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SUMMARY Kurotto and Juosan are Nikoli’s pencil puzzles. We study
the computational complexity of Kurotto and Juosan puzzles. It is shown
that deciding whether a given instance of each puzzle has a solution is NP-
complete.
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1. Introduction

The Kurotto puzzle is played on a rectangular grid of cells
(see Fig. 1 (a)). Initially, some of the cells contain circles,
where each circle contains a number or no number. The
purpose of the puzzle is to fill in cells in black in the follow-
ing rules [1]: (1) The number in a circle indicates the sum
of the number of continuous black cells extending from it,
vertically and horizontally (see three cells a, c and d extend-
ing from 3© in Fig. 1 (c)). (2) Empty circles may have any
number of black cells around them. (3) Cells with circles
cannot be colored black.

Figure 1 (a) is an initial configuration of a Kurotto puz-
zle. In this figure, there are six circles, five of which contain
numbers. From Figs. 1 (b)–(f), the reader can understand the
basic technique for finding a solution. (b) Consider 2© in the
red cell. If two grey cells a and b are colored black, then
1© in the yellow cell is connected to two continuous black
cells. Thus, cells a and c are colored black (see (c)), and
cell b must not be colored black; such a cell is indicated by
• in Fig. 1. (c) Circled number 3© in the blue cell is con-
nected to black cells c, a and d. (d) Consider 4© in the red
cell. If four grey cells containing cell e are colored black,
then 1© in the yellow cell is connected to four continuous
black cells. Thus, cells f and g, h, i, j are colored black (see
(e)). (f) is one of the multiple solutions.

The Juosan puzzle is played on a rectangular grid of
cells (see Fig. 2 (a)). Initially, the grid of cells are divided
into rectangular territories. Each territory contains a num-
ber or no number. The purpose of the puzzle is to fill in
cells, each with a mark “−” or a mark “|,” in the follow-
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Fig. 1 (a) Initial configuration of a Kurotto puzzle. (b)–(f) are the
progress from the initial configuration to a solution.

Fig. 2 (a) Initial configuration of a Juosan puzzle. (b)–(f) are the
progress from the initial configuration to a solution.

ing rules [2]: (1) The number in a territory shows the num-
ber of −-marks if −-marks have majority, or the number of
|-marks if |-marks have majority. However, there are also
cases where the numbers of −-marks and |-marks are the
same. Territories with no numbers may have any number of
−-marks and |-marks. (2) −-marks can extend across more
than three cells horizontally, but not more than two cells ver-
tically. (3) |-marks can extend across more than three cells
vertically, but not more than two cells horizontally.

Figure 2 (a) is an initial configuration of a Juosan puz-
zle. In this figure, cells are partitioned into ten territories,
eight of which contain numbers. (b) The blue 3× 1 territory
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has number 3, so three |-marks are filled in it. (c) If there are
three |-marks in the red 2 × 2 territory, then |-marks extend
across three cells horizontally. Thus, the red 2 × 2 territory
will contain three −-marks (see (f)), which implies that the
yellow 1 × 2 territory must contain two |-marks. (d) Since
the blue 1 × 2 territory contains two −-marks, two yellow
2×1 territories contain four |-marks. (e) Since two −-marks
are placed in the red 2 × 2 territory, a −-mark and a |-mark
are filled in the blue 1× 2 territory. (f) is one of the multiple
solutions.

In this paper, we study the computational complexity
of the decision version of Kurotto and Juosan puzzles. The
instance of the Kurotto puzzle problem is defined as a rectan-
gular grid of cells, where some of the cells contain circles,

Fig. 3 (a) Variable gadget of Kurotto. (b) and (c) are solutions corresponding to xi = 1 and xi = 0,
respectively.

Fig. 4 (a) Clause gadget of Kurotto. Suppose c j = {xi1 , xi2 , xi3 }. (b) is an invalid placement of black
cells, since the number of continuous black cells extending from each 19© is 18. (c) If either cell a or b is
colored black, then continuous 19 black cells are extended from each 19©. One can see that at least one
of variables xi1 , xi2 , and xi3 is 1 if and only if there is a solution to the clause gadget.

and each circle contains a number or no number. The in-
stance of the Juosan puzzle problem is a rectangular grid of
cells, which are divided into rectangular territories. Each
territory contains a number or no number. Each problem is
to decide whether there is a solution to the instance.

Theorem 1: The Kurotto and Juosan puzzle problems are
NP-complete.

