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SUMMARY We consider the leader election problem in the population
protocol model, which Angluin et al. proposed in 2004. A self-stabilizing
leader election is impossible for complete graphs, arbitrary graphs, trees,
lines, degree-bounded graphs, and so on unless the protocol knows the
exact number of nodes. In 2009, to circumvent the impossibility, we in-
troduced the concept of loose stabilization, which relaxes the closure re-
quirement of self-stabilization. A loosely stabilizing protocol guarantees
that starting from any initial configuration, a system reaches a safe config-
uration, and after that, the system keeps its specification (e.g., the unique
leader) not forever but for a sufficiently long time (e.g., an exponentially
long time with respect to the number of nodes). Our previous works pre-
sented two loosely stabilizing leader election protocols for arbitrary graphs;
one uses agent identifiers, and the other uses random numbers to elect a
unique leader. In this paper, we present a loosely stabilizing protocol that
solves leader election on arbitrary graphs without agent identifiers or ran-
dom numbers. Given upper bounds N and Δ of the number of nodes n
and the maximum degree of nodes δ, respectively, the proposed protocol
reaches a safe configuration within O(mn2d log n + mNΔ2 log N) expected
steps and keeps the unique leader for Ω(NeN ) expected steps, where m is
the number of edges and d is the diameter of the graph.
key words: population protocols, leader election, loose stabilization

1. Introduction

This paper addresses the leader election problem in the
population protocol model. The population protocol (PP)
model, which was presented by Angluin et al. [2], represents
wireless sensor networks of mobile sensing devices that can-
not control their own movement. Two devices (say agents)
communicate with each other and change their states only
when they come sufficiently close to each other. We call
this event an interaction. One example represented by this
model is a flock of birds, where each bird is equipped with
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a sensing device with a small transmission range. Two de-
vices can communicate (i.e., interact) with each other only
when the corresponding birds come sufficiently close to
each other. This unique but meaningful model has attracted
a lot of attention and has been used in numerous studies.

Self-stabilizing leader election (SS-LE) requires that
starting from any configuration, a system (say population)
reaches a safe-configuration in which a unique leader is
elected, and thereafter the population keeps the unique
leader forever. Self-stabilizing leader election is impor-
tant in the PP model because (i) many population proto-
cols in the literature work on the assumption that the unique
leader exists [2]–[4], and (ii) self-stabilization tolerates any
finite number of transient faults, which suits systems con-
sisting of numerous cheap and unreliable nodes. (Such sys-
tems are the original motivation of the PP model.) How-
ever, SS-LE is impossible in many cases in the PP model:
no protocol solves SS-LE for complete graphs, trees, lines,
degree-bounded graphs, and so on unless the exact number
of agents n is available to agents in advance [4].

Hence, many researchers conducting studies of SS-LE
have taken one of the following two approaches. One ap-
proach is to accept the assumption that the exact n is avail-
able and focus on the space complexity of the protocol. Cai
et al. [5] proved that n states of each agent are necessary
and sufficient to solve SS-LE for a complete graph of n
agents. Mizoguchi et al. [6] and Xu et al. [7] improved the
space complexity by adopting the mediated population pro-
tocol model [8] and the PPk model [9], respectively. The
other approach is to use oracles, a kind of failure detec-
tors. Fischer and Jiang [10] took this approach for the first
time. They introduced oracle Ω?, which informs all agents
whether a leader exists or not, and proposed two protocols
that solve SS-LE for rings and complete graphs by usingΩ?.
Beauquier et al. [11] presented an SS-LE protocol for arbi-
trary graphs that uses two copies of Ω?. Canepa et al. [12]
proposed two SS-LE protocols that use Ω? and consume
only 1 bit of each agent: one is a deterministic protocol for
trees, and the other is a probabilistic protocol for arbitrary
graphs, although the position of the leader is not static and
moves among the agents.

In our previous works [13], [14] we took another ap-
proach to solve SS-LE. We introduced the concept of loose
stabilization, which relaxes the closure requirement of self-
stabilization. Specifically, starting from any initial configu-
ration, the population must reach a safe configuration within
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Table 1 Loosely stabilizing leader election for arbitrary graphs

Protocol Convergence Time Holding Time Agent Memory Requisite

PID [14] O(mN log N) Ω(Ne2N ) O(log N) agent identifiers
PRD [14] O(mN2 log N) Ω(Ne2N ) O(log N) random numbers

PAR (this paper) O(mn2d log n + mNΔ2 log N) Ω(NeN ) O(log N) -

a relatively short time; after that, the specification of the
problem (the unique leader) must be kept for a sufficiently
long time, though not forever. We proposed three loosely
stabilizing protocols PLE, PID, and PRD. Protocol PLE solves
leader election for complete graphs whose size is no more
than a given upper bound N of n. Protocols PID and PRD

solve leader election for arbitrary graphs using agent identi-
fiers and random numbers, respectively, given N. All three
protocols are practically equivalent to an SS-LE protocol
since they keep the specification for an exponentially long
time after reaching a safe configuration (and reaches a safe
configuration within polynomial time).

Many of the results on population protocols assume
uniform probabilistic distribution for the interactions of
agents; that is, every interaction occurs uniformly at ran-
dom [2], [3], [13]–[18]. This assumption has been used
mainly for evaluating the time complexity of protocols. We
also adopt this assumption because the measure of time is
crucial in the concept of loose stabilization. The impossibil-
ity of SS-LE [2] in the PP model still holds even with this
assumption.

In the field of population protocols, many efforts have
been devoted to devising protocols for a complete graph, i.e.,
a population where every pair of agents interacts infinitely
often. However, several works [2], [4], [11], [12], [19], [20]
give protocols that work for an arbitrary graph G(V, E)
where E specifies the set of interactable pairs. Each pair of
agents (u, v) ∈ E has interactions infinitely often, while each
pair of agents (u′, v′) � E never has an interaction. A set of
considerable graphs depends on an application. A probabil-
ity distribution which determines the probability that each
pair of agents interact at each step also depends on an ap-
plication. In this paper, from the theoretical interest, we fo-
cus on an arbitrary graph where every interactable pair of
agents has the same probability to be selected to interact at
each step. This setting is of interest because it generalizes
the setting of complete graphs and the uniformly random
scheduler for them. As an example of a practical applica-
tion for the setting, we can consider a network consisting
of a huge number of tiny and cheap devices where each de-
vice repeatedly tries to initiate an interaction (i.e., wireless
communication) with another device at the same intervals.
For some pair of devices, the time gap between the (peri-
odic) initiating trials of the two devices may be too small;
that is, they try to initiate wireless communication almost
simultaneously, and they fail even when they come suffi-
ciently close to each other. Thus, such pairs of agents never
have interactions, while the other pairs of agents have in-
teractions with the same rate. In this case, it is natural to
consider an arbitrary (general) graph and the uniformly ran-
dom scheduler that selects each edge (i.e., a pair of agents)

with the same probability at each step.

