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SUMMARY Recent years have witnessed a rapid increase in cyber-
attacks through unauthorized accesses and DDoS attacks. Since packet
classification is a fundamental technique to prevent such illegal commu-
nications, it has gained considerable attention. Packet classification is
achieved with a linear search on a classification rule list that represents
the packet classification policy. As such, a large number of rules can result
in serious communication latency. To decrease this latency, the problem
is formalized as optimal rule ordering (ORO). In most cases, this problem
aims to find the order of rules that minimizes latency while satisfying the
dependency relation of the rules, where rules ri and r j are dependent if there
is a packet that matches both ri and r j and their actions applied to packets
are different. However, there is a case in which although the ordering vio-
lates the dependency relation, the ordering satisfies the packet classification
policy. Since such an ordering can decrease the latency compared to an or-
dering under the constraint of the dependency relation, we have introduced
a new model, called relaxed optimal rule ordering (RORO). In general, it
is difficult to determine whether an ordering satisfies the classification pol-
icy, even when it violates the dependency relation, because this problem
contains unsatisfiability. However, using a zero-suppressed binary decision
diagram (ZDD), we can determine it in a reasonable amount of time. In
this paper, we present a simulated annealing method for RORO which in-
terchanges rules by determining whether rules ri and r j can be interchanged
in terms of policy violation using the ZDD. The experimental results show
that our method decreases latency more than other heuristics.
key words: packet classification, relaxed optimal rule ordering, NP-hard,
simulated annealing, zero-suppressed binary decision diagram

1. Introduction

In recent years, cyber-attacks through unauthorized accesses
and DDoS attacks have rapidly increased. Packet classi-
fication is a fundamental technique to prevent such illegal
communications. Consequently, much research has been
devoted to packet classification. Packet classifiers determine
the behavior of incoming packets through a comparison with
the packet classification policy. A classification policy is
generally represented as a list of classification rules. Packet
classification is achieved by comparisons until a match is
found. The processing latency of packet classification is
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proportional to the number of rules, however. By plac-
ing rules that match many packets to an upper position, we
can reduce the classification latency. Thus, an optimization
problem, called optimal rule ordering (ORO), aims to find
the order of rules that minimizes the classification latency.
Give the reduction algorithm from the job scheduling prob-
lem, this problem is known to be NP-hard [1], [2].

In general, it is difficult to determine in a reasonable
amount of time whether ordering aσ that violates the depen-
dency relation satisfies the classification policy, because this
problem contains a determination of unsatisfiability. How-
ever, in σ, using zero-suppressed binary decision diagrams
(ZDDs) [3], [4] according to each set of packets evaluated
by a rule in the rule list, we can determine it in realistic
time. To determine whether an ordering that is modified
locally satisfies the policy with ZDDs is not especially dif-
ficult. Moreover, these ZDDs can be used to calculate the
weights of rules. Thus, in this paper, we present a simu-
lated annealing method [5], [6] for relaxed optimal rule or-
dering (RORO) that interchanges dependent rules without
any policy violation by determining with a ZDD whether
interchanging them causes a policy violation.

The remainder of this article is organized as follows.
Section 2 formulates RORO and introduces some terminol-
ogy. Since our method uses a ZDD, we outline the ZDD
in Sect. 3. We present our rule reordering method based on
simulated annealing in Sect. 4. In Sect. 5, the efficiency of
our methods is evaluated experimentally. The experimen-
tal results show that our method decreases the latency com-
pared to other heuristics. Finally, Sect. 6 summarizes this
paper and discusses tasks for future work.

2. Packet Classification

Packet classification on network devices is modeled as
shown in Fig. 1. A packet p is a bit string of length w,
i.e., p ∈ {0, 1}l. Each rule consists of a rule number i ∈
N, a condition string on {0, 1, ∗}l, and an evaluation type
{A1, A2, . . . , Am}, where l is the length of a condition. Fur-
ther, ∗ is a so-called don’t care term denoting that any bit can
be matched, and m is the number of evaluation types. A rule
list consists of n rules. Since an actual rule ordinarily con-
tains Permit or Deny as the evaluation type, in this paper,
the set of evaluation types consists only of Permit (P) and
Deny (D). Here, P and D denote whether the device accepts
or denies incoming packets, respectively. A rule is defined
as shown in (1). An example of a rule list is provided in
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Fig. 1 Packet classification model.