It is clear that the Kurotto puzzle problem belongs to
NP, since the game ends when all empty cells are colored
black or white. The Juosan puzzle problem also belongs to
NP, since the game ends when all cells are filled by a−-mark
or a |-mark.

There has been a huge amount of literature on the
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Fig. 5 Right branch gadget. (a) and (b) are solutions when xi = 1 and
xi = 0, respectively. The set of connected cells in the blue areas is a right
turn gadget.

computational complexities of games and puzzles. In
2009, a survey of games, puzzles, and their complex-
ities was reported by Hearn and Demaine [8]. After
the publication of this book, the following Nikoli’s pen-
cil puzzles were shown to be NP-complete: Dosun-
Fuwari [13], Fillmat [17], Hashiwokakero [5], Herugolf and
Makaro [12], Kurodoko [14], Numberlink [3], Pencils [15],
Pipe Link [18], Shakashaka [6], Shikaku and Ripple Ef-
fect [16], Sto-Stone [4], Usowan [11], Yajilin and Coun-
try Road [9], and Yosenabe [10]. The reductions given in
[6], [17], [18] are parsimonious, i.e., they preserve the
number of solutions. Counting the number of solutions to
a Shakashaka puzzle is #P-complete [6], and Fillmat [17]
and Pipe Link [18] are ASP-complete. Proving the #P-
completeness and ASP-completeness of other pencil puzzles
is an interesting future research.

2. NP-Completeness of Kurotto

We present a polynomial-time transformation from an arbi-
trary instance C of PLANAR 3SAT to a Kurotto puzzle such
that C is satisfiable if and only if the puzzle has a solution.

Fig. 6 Not gadget. If the left grey area is xi = 1 (resp. xi = 0), then the
right grey area is xi = 0 (resp. xi = 1).

Fig. 7 Top-level description of the puzzle transformed from C =

{c1, c2, c3}, where c1 = {x1, x2, x3}, c2 = {x1, x3, x4}, and c3 = {x2, x3, x4}.
From this figure, one can see that (x1, x2, x3, x4) = (0, 1, 0, 0) satisfies all
clauses.

2.1 3SAT Problem

The definition of 3SAT is mostly from [7]. Let U =

{x1, x2, . . . , xn} be a set of Boolean variables. Boolean vari-
ables take on values 0 (false) and 1 (true). If x is a variable
in U, then x and x are literals over U. The value of x is
1 (true) if and only if x is 0 (false). A clause over U is a
set of literals over U, such as {x1, x3, x4}. A clause is satis-
fied by a truth assignment if and only if at least one of its
members is true under that assignment.

An instance of PLANAR 3SAT is a collection C =
{c1, c2, . . . , cm} of clauses over U such that (i) |c j| = 3 for
each c j ∈ C and (ii) the bipartite graph G = (V, E), where
V = U ∪ C and E contains exactly those pairs {x, c} such
that either literal x or x belongs to the clause c, is pla-
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Fig. 8 (a) Variable gadget of Juosan. (b) and (c) are solutions corre-
sponding to xi = 1 and xi = 0, respectively. (d)–(f) are simplified illustra-
tion of (a)–(c), respectively.

nar. The PLANAR 3SAT problem asks whether there exists
some truth assignment for U that simultaneously satisfies
all the clauses in C. The PLANAR 3SAT is known to be
NP-complete [7].

For example, U = {x1, x2, x3, x4}, C = {c1, c2, c3}, and
c1 = {x1, x2, x3}, c2 = {x1, x3, x4}, c3 = {x2, x3, x4} provide
an instance of PLANAR 3SAT. For this instance, the answer
is “yes,” since there is a truth assignment (x1, x2, x3, x4) =
(0, 1, 0, 0) satisfying all clauses.

2.2 Transformation from an Instance of PLANAR 3SAT
to a Kurotto Puzzle

Variable xi is transformed into a variable gadget as shown in
Fig. 3 (a), which is composed of three circles 1©, 2©, 2© and
seven empty circles. Figures 3 (b) and 3 (c) are solutions
corresponding to xi = 1 and xi = 0, respectively.