1.1 Our Contribution

In this paper, we give a loosely stabilizing protocol PAR for
leader election in arbitrary graphs without agent identifiers
or random numbers (or a model with a weaker assumption
than PID or PRD [14]). Thus, we succeed in removing the
assumptions of the unique identifiers and random number
generators for a loosely stabilizing leader election on arbi-
trary graphs in the PP model. Removing these assumptions
is important because the unique identifiers or random num-
ber generators may be difficult to realize in weak devices,
such as the tiny devices with restricted capability constitut-
ing a network of the PP model.

The expected convergence time (i.e., the expected num-
ber of interactions needed to reach a safe configuration)
and the expected holding time (i.e., the expected number
of interactions to keep the specification after reaching a safe
configuration) of PID, PRD, and PAR are shown in Table 1,
where Δ is a given upper bound of the maximum degree of
agents δ and d is the diameter of the graph. All the pro-
tocols, including PAR, keep the unique leader for an ex-
ponentially long time after a safe configuration. Protocol
PAR consumes O(log N) bits of each agent’s memory, while
any self-stabilizing protocol (which uses knowledge of exact
n) consumes Ω(log n) memory [5]. Furthermore, Izumi [15]
proved that loosely stabilizing leader election with polyno-
mial convergence time and an exponentially long holding
time needs Ω(log n) agent memory. Thus, PAR is asymptoti-
cally space optimal when N is polynomial in n. One may
think that the model of anonymous agents with Θ(log N)
agent memory is not well-motivated because Θ(log n) mem-
ory is sufficient to store an identifier. However, we believe
that anonymity is still an important assumption: assigning
distinct identifiers to a huge number of agents is not an easy
task, and memory corruption may cause conflicts among
their identifiers. Actually, many works assume anonymity
and agent memory space of O(log n) or more (e.g., [4]–
[7], [13], [14], [16], [21], [22]). In this paper, we analyze
the time complexities for undirected graphs for simplicity;
however, it works on any directed graphs without modifica-
tions.

While protocol PAR is based on the virus war mecha-
nism developed for PRD [14], the key idea of PAR is quite
novel and makes a considerable contribution: The token
with a countdown timer circulates in the graph, and a leader
creates and spreads a black or white virus when encounter-
ing the token with zero timer value. The idea of circulating
the token and the colors of viruses are newly introduced to
remove the assumption of random number generators.
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The formal analysis of the convergence time and the
holding time is another main contribution of this paper, since
analyzing such complexities of loosely stabilizing protocols
is a challenging task. In particular, we analyze the expected
time until two tokens performing random walks meet in the
PP model. The analysis can be applied with a slight modi-
fication to estimate the expected time until a token visits all
nodes by random walks. We believe that the analysis tech-
niques are of significant importance because existing analy-
ses for usual random walks cannot be applied to the popu-
lation protocol model: The token always moves through an
edge at each step in usual random walks, while in the pop-
ulation protocol model, the token moves at each step with
a probability depending on the degree of the node the token
currently exists on. Thus, the techniques we developed open
up a new path to analyze the PP model.

Angluin et al. [2] proved that for any population pro-
tocol P working on complete graphs, there exists a proto-
col that simulates P on any arbitrary graph. One may think
that we can easily obtain a loosely stabilizing leader election
protocol on arbitrary graphs using their transformer and an
existing loosely stabilizing leader election protocol on com-
plete graphs [13]. However, it cannot work since, in this
simulation, two agents swap their states when they have in-
teractions. This swap is needed to simulate interactions be-
tween distant agents in an arbitrary graph, but it results in
an execution where an elected leader moves among the pop-
ulation forever, which does not satisfy the specification of
the leader election. Furthermore, this transformer depends
on the assumption that all the agents have a common ini-
tial state at the start of the execution. We cannot assume
any specific initial state since we consider loose stabiliza-
tion. That is, our protocol works from any arbitrary con-
figuration (i.e., any global state). Hence, we cannot use the
transformer [2] to achieve our goal.

2. Preliminaries

In this section, we define the model that we consider for this
paper.

A population is a simple and weakly connected di-
rected graph G(V, E), where V (|V | ≥ 2) is a set of agents
and E ⊆ V × V is a set of directed edges. Each edge
represents a possible interactions (or communication be-
tween two agents): If (u, v) ∈ E, agents u and v can in-
teract with each other, where u serves as an initiator and v
serves as a responder. We assume that G is undirected, i.e.,
(u, v) ∈ E ⇔ (v, u) ∈ E. We define n = |V |, m = |E|,
δv = |{(u, w) ∈ E | v ∈ {u, w}}| for each v ∈ V , and
δ = maxv∈V δv.

A protocol P(Q,Y,T,O) consists of a finite set Q of
states, a finite set Y of output symbols, transition function
T : Q×Q→ Q×Q, and output function O : Q→ Y . When
an interaction between two agents occurs, T determines the
next states of the two agents based on their current states.
The output of an agent is determined by O: the output of
agent v with state q ∈ Q is O(q).

A configuration is a mapping C : V → Q that spec-
ifies the states of all the agents. We denote the set of all
configurations of protocol P by Call(P). We say that config-
uration C changes to C′ by an interaction e = (u, v), denoted

by C
e→ C′ if we have (C′(u),C′(v)) = T (C(u),C(v)) and

C′(w) = C(w) for all w ∈ V \ {u, v}. A scheduler determines
which interaction occurs at each time. In this paper, we con-
sider a uniformly random scheduler Γ = Γ0,Γ1, . . . : Each
Γt ∈ E is a random variable such that Pr(Γt = (u, v)) = 1/m
for any t ≥ 0 and any (u, v) ∈ E. Given an initial config-
uration C0 and Γ, the execution of protocol P is defined as

ΞP(C0,Γ) = C0,C1, . . . such that Ct
Γt→ Ct+1 for all t ≥ 0.

We denote ΞP(C0,Γ) simply by ΞP(C0) when no confusion
occurs.

The leader election problem requires that every agent
should output L or F, which means “leader” or “follower”,
respectively. The specification of leader election, denoted
by LE, requires that there exists one agent v such that v is
always a leader and all other agents are always followers
throughout an execution. We define expected holding time
EHTP(C,LE) as the expected number of interactions dur-
ing which an execution ΞP(C) starting from a configuration
C ∈ Call(P) keeps LE (i.e., the expected number of interac-
tions until ΞP(C) deviates from LE). For any set S ⊆ Call(P)
of configurations, we also define expected convergence time
ECTP(C,S) as the expected number of interactions required
for the population to enter a configuration in S in an execu-
tion ΞP(C) starting from a configuration C ∈ Call(P).

Definition (Loosely stabilizing leader election [13]): A
protocol P is an (α, β)-loosely stabilizing leader election
protocol if there exists set S of configurations satisfying
maxC∈Call(P) ECTP(C,S) ≤ α and minC∈S EHTP(C,LE) ≥ β.

We write the natural logarithm of x as ln x. and do not
indicate the base of logarithm in an asymptotical expression
such as O(log n).

Finally, we define round time. We define the first round
time RTΓ(1) as the minimum t satisfying ∀e ∈ E, 0 ≤ ∃t′ ≤
t, Γt′ = e. For any i ≥ 2, we define the i-th round time
RTΓ(i) as the minimum t satisfying ∀e ∈ E, RTΓ(i − 1) <
∃t′ ≤ t, Γt′ = e. For simplicity, we define RTΓ(0) = −1.
Note that all agents join at least one interaction during
ΓRTΓ(i)+1, . . . ,ΓRTΓ(i+1) for each i ≥ 0.

