CNN using different missing-label rates on the Corel5K
dataset (Top-5)

predicted a limited number of missing labels. The proposed
unified co-occurrence approach can effectively infer the la-
bels “sky“ and “valley“ from “clouds“ and “mountain“, re-



2160
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.10 OCTOBER 2020

Table 5 Model sensitivity to parameters α and β on the Corel5k dataset
(micro-F1 score for top-3 labels %).

α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1
β = 0.01 17.48 17.74 17.59 17.39 17.12
β = 0.1 17.08 16.71 18.52 16.63 16.82
β = 1 17.64 17.74 17.09 18.02 18.14

spectively, because it can infer labels based on similarities
in the internal space as well as from the external world of
common sense. Though the micro-F1 score of the proposed
approach is lower than that of the baseline CNN, the proba-
bility of predicting missing labels is more accurate, precise
and relevant to the visual content of the objects appearing in
Fig. 5.

Finally, we explain the results for Fig. 6, which in-
cludes a large number of object classes. In terms of the
micro-F1 score, the proposed approach outperforms the
baseline CNN in terms of accurate and very relevant miss-
ing labels related to the visual content of the objects. The
experimental results indicate that the internal and external
distributions of label similarity are more appropriate for de-
tecting missing labels when the number of training labels
is small and the number of object classes is large. In addi-
tion, the learning ability of the proposed model with differ-
ent missing-label rates, measured in terms of the micro-F1
score, compared to that of the baseline CNN on the Corel5K
dataset is shown in Fig. 7, Fig. 8 and Fig. 9. We observe that
the proposed model outperforms the baseline CNN across
different percentages of missing labels.

An analysis of the effect of parameters α and β on the
performance of the model is shown in Table 5. The results
show that as the value of β increases from 0.01 to 1 expo-
nentially, the optimal value of alpha changes from 0.25 to
1.0. This means that the two parameters interact with each
other, with bigger values of β requiring bigger values of α.
We reason that at larger values of β, increased contribution
of the external label similarity term leads to too much con-
tradiction with the ground truth.

6. Conclusions

This study proposed a novel approach to address the multi-
label image annotation problem with missing labels. A uni-
fied approach based on both internal and external label de-
pendencies was presented, utilized in a graph Laplacian reg-
ularization term in order to reliably reconstruct missing la-
bel information from available labels and visual input. Due
to the combined approach of label dependency represen-
tation, our proposed approach obtained distinctively more
accurate results than other competing methods described in
this study. Experimental analyses on three popular datasets
revealed that our approach performs better than the base-
line CNN without regularization. For future work, we plan
to extend our unified framework approach with other neural
network structures. Moreover, we will test our proposed ap-
proach on other benchmark data sets to further evaluate its
effectiveness for the recovery of missing labels.
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