Clause c j = {xi1 , xi2 , xi3 } is transformed into a clause
gadget as shown in Fig. 4 (a), which is composed of 36
empty circles and 26 yellow cells; five of the yellow cells
contain circled numbers 19©. This gadget is connected to
three variable gadgets of xi1 , xi2 , and xi3 (see Figs. 4 (b) and

Fig. 9 (a) Clause gadget of Juosan. (b) Suppose c j = {xi1 , xi2 , xi3 }, where
xi1 = xi2 = 1 and xi3 = 0. Cell c must contain a −-mark. If either cell a or
b contains a |-mark, then the yellow territory can contain 39 |-marks. One
can see that at least one of variables xi1 , xi2 , and xi3 is 1 if and only if there
is a solution to the clause gadget.

4 (c)). Three cells a, b, and c play a key role in this gadget.
If xi1 = xi2 = xi3 = 0 (see Fig. 4 (b)), then cells a, b, and

c must not be colored black. Thus, Fig. 4 (b) is an invalid
placement of black cells, since the number of continuous
black cells extending from each 19© is 18. Suppose xi1 =

xi2 = 1 and xi3 = 0 (see Fig. 4 (c)). If either cell a or b is
colored black, then continuous 19 black cells are extended
from each 19©. Now one can see that at least one of variables
xi1 , xi2 , and xi3 is 1 if and only if there is a solution to the
clause gadget.

Figure 5 is a right branch gadget. The values xi = 1
and xi = 0 are transmitted in the directions of two arrows
indicated in Figs. 5 (a) and 5 (b), respectively. The set of
cells in the blue areas of Fig. 5 (a) is a right turn gadget. A
left branch gadget and a left turn gadget can be constructed
similarly.

Figure 6 is a NOT gadget. In Fig. 6 (a) (resp. Fig. 6 (b)),
if cells a, b, and c (resp. d, e, and f ) in the left grey area are
colored black, then cells d, e, and f (resp. a, b, and c) in the
right grey area are colored black.

Figure 7 is the top-level description of a Kurotto puzzle
transformed from C = {c1, c2, c3}, where c1 = {x1, x2, x3},
c2 = {x1, x3, x4}, and c3 = {x2, x3, x4}. From this construc-
tion, the Kurotto puzzle has a solution if and only if the in-
stance of PLANAR 3SAT is satisfiable.
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Fig. 10 A right branch gadget with a right turn gadget when (a) xi = 1 and (b) xi = 0.

Fig. 11 Not gadget.

3. NP-Completeness of Juosan

We present a polynomial-time transformation from an arbi-
trary instance C of PLANAR 3SAT to a Juosan puzzle such
that C is satisfiable if and only if the puzzle has a solution.

Variable xi is transformed into a variable gadget as
shown in Fig. 8 (a), which is composed of 10 × 10 cells.
Those cells are divided into red and grey cells. The red cells
are composed of ten 2 × 1 territories and ten 1 × 2 terri-
tories, which play a key role of this gadget. In Fig. 8 (b)
(resp. Fig. 8 (c)), 20 |-marks and 20 −-marks in the blue

(resp. green) area are a solution to the red area of Fig. 8 (a).
The grey areas of Fig. 8 (a) are partitioned into 17 territo-
ries. Two of the multiple solutions to those grey areas are
given in Figs. 8 (b) and 8 (c). Figures 8 (d)–(f) are simplified
illustration of Figs. 8 (a)–(c), respectively.

The yellow 41× 1 territory of Fig. 9 (a) is a clause gad-
get. This territory contains number 39, and is connected to
three variable gadgets of xi1 , xi2 , and xi3 through 12 red ter-
ritories (see Fig. 9 (b)). Suppose xi1 = xi2 = 1 and xi3 = 0.
Cell c must contain a −-mark. If either cell a or b contains
a |-mark, then the yellow territory can contain 39 |-marks.
Now one can see that at least one of variables xi1 , xi2 , and
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xi3 is 1 if and only if there is a solution to the clause gadget.
Figure 10 is a right branch gadget with a right turn gad-

get when (a) xi = 1 and (b) xi = 0. Figure 11 is a NOT
gadget. In Fig. 11 (a), the left blue area contains the solution
for xi = 1 if and only if the right green area contains the
solution for xi = 0.

By using variable, clause, branch, turn, and NOT gad-
gets of Figs. 8–11, we can construct a Juosan puzzle of Fig. 7
transformed from C = {c1, c2, c3}, where c1 = {x1, x2, x3},
c2 = {x1, x3, x4}, and c3 = {x2, x3, x4}. From this construc-
tion, the Juosan puzzle has a solution if and only if the in-
stance of PLANAR 3SAT is satisfiable.
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