Lemma 1 (in [23]): Pr(RTΓ(i) < im(1 + ln n)) ≥ 1 − ne−i/4

for any i ≥ 1.

Proof : The lemma follows from the proof of Lemma 15
in [23] with a slight modification.† �

3. Loosely Stabilizing Leader Election Protocol

In this section, we give a loosely stabilizing leader election
†Lemma 15 in [23] claims Pr(RTΓ(i) < 2imln n�) ≥ 1 − ne−i/4

for any i ≥ 1. We obtain Pr(RTΓ(i) < im(1 + ln n)) ≥ 1 − ne−i/4 re-
placing 2imln n�with im(1+ ln n) in all the inequalities that appear
in the proof of Lemma 15 in [23].
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Algorithm 1 Leader Election PAR

Variables of each agent:
leader ∈ {�,⊥}, token ∈ {�,⊥}, clr ∈ {BL,WH}
timerL ∈ [0, tmax], timerT ∈ [0, tmax], timerV ∈ [0, tvirus], timerE ∈
[0, tepi]

Output function O:

if v.leader = � holds, then the output of agent v is L, otherwise F.

Interaction between initiator u0 and responder u1:

1: u0.timerL ← u1.timerL ← max(u0.timerL − 1, u1.timerL − 1, 0)
2: if u0.leader = � or u1.leader = � then
3: u0.timerL ← u1.timerL ← tmax // a leader resets leader timer
4: else if u0.timerL = 0 then
5: u0.leader← � // a new leader is created at timeout
6: u0.timerL ← u1.timerL ← tmax

7: end if

8: u0.timerT ← u1.timerT ← max(u0.timerT − 1, u1.timerT − 1, 0)
9: if u0.token = � or u1.token = � then

10: u0.timerT ← u1.timerT ← tmax // a token resets token timer
11: else if u0.timerT = 0 then
12: u0.token← � // a new token is created at timeout
13: u0.timerT ← u1.timerT ← tmax

14: end if

15: u0.token↔ u1.token // a token moves between agents
16: u0.timerE ↔ u1.timerE
17: forall i ∈ {0, 1} do ui.timerE ← max(0, ui.timerE − 1) endfor
18: if u0.token = � and u1.token = � then u1.token← ⊥ endif

19: if ∃i ∈ {0, 1} : ui.timerV > 0 ∧ u1−i.timerV = 0 ∧ ui.clr � u1−i.clr
then

20: u1−i.clr← ui.clr
21: u1−i.leader← ⊥
22: end if
23: u0.timerV ← u1.timerV ← max(u0.timerV − 1, u1.timerV − 1, 0)

24: if ∃i ∈ {0, 1} : ui.leader = � ∧ ui.token = � ∧ ui.timerE = 0
then

25: if ui.clr = BL then ui.clr←WH else ui.clr← BL endif
26: ui.timerV ← tvirus
27: ui.timerE ← tepi
28: end if

protocol PAR. It elects exactly one leader within polynomial
time and keeps the unique leader for an exponentially long
time for arbitrary graphs without identifiers or random num-
bers, given upper bounds N and Δ of n and δ, respectively.

The pseudocode of PAR is described in Algorithm 1.
In the pseudocode, we use X ← Y to represent the sub-
stitution of a value Y to a variable X and use W ↔ Z to
represent swapping the values of two variables W and Z.
A state of an agent is described by a collection of vari-
ables, and a transition function is described by a pseudocode
that updates variables of the initiator x and the responder
y. We denote the value of variable var of agent v ∈ V
by v.var. We also denote the value of var in state q ∈ Q
by q.var. In PAR, each agent has three binary variables,
leader ∈ {�,⊥}, token ∈ {�,⊥}, and clr ∈ {BL,WH},
and four timers, timerL, timerT, timerV, and timerE. The
output function defines leaders as follows: an agent v is a
leader if v.leader = � and a follower otherwise. We say
that agent v has a token if v.token = � and v has a virus if

v.timerV > 0. We also say that v is black if v.clr = BL,
and v is white otherwise.

Protocol PAR consists of five parts: leader creation
(Lines 1–7), token creation (Lines 8–14), token circulation
(Lines 15–18), virus creation (Lines 24–28), and virus prop-
agation (Lines 19–23). Our goal is to elect a unique leader
in the population from an arbitrary initial configuration. The
leader-creation part creates a leader when no leader exists in
the population. The other four parts work together to reduce
the number of leaders to one when two or more leaders exist.

The leader-creation part aims to create a leader when
no leader exists in the population. Each agent uses timerL
as the barometer for suspecting that no leader exists. Specif-
ically, when initiator x and responder y interact, they take
the larger value of x.timerL and y.timerL, decrease it by
one, and substitute the decreased value into x.timerL and
y.timerL (Line 1). We call this event larger value propaga-
tion. If x or y is a leader, both timers are reset to tmax (Lines
2–3). We call this event timer reset. When a timer becomes
zero (i.e., timeout), agents x and y suspect that no leader
exists in the population. Then, x becomes a new leader
with the full timer value tmax (Lines 5–6). When no leader
exists, the population never experiences timer reset; thus,
their timers keep on decreasing. Hence, the timeout even-
tually occurs and a leader is created. When a leader exists,
the timeout rarely happens since all agents keep high timer
values almost all the time thanks to the timer reset and the
larger value propagation. Therefore, this mechanism rarely
ruins the stability of the unique leader.

A naive way to reduce the number of leaders to one is
as follows: When two leaders meet, one remains a leader
and the other becomes a follower. This simple mechanism
works on a complete graph, but does not work on an arbi-
trary graph because two leaders u and v never meet forever
if (u, v) � E. Therefore, we do not adopt this simple mecha-
nism.

Instead, PAR reduces the number of leaders to one by
virus propagation and token circulation. A leader tries to
kill other leaders by creating and propagating a virus, while
a circulating token controls the frequency of creating a virus
such that exactly one agent eventually remains a leader (i.e.,
survives a virus war). Specifically, the token-creation part
creates a token when no token exists in the population;
the token-circulation part reduces the number of tokens to
one, circulates the unique token among the population, and
decrements the epidemic timer (timerE) of the unique to-
ken every time it moves; the virus-creation part creates a
new virus when a leader meets a token with an epidemic
timer of zero value; the virus-propagation part propagates
the virus to the whole population, which changes leaders to
followers.

The token-creation part (Lines 8–14) creates a token
in the same way as the leader-creation part when no token
exists in the population. There is no difference between the
two parts except that the former uses variable timerT while
the latter uses timerL.

The token-circulation part (Lines 15–18) aims to re-
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duce the number of tokens to one and circulates the unique
token. A token moves between agents by interaction (Line
15). We can say that a token makes a random walk among
the population since the scheduler randomly chooses two
agents to interact at each time. Hence, two tokens even-
tually meet if two or more tokens exist in the population.
When two agents interact and both agents have tokens, then
either one of the two loses its token (Line 18). Hence, the
number of tokens eventually becomes one. Each token has
an epidemic timer (timerE). The epidemic timer is decre-
mented by one every time the token moves (Lines 16–17),
and thus, it eventually becomes zero. Note that the number
of tokens never becomes zero once a token exists because
the number of tokens decreases only when two tokens meet
at an interaction.

The virus-creation part (Lines 24–28) creates a new
virus when a leader meets a token with an epidemic timer
of zero value. We call this event virus creation. Specifically,
if a token with timerE = 0 moves to a leader agent, the
leader changes its color from black to white or from white
to black (Line 25) and creates a new virus with full value
TTL (Time To Live), i.e., timerV = tvirus (Line 26). The
leader also resets the epidemic timer of the token (Line 27),
which enables periodical occurrence of epidemics.

The virus-propagation part (Lines 19–23) propagates a
virus from agent to agent and reduces the number of leaders.
When an agent has a virus (i.e., v.timerV > 0), we regard
v.timerV as the TTL of the virus. A virus vanishes from
the agent when its TTL becomes zero. In the same way as
timerL and timerT, a virus propagates at interactions in
the larger value propagation fashion (Line 23). Moreover,
a virus has the power to change the colors of agents and
kill leaders. Specifically, if an agent u with a virus interacts
with an agent v without a virus such that u.clr � v.clr, v
changes its color to u.clr (Line 20). At this time, if v is
a leader, the virus kills v (i.e., changes v from a leader to
a follower) (Line 21). We say that an virus on an agent w
is black (resp. white) if w.clr = BL (resp. w.clr = WH).
Note that in an execution of PAR, a white virus kills only
black leaders and a black virus kills only white leaders.

Once a new virus is created in the virus-creation part,
the virus propagates to the whole population within a short
time. However, the value of timerV is reset to tvirus only
when a new virus is created. Hence, viruses eventually van-
ish from the population if the frequency of epidemics, con-
trolled by the value tepi, is sufficiently low. The concept of
colors helps to avoid the suicide of leaders, i.e., a leader is
rarely killed by a virus that it creates. Consider that a white
leader creates a virus. Then, the leader changes its color to
black, and the black virus propagates to the whole popula-
tion. Since a black virus kills only white leaders, the leader
is never killed by the virus until it becomes white. There-
fore, if we set tepi to a sufficiently high value, suicide rarely
happens because the black virus vanishes from the popula-
tion before the leader becomes white.

Protocol PAR correctly works if tmax and tvirus are suffi-
ciently large, and tepi is sufficiently greater than tvirus. When

no leader exists, the leader-creation part eventually creates a
leader by timeout. In the following, let us consider the case
in which multiple leaders exist in the population, and see
how PAR reduces these leaders to one. The token-creation
and the token-circulation parts eventually create the unique
token and circulate it in the population. Since tepi is suffi-
ciently greater than tvirus, the population eventually reaches a
configuration where no agent has a virus. After that, the epi-
demic timer of the token keeps on decreasing and eventually
becomes zero, and the token eventually moves to a leader in
the population, which creates a new virus. This virus soon
propagates to the whole population and turns all the agents
to the ones with the same color (black or white). Let the
color be black without loss of generality. Again, the virus
vanishes, the epidemic timer of the token becomes zero, and
the token moves to a leader in the same way. Then, the black
leader becomes white and creates a new virus. It soon prop-
agates to the whole population and changes all agents from
black to white, which kills all the other leaders. Then, we
have the exactly one leader in the population.

Even after we have exactly one leader and one token,
the population sometimes enters the wrong configuration
where no leader exists, multiple leaders exist, or multiple
tokens exist. These deviations are caused by the following
events: (i) leader timeout happens, (ii) token timeout hap-
pens, or (iii) a new virus is created when previous viruses
remain in the population. Cases (i) and (ii) rarely happens
thanks to the timer reset, the larger value propagation, and
the sufficiently large tmax, which is the reset value of leader
timers and token timers. Case (iii) also rarely happens be-
cause tepi, the reset value of the epidemic timer, is suffi-
ciently larger than the reset value of a virus timer tvirus. As
we shall see later, the expected time from a safe configura-
tion to such a wrong configuration is exponential.

4. Complexity Analysis

In this section, we analyze the expected holding time and
the expected convergence time of PAR. The notations and
assumptions used in this paper are summarized in Table 2.
We denote Call(PAR) simply by Call throughout this section.

Table 2 Notations and assumptions for PAR

Notations
τ : �tvirus/(4δ)�

PROPL(i) : Ci ∈ Lexist ⇒ Ci+2mτ ∈ Lhalf
PROPT (i) : Ci ∈ Texist ⇒ Ci+2mτ ∈ Thalf

HALF(i) :
HALF(i) = 1 if every agent joins only less than tmax/2
interactions among Γi, . . . ,Γi+2mτ−1;
HALF(i) = 0 otherwise.

#TI (v, t1, t2) :
the number of interactions among Γt1 , . . . ,Γt2
involving the token that agent v has in configuration Ct1

Assumptions
n ≥ 3

tvirus ≥ 4δmax(d, 7 ln n)
tmax = 2tvirus
8δtvirusln n� ≤ tepi ≤ τeτ/n4
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We have three parameters in PAR: the reset values of
timers tmax, tvirus, and tepi. We mentioned that PAR correctly
works if tmax and tvirus are sufficiently large and tepi is suffi-
ciently greater than tvirus. Specifically, we assume tvirus ≥
4δmax(d, 7 ln n), tmax = 2tvirus, and tepi ≥ 8δtvirusln n�,
where δ is the maximum degree of the agents and d is the
diameter of population G. (Note that δ is an even number
because G is undirected, i.e., (u, v) ∈ E ⇔ (v, u) ∈ E.) We
also assume that tepi is not extremely large: tepi ≤ τeτ/n4,
where τ = �tvirus/(4δ)� = �tmax/(8δ)�. Otherwise, even
when a leader exists, the leader timeout happens with non-
negligible probability within a resulting very long epidemic
interval. This severely harms our analysis of the conver-
gence time. We will prove the following equations under
these assumptions:

maxC∈Call ECTPAR (C,SAR) = O(mn2d log n + mtepi),

(1)

minC∈SAR EHTPAR (C,LE) = Ω(τeτ), (2)

where SAR is the set of configurations we define later. Thus,
given a sufficiently large N, we obtain an (O(mn2d log n +
mNΔ2 ln N),Ω(NeN))-loosely stabilizing leader election
protocol by assigning tvirus = 4ΔN and tepi = 8Δtvirusln N�.
(Remind that N and Δ are given upper bounds of n and the
maximum degree δ = maxv∈V δv.)

To prove (1) and (2), define 10 sets of configurations:

Lone = {C ∈ Call | #L(C) = 1},
Tone = {C ∈ Call | #T (C) = 1},
Lexist = {C ∈ Call | #L(C) ≥ 1},
Texist = {C ∈ Call | #T (C) ≥ 1},
Lhalf = {C ∈ Call | ∀v ∈ V, C(v).timerL > tmax/2},
Thalf = {C ∈ Call | ∀v ∈ V, C(v).timerT > tmax/2},

Vsame =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩C ∈ Call

∣∣∣∣∣∣∣∣∣
∃u,∀v ∈ V, C(u).leader = �
∧ (C(v).timerV > 0

⇒ C(u).clr = C(v).clr)}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,
Vzero = {C ∈ Call | ∀v ∈ V, C(v).timerV = 0},

Ehalf =

{
C ∈ Call

∣∣∣∣∣∣
∀v ∈ V, C(v).token = �
⇒ C(v).timerE > tepi/2

}
,

SAR = Lone ∩ Tone ∩ Lhalf ∩ Thalf ∩Vsame ∩ (Ehalf ∪Vzero),

where #L(C) and #T (C) denote the number of leaders and the
number of tokens in configuration C, respectively. Note that
Vsame is the set of configurations where there is a leader such
that every agent with a virus has the same color as the leader,
and Ehalf is the set of configurations where every token has
an epidemic timer whose value is greater than tepi/2.

4.1 Expected Holding Time

The goal of this subsection is to prove (2). First, we give a
sufficient condition to satisfy (2) in Lemma 2.

Lemma 2: Let C0 ∈ SAR and ΞPAR (C0) = C0,C1, . . . . We
have (2) if

Pr(C0, . . . ,C8mδτln n� ∈ LE ∧C8mδτln n� ∈ SAR)

= 1 − O(nδ log n · e−τ).
(3)

Proof : Let A = minC0∈SAR EHTPAR (C0,LE). If (3) holds,
we have A ≥ (1−O(nδ log n · e−τ))(8mδτln n�+A). Solving
this inequality gives A ≥ τeτ. �

By Lemma 2, our goal is now to prove (3). In what
follows, we give five conditions such that satisfying all the
conditions yields (3) (Lemma 3) and show that all the five
conditions hold with probability at least 1−O(nδ log n · e−τ)
(Lemmas 4, 5, 6, 7, and 8).

To specify the conditions, we introduce four random
variables PROPL(i), PROPT (i), HALF(i), and #TI(v, t1, t2).
The first three are binary random variables:

• PROPL(i) = 1 if Ci ∈ Lexist ⇒ Ci+2mτ ∈ Lhalf holds,
otherwise PROPL(i) = 0.

• PROPT (i) = 1 if Ci ∈ Texist ⇒ Ci+2mτ ∈ Thalf , other-
wise PROPT (i) = 0.

• HALF(i) = 1 if every agent joins less than tmax/2 inter-
actions among Γi, . . . ,Γi+2mτ−1, otherwise HALF(i) =
0.

Roughly speaking, PROPL(i) = 1 (PROPT (i) = 1) means
that high values of timerL (timerT) propagate from a
leader (a token, respectively) to all the agents during 2mτ
interactions Γi,Γi+1, . . . ,Γi+2mτ−1, and HALF(i) = 1 means
that every agent does not interact so much during those 2mτ
interactions. Note that PROPL(i) = 1 (PROPT (i) = 1) un-
conditionally holds when no leader (token, respectively) ex-
ists in Ci. Next, we define random variable #TI(v, t1, t2) for
agent v ∈ V and integers t1 and t2, (0 ≤ t1 < t2). This
variable is meaningful only if v has a token when interaction
Γt1 occurs. Intuitively, #TI(v, t1, t2) represents the number of
interactions that the token joins during Γt1 , . . . ,Γt2−1 (or the
number of times the token moves during the period). For-
mally, we define #TI(v, t1, t2) = |{t ∈ [t1 + 1, t2] | vt � vt−1}|
where vt1 = v, and

vt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u if Γt−1 = (u, vt−1)

w if Γt−1 = (vt−1, w)

vt−1. otherwise

for t > t1.
Now, we can describe the five conditions (A), (B), (C),

(D), and (E) in the form of the following lemma.

Lemma 3: Let C0 ∈ SAR and ΞPAR (C0) = C0,C1, . . . . Let
vT be the agent that has the unique token in configuration C0.
Then, we have both C0, . . . ,C8mδτln n� ∈ LE and C8mδτln n� ∈
SAR if the following conditions hold:
(A) #TI(vT , 0, 8mδτln n�) < tepi/2,
(B) PROPL(2imτ) = 1 for all i = 0, 1, . . . , 4δln n� − 1,
(C) PROPT (2imτ) = 1 for all i = 0, 1, . . . , 4δln n� − 1,
(D) HALF(2imτ) = 1 for all i = 0, 1, . . . , 4δln n� − 1, and
(E) RTΓ(tvirus) < 8mδτln n�.

Proof : The number of tokens decreases only when two
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Table 3 Convergence steps in PAR

Convergence Step Convergence Time (#interactions) Failure Probability Lemmas
1. Call → Texist ∩ Thalf mtepi/2 o(1) Lemma 12
2. → Tone ∩ Thalf 3mn2d log2 n o(1) Lemma 14
3. → (Tone ∩ Thalf ∩Vzero ∩ Lexist) mtepi/2 o(1) Lemma 15
4. → SAR 5mtepi/2 + mn2d o(1) Lemma 16

total Call → SAR 4(mtepi + mn2d log2 n) o(1)

tokens meet, and it increases only when a token timeout
happens. Clearly, conditions (C) and (D) guarantee that a
token timeout never happens during C0,C1, . . . ,C8mδτln n�;
thus, the number of tokens is always one during the period.

Therefore, condition (A) guarantees that the population
is always in Vsame during C0,C1, . . . ,C8mδτln n� for the fol-
lowing reason. Note that C0 ∈ Ehalf ∪ Vzero. In the case
that C0 ∈ Ehalf , no agent creates a new virus during the
period by (A). Since C0 ∈ Vsame, the population always
stays in Vsame during the period in this case. In the case
that C0 ∈ Vzero, the virus creation happens at most once by
(A). If the virus creation does not happen, the population
always stays in Vsame during the period since C0 ∈ Vsame.
Otherwise, the leader that creates a virus and all the agents
that are infected by the virus have the same color during this
period. Therefore, the population always stays in Vsame in
this period since C0 ∈ Vzero.

The population does not reach ¬Lexist as long as
the population stays in Vsame; That is, the last surviving
leader is never killed while the population is in Vsame.
Therefore, there is always at least one leader during
C0,C1, . . . ,C8mδτln n�. Thus, conditions (B) and (D) yield
that a leader timeout does not happen during this period.
Hence, C0,C1, . . . ,C8mδτln n� ∈ LE.

Now, all we have to do is to show that C8mδτln n� ∈ SAR.
Remind that SAR = Lone ∩ Tone ∩ Lhalf ∩ Thalf ∩ Vsame ∩
(Ehalf ∪Vzero)) and we have shown Ci ∈ Lone∩Tone∩Vsame

for all i = 0, 1, . . . , 8mδτln n�. Moreover, this yields
C8mδτln n�−2mτ ∈ Lone ∩ Tone; thus, we have C8mδτln n� ∈
Lhalf ∩ Thalf by conditions (B), (C), and (D). Hence, it suf-
fices to show that C8mδτln n� ∈ Ehalf ∪Vzero. If the virus cre-
ation happens during C0,C1, . . . ,C8mδτln n�, then condition
(A) yields C8mδτln n� ∈ Ehalf . Consider the other case, i.e.,
the case in which the virus creation never happens during
this period. The maximum value of timerV in the popula-
tion (i.e., maxv∈V v.timerV) decreases at least by one at each
round. Hence, condition (E) yields C8mδτln n� ∈ Vzero. �

Each of the five conditions (A), (B), (C), (D), and (E)
holds with probability at least 1−O(nδ log n·e−τ), as claimed
by Lemmas 4, 5, 6, 7, and 8, respectively. Fortunately, these
lemmas can be proven by a simple application of Chernoff
bounds and/or by techniques used in [23]. See Appendix for
the proofs of these lemmas.

Lemma 4: Let C0 ∈ Tone and ΞPAR (C0) = C0,C1, . . . . Let
vT be the agent that has the unique token in configuration
C0. Then, Pr(#TI(vT , 0, 8mδτln n�) < tepi/2) ≥ 1 − e−τ.

Lemma 5 (in [23]): Pr(PROPL(i) = 1) ≥ 1 − 2ne−τ for any
i ≥ 0.

Lemma 6: Pr(PROPT (i) = 1) ≥ 1 − 2ne−τ for any i ≥ 0.

Lemma 7 (in [23]): Pr(HALF(i) = 1) ≥ 1 − ne−τ for any
i ≥ 0.

Lemma 8: Pr(RTΓ(tvirus) < 8mδτln n�) ≥ 1 − ne−τ.

Lemma 9: minC∈SAR EHTPAR (C,LE) = Ω(τeτ).

Proof : The lemma follows from Lemmas 2, 3, 4, 5, 6, 7,
and 8. �

4.2 Expected Convergence Time

The goal of this subsection is to prove (1). First, we give a
sufficient condition to satisfy (1) in Lemma 10.

Lemma 10: Let C0 ∈ Call and ΞPAR (C0) = C0,C1, . . . . We
have maxC∈Call ECTPAR (C,SAR) = O(mtepi + mn2d log n) if
the following holds:

Pr(∃i ∈ O(mtepi + mn2d log n),Ci ∈ SAR) = Ω(1). (4)

Proof : Let B = maxC∈Call ECTPAR (C,SAR). If (4) holds,
we have B = O(mtepi +mn2d log n))+ (1−Ω(1)) ·B. Solving
this equality gives B = O(mtepi + mn2d log n). �

By lemma 10, our goal is now to show (4). We will show (4)
with the four convergence steps shown in Table 3. This ta-
ble shows the convergence time and failure probability of
each step; for example, the third row means that letting
C0 ∈ Tone ∩ Thalf and ΞPAR (C0) = C0,C1, . . . , we have
Pr(∃i ≤ mtepi/2, Ci ∈ Tone∩Thalf∩Vzero∩Lexist) ≥ 1−o(1).
We show the analyses for those four steps as Lemmas 12,
14, 15, and 16. In total, these lemmas together show that
an execution of PAR starting from any configuration reaches
SAR within 4(mtepi + mn2d log2 n) interactions with proba-
bility 1 − o(1) ⊂ Ω(1), i.e., we obtain (4).

We analyze the four steps by assuming that PROPL() =
PROPT () = HALF() = 1 always hold during the
4(mtepi + mn2d log2 n) interactions. This assumption is jus-
tified by the following lemma.

Lemma 11: Pr(∀i ≤ 4(mtepi + mn2d log2 n),PROPL(i) =
PROPT (i) = HALF(i) = 1) = 1 − o(1).

Proof : By Lemmas 5, 6, and 7, the error probability is at
most 4(mtepi + mn2d log2 n) · 5ne−τ = o(1) because tepi ≤
τeτ/n4 and τ ≥ 7 ln n − 1. �

4.2.1 First Step

Lemma 12: Let C0 ∈ Call and ΞPAR (C0) = C0,C1, . . . .
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Then, Pr(∃i ≤ mtepi/2, Ci ∈ Texist ∩ Thalf) = 1 − o(1).

Proof : If no token exists in C0, a token is created by a
token timeout within tmax rounds because every round de-
creases maxv∈V C(v).timerT at least by one when no token
exists. By Lemma 1, tmax rounds finish within 16mδτln n�
interactions with probability 1−o(1). (See Lemma 18 in Ap-
pendix for the complete proof.) By Lemma 11, once a token
exists, the population reaches a configuration in Texist∩Thalf

within 2mτ interactions with probability 1−o(1). The lemma
follows from 16mδτln n� + 2mτ < mtepi/2. �

4.2.2 Second Step

To obtain a sufficient number of interactions to reach Tone

from Texist, we analyze a number of interactions until two
tokens meet in the population (Lemma 13). The result of
the second step (Lemma 14) follows from Lemma 13.

Lemma 13: Let C0 be a configuration where two or more
tokens exist. For any two of those tokens, the expected num-
ber of interactions until either of the two tokens disappears
is at most mn2d/2 in execution ΞPAR (C0).

Proof : Let u, v ∈ V be two distinct agents such that both
of them have tokens in C0. We analyze the expected num-
ber of interactions until the two tokens meet. (One of the
two tokens may vanish by meeting another token; how-
ever, we ignore this event because this just reduces the ex-
pected number of interactions until one of the two tokens
vanish.) Consider the pair of random walks by the two to-
kens on population G, i.e., a Markov chain (ut, vt) in which
a state of the chain is a pair of agents (the locations of
the two token) in G. We denote (a, b) → (c, d) for agents
a, b, c, d ∈ V if (a, c) ∈ E ∧ b = d, or (b, d) ∈ E ∧ a = c,
or (a, b) ∈ E ∧ a = d ∧ b = c. For any two states x and
y, the transition probability Px,y of the chain is given by
Px,y = 2/m if x → y, Px,y = 1 − (2/m)|{z | x → z}| if
x = y; otherwise, Px,y = 0. The symmetry structure of the
chain (Px,y = Py,x) gives

∑
x Px,y = 1 for any state y. Thus,

π = (π(x1), π(x2), . . . , π(xn(n−1))) = {n(n − 1)}−1(1, 1, . . . , 1)
is the stationary distribution of the chain (πP = π), where
x1, x2, . . . , xn(n−1) are all the states of the chain. We denote
the expected number of transition steps from state x to state
y by hx,y. We have hy,y = 1/π(y) = n(n − 1) for any state
y. We also have hy,y = 1 +

∑
y→z(2/m) · hz,y. Hence, we

obtain
∑
y→z hz,y = n(n − 1)m/2 − m/2. Thus, we have

hx,y ≤ mn2/2 for any states x and y satisfying x → y. Let
w0, w1, . . . , wl (w0 = u, wl = v, l ≤ d) be the shortest path
from u to v. The expected time until the two tokens meet is
bounded by

(∑l−2
i=0 h(wi,wl),(wi+1,wl)

)
h(wl−1,wl),(wl,wl−1) ≤ mn2d/2.

�

Lemma 14: Let C0 ∈ Texist ∩ Thalf and ΞPAR (C0) =
C0,C1, . . . . Then, Pr(∃i ≤ 3mn2d log2 n, Ci ∈ Tone∩Thalf) ≥
1 − o(1).

Proof : For any pair of tokens in C0, at least one of the
two tokens disappears within the first mn2d interactions

with probability at least 1/2, by Markov’s inequality and
Lemma 13. Hence, at least one of them disappears within
the first �3mn2d log2 n� interactions with probability at least
1− 2−3 log2 n+1 = 1−O(n−3). Since there are at most n(n− 1)
pairs of tokens in C0, exactly one of the tokens survives
after the first �3mn2d log2 n� interactions with probability
1 − O(1/n) = 1 − o(1), by the union bound. Moreover,
Lemma 11 guarantees that no token is created by a token
timeout during the period with probability 1 − o(1). Thus,
the population reaches Tone during the period with probabil-
ity 1 − o(1). Lemma 11 also guarantees that the population
is in Thalf at that time. �

4.2.3 Third Step

By Lemma 8, all viruses on the population vanish within
8mδτln n� interactions with probability 1 − o(1) unless a
new virus is created during the period. Even if a new virus
is created during the period, the next 8mδτln n� interac-
tions are enough for the population to reach Vzero, with
probability 1 − o(1). A virus creation may happen again
during these 8mδτln n� interactions; however, it requires
that the unique token joins more than tepi (≥ 64mδτln n�)
interactions among the 8mδτln n� interactions. Since the
unique token joins each interaction with probability 2/m,
a Chernoff bound shows that such an event happens only
with probability o(1) (See Lemma 4). After that, even if
there is no leader in the population, a leader timeout happens
and a new leader is created within 16mδτln n� interactions
with probability 1 − o(1). This is because tmax rounds finish
within 16mδτln n� interactions with probability 1− o(1) by
Lemma 1. (See Lemma 18 in Appendix for the complete
proof.) Since 32mδτln n� ≤ mtepi/2, we have obtained the
following lemma; Thus, we have finished the third step.

Lemma 15: Let C0 ∈ Tone ∩ Thalf and ΞPAR (C0) =
C0,C1, . . . . Then, Pr(∃i ≤ mtepi/2, Ci ∈ Tone ∩ Thalf ∩
Vzero ∩ Lexist) ≥ 1 − o(1).

4.2.4 Forth Step

Let C0 ∈ Tone ∩ Thalf ∩ Vzero ∩ Lexist and ΞPAR (C0) =
C0,C1, . . . . By Lemma 11, we can assume that no token
timeout happens and no leader timeout happens for a suffi-
ciently long period as long as at least one leader exists. We
expect that the execution ΞPAR (C0) proceeds in the following
way in this order.

• (A1) The epidemic timer of the unique token becomes
zero,

• (A2) The unique token meets a leader, and a new virus
is created,

• (A3) The population reaches a configuration where all
agents have a virus,

• (A4) All viruses vanish from the population,
• (B1) The epidemic timer of the unique token becomes

zero,



SUDO et al.: LOOSELY STABILIZING LEADER ELECTION ON ARBITRARY GRAPHS WITHOUT IDENTIFIERS OR RANDOM NUMBERS
497

• (B2) The unique token meets a leader and a new virus
is created,

• (B3) The population reaches a configuration where all
agents have a virus before the epidemic timer of the
unique token decreases to tepi/2.

The population reaches a configuration in SAR when (A1),
(A2),. . . , (B3) happen in this order in ΞPAR (C0). Let vA and
vB be the leaders that create viruses in (A2) and (B2), respec-
tively. (vA = vB may hold.) Since C0 ∈ Vzero, vA is the only
agent that has a virus just after (A2) happens. Without loss
of generality, suppose that vA is black at this time. There-
after, every agent becomes black when it meets an agent
with a virus. Hence, all agents are black when (A3) hap-
pens. Thereafter, when vB creates a virus in (B2), its color is
changed from black to white. At this time, all other leaders
are black. Therefore, each of them is killed and becomes a
follower when it meets an agent with a virus. Hence, only
vB is a leader, and all agents are white when (B3) happens.
Therefore, Ct ∈ Lone ∩ Tone ∩Vsame ∩ Ehalf holds where Ct

is a configuration just after (B3) happens. Since we can as-
sume PROPL(t−2mτ) = PROPT (t−2mτ) = 1 by Lemma 11,
Ct ∈ Lhalf ∩ Thalf also holds; thus, Ct ∈ SAR.

It is reasonable to expect that (A1), (A2),. . . , (B3) hap-
pen in this order. (A1) and (A2) must happen in this order.
We can prove that a virus created by vA propagates to the
whole population within 2mτ interactions with probability
at least 1−o(1), in the same way as Lemma 5.† After that, all
viruses eventually vanish from the population (A4). As we
discussed above (in the third step), this happens before the
epidemic timer of the unique token becomes zero again, i.e.,
(B1) happens, with probability 1−o(1). (B2) also must even-
tually happen because there is at least one leader when (A4)
happens; actually, vA must be a leader at this time. The virus
created by vB propagates to the whole population within 2mτ
interactions with probability 1 − o(1), again. (B3) may fail
if the epidemic timer of the unique token decreases to tepi/2
within the 2mτ interactions. However, such an event hap-
pens only with probability 1 − o(1). (See Lemma 4). Thus,
the above sequence (A1), (A2),. . . , (B3) happens in this or-
der with probability 1 − o(1).

To finish the analysis of the forth step, we need to an-
alyze a sufficient number of interactions for each of (A1),
(A2), . . . , (B3).

• (A1), (B1): The epidemic timer of the unique token
decreases by one if it joins an interaction. The unique
token joins each interaction with probability at least
2/m. Therefore, the epidemic timer of the unique to-
ken becomes zero within mtepi/2 interactions on aver-

†Lemma 5 guarantees that if a leader exists, a high value
of timerL propagates to the whole population, and the popu-
lation reaches, within 2mτ interactions, a configuration where
v.timerL > tmax/2 for all v ∈ V , with probability 1 − o(1). Since
tmax = 2tvirus, this lemma is essentially the same as what we need
to show here: if an agent with timerV = tvirus exists, then the pop-
ulation reaches a configuration where v.timerV > 0 for all v ∈ V
within 2mτ interactions, with probability 1 − o(1).

age. We can easily prove by a Chernoff bound that it
is done within mtepi interactions (the double of the av-
erage) with probability 1 − o(1). (See Lemma 19 in
Appendix for the complete proof.)

• (A2), (B2): Once the epidemic timer of the unique
token becomes zero, the token meets a leader within
mnd/2 interactions on average. We can prove this in
almost the same way as Lemma 13. (See Lemma 20
in Appendix for the complete proof.) Therefore, (A2)
(and (B2)) finishes within mn2d/2 interactions with
probability 1− 1/n = 1− o(1), by Markov’s inequality.

• (A3), (B3): As mentioned above, (A3) (and (B3)) fin-
ishes within 2mτ ≤ mtepi/8 interactions with probabil-
ity 1 − o(1).

• (A4): By Lemma 8, (A4) finishes within 8mδτln n� ≤
mtepi/8 interactions with probability 1 − o(1).

In total, with probability 1−o(1), (A1), (A2), . . . , (B3) finish
within 2(mtepi + mn2d/2 + mtepi/8) + mtepi/8 ≤ 5mtepi/2 +
mn2d interactions. The population is in SAR at this time. To
conclude, we have shown the following lemma.

Lemma 16: Let C0 ∈ Tone ∩ Thalf ∩ Vzero ∩ Lexist and
ΞPAR (C0) = C0,C1, . . . . Then, Pr(∃i ≤ 5mtepi/2+mn2d,Ci ∈
SAR) ≥ 1 − o(1).

Lemma 17: maxC∈Call ECTPAR (C,SAR) = O(mtepi +

mn2d log n).

Proof : Lemmas 12, 14, 15, and 16 yield that an execu-
tion of PAR starting from any configuration reaches SAR

within 4(mtepi + mn2d log2 n) interactions with probability
1−o(1) ⊂ Ω(1). Hence, the lemma follows from Lemma 10.

�

Lemmas 9 and 17 give the following theorem.

Theorem 1: Protocol PAR is an (O(mn2d log n + mtepi),
Ω(τeτ))- loosely stabilizing leader election protocol for ar-
bitrary graphs G when tvirus ≥ 4δmax(d, 7 ln n�), tmax =

2tvirus, and 4δtmaxln n� ≤ tepi ≤ τeτ/n4.

5. Conclusion

We have presented a loosely stabilizing leader election pro-
tocol for arbitrary undirected graphs in the population proto-
col model. It does not use agent identifiers or random num-
bers, unlike our previous protocols. Given upper bounds
N of n and Δ of δ, the population reaches a safe configu-
ration within O(mn2d log n + mNΔ2 log N) expected inter-
actions and, after that, keeps a unique leader for Ω(NeN)
expected interactions.
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Appendix A: Lemmas

Lemma 4: Let C0 ∈ Tone and ΞPAR (C0) = C0,C1, . . . . Let
vT be the agent that has the unique token in configuration
C0. Then, Pr(#TI(vT , 0, 8mδτln n�) < tepi/2) ≥ 1 − e−τ.

Proof : For every i ≥ 0, the unique token joins interaction
Γi with probability at most δ/m regardless of the location
of the token in Ci because any agent has at most δ edges.
Thus, #TI(vT , 0, 8mδτln n�) is bounded by a binomial ran-
dom variable X ∼ B(8mδτln n�, δ/m). We have

Pr(X ≥ tepi/2) ≤ Pr(X ≥ 16δ2τln n�)
= Pr(X ≥ 2E[X])

≤ e−E[X]/3 = e−8δ2τln n�/3 ≤ e−τ,

where we use tepi ≥ 32δ2τln n� for the first inequality and
use the Chernoff Bound in the form of Lemma 21 (in Ap-
pendix) with κ = 1 for the second inequality, which gives
the lemma. �

Lemma 5 (in [23]): Pr(PROPL(i) = 1) ≥ 1 − 2ne−τ for any
i ≥ 0.

Proof : This lemma follows from the proof of Lemma 5 in
[23]. That proof claims that if there is a leader in a configu-
ration, then the timerL of every agent is more than tmax/2 in
the configuration reached by the next 2mτ interactions with
probability at least 1 − 2neτ. �

Lemma 6: Pr(PROPT (i) = 1) ≥ 1 − 2ne−τ for any i ≥ 0.

Proof : The same argument as the proof of Lemma 5 gives
the lemma. �

Lemma 7 (in [23]): Pr(HALF(i) = 1) ≥ 1 − ne−τ for any
i ≥ 0.

Proof : The lemma follows from the proof of Lemma 18
in [23]. �

Lemma 8: Pr(RTΓ(tvirus) < 8mδτln n�) ≥ 1 − ne−τ.

Proof : By Lemma 1, we have

Pr(RTΓ(tvirus) < 8mδτln n�)
≥ Pr(RTΓ(4δ(1 + τ)) < 8mδτln n�)
≥ Pr(RTΓ(4δ(1 + τ)) < 4mδ(1 + τ)(1 + ln n�))
≥ 1 − ne−δ(τ+1),

where we use tvirus ≤ 4δ(1 + τ) for the first inequality and
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use (1 + τ)(1 + ln n�) ≤ 2τln n� when τ ≥ 3 and n ≥ 3 for
the second inequality. �

Lemma 18: Pr(RTΓ(tmax) < 16mδτln n�) ≥ 1 − ne−τ.

Proof : The lemma follows from almost the same calcula-
tion as the above proof for Lemma 8. �

Lemma 19: Pr(#TI(v, t, t + mtepi) < tepi) < e−δτ holds for
any agent v ∈ V and integer t ≥ 0.

Proof : Every agent joins each interaction Γi with proba-
bility at least 2/m. Hence, letting X be the binomial random
variable such that X ∼ B(mtepi, 2/m), we have

Pr(#TI(v, t, t + mtepi) < tepi) ≤ Pr(X < tepi)

≤ Pr(X < E[X]/2)

≤ e−tepi/4 ≤ e−δτ,

where we use the Chernoff Bound in the form of Lemma 22
with κ = 1

2 for the third inequality. �

Lemma 20: Let C0 be a configuration where exactly one
token exists and v be an agent. In the execution ΞPAR (C0),
the expected number of interactions until the unique tokens
reaches v is at most mnd/2.

Proof : Consider a random walk of the unique token on
population G, i.e., a Markov chain (ut) in which a state of
the chain is an agent in V (the location of the unique token)
in G. For any two states x and y, the transition probability
Px,y of the chain is given by Px,y = 2/m if (x, y) ∈ E, Px,y =

1 − (2/m)δx if x = y; otherwise, Px,y = 0. The symmetry
structure of the chain (Px,y = Py,x) gives

∑
x Px,y = 1 for any

state y. Thus, π = (π(x1), π(x2), . . . , π(xn)) = n−1(1, 1, . . . , 1)
is the stationary distribution of the chain (πP = π), where
x1, x2, . . . , xn are all the states of the chain. We denote the
expected number of transition steps from state x to state y by
hx,y. We have hy,y = 1/π(y) = n for any state y. We also have
hy,y = 1+

∑
(y,z)∈E(2/m)·hz,y. Hence, we obtain

∑
(y,z)∈E hz,y =

mn/2 − m/2. Thus, we have hx,y ≤ mn/2 for any states x
and y satisfying (x, y) ∈ E. Let w0, w1, . . . , wl (w0 = u, wl =

v, l ≤ d) be the shortest path from u to v, where u is the agent
that has the unique token in C0. The expected time until the
unique token reaches v is bounded by

∑l−1
i=0 hwi,wi+1 ≤ mnd/2.

�

Appendix B: Chernoff Bounds

Two variants of Chernoff bounds [24] used in several proofs
of this paper are quoted below.

Lemma 21 (Eq. (4.2) in [24]): The following inequality
holds for any binomial random variable X and any κ, 0 <
κ ≤ 1:

Pr(X ≥ (1 + κ)E[X]) ≤ e−κ
2E[X]/3.

Lemma 22 (Eq. (4.5) in [24]): The following inequality
holds for any binomial random variable X and κ, 0 < κ ≤ 1:

Pr(X ≤ (1 − κ)E[X]) ≤ e−κ
2E[X]/2.
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