Table 1 A rule list.

Filter R |E(R, i)|U
rP

1 = ∗ 0 ∗ 1 4
rP

2 = 0 0 0 0 1
rP

3 = 0 ∗ 0 0 1
rD

4 = 0 ∗ 1 ∗ 3
rP

5 = ∗ 1 ∗ 1 3
rD

6 = ∗ ∗ ∗ ∗ 4
L(R,U) = 56

Table 2 Reordering according to σ.

Filter Rσ |E(Rσ, i)|U
rP

1 = ∗ 0 ∗ 1 4
rD

4 = 0 ∗ 1 ∗ 3
rP

5 = ∗ 1 ∗ 1 3
rP

3 = 0 ∗ 0 0 2
rP

2 = 0 0 0 0 0
rD

6 = ∗ ∗ ∗ ∗ 4
L(Rσ,U) = 47

Table 1.

Definition 1: (rule form)

re
i = b1b2 · · · bl, bk ∈ {0, 1, ∗}, e ∈ {P,D} (1)

Let an ordering of n rules be a bijective function σ :
[n]→ [n], where [n] = {1, 2, . . . , n}. For instance,

σ = (1 5 4 2 3 6) (2)

denotes 1→ 1, 2→ 5, 3→ 4, 4→ 2, 5→ 3, and 6→ 6. In
this case, σ(3) = 4 means that the rule in the third position
moves to the fourth position, and σ−1(4) = 3 means that the
rule in fourth position was moved from the third position.
Informally, the domain and codomain of the function σ are
a set of rule numbers and a set of positions for rules. Let R
be a rule list and σ be an ordering. Rσ denotes the rule list
reordered by σ. With the above ordering σ, the rule list

R = [re1
1 , r

e2
2 , r

e3

3 , r
e4
4 , r

e5

5 , r
e6

6 ]

is reordered as follows:

Rσ = [re1
1 , r

e4
4 , r

e5

5 , r
e3

3 , r
e2
2 , r

e6

6 ]

We use R(p) to denote an evaluation type for p as the classi-
fication result. For example, given the rule list R in Table 1,

R(0011) = P. The rule list in Table 1 denotes the function
f : {0, 1}4 → {P,D} given in (3).

0000 �→ P, 0001 �→ P, 0010 �→ D, 0011 �→ P,
0100 �→ P, 0101 �→ P, 0110 �→ D, 0111 �→ D,
1000 �→ D, 1001 �→ P, 1010 �→ D, 1011 �→ P,
1100 �→ D, 1101 �→ P, 1110 �→ D, 1111 �→ P

(3)

If there exists a packet p such thatR(p) � Rσ(p), we say that
order σ violates the policy or that a policy violation occurs.
For instance, order

β = (1 2 3 5 4 6)

violates the policy represented by the rule list in Table 1,
because D = R(0111) � Rβ(0111) = P.

Let id : [n]→ [n] be the identity ordering, i.e., id(i) = i
for all i ∈ [n]. Rid means that the rule list is not reordered
and Rid equals R. In the following, id is omitted from a rule
list inscription when the order of the rule list is id.

Let M(ri) denote a set of packets that can match rule
re

i . That is, M(ri) is a set of binary sequences generated
by changing each ‘∗’ on the condition of re

i to 0 or 1. For
example, for rD

4 (Table 1),

M(r4) = { 0010, 0011, 0110, 0111 }.
Given a rule list R and an ordering σ, a set of packets evalu-
ated by rule re

i is defined. This set is denoted as E(Rσ, i). As
with M(ri), e is omitted. For example, given the rule list in
Table 1, the set of packets evaluated by rule rD

4 is expressed
as

E(R, 4) = { 0010, 0110, 0111 }.
Note that E(R, 4) is different from M(r4). As the packet
0011 is evaluated by rule rP

1 , 0011 is not in E(R, 4).
Let F : {0, 1}l → N be a packet arrival frequency dis-

tribution, and let |P|F denote
∑

p∈P F (p). For example, for
P = { 0010, 0101, 1001 } and F in (4),

|P|F = |{ 0010, 0101, 1001 }|F
= F (0010) + F (0101) + F (1001) = 8.

0000 �→ 20, 0001 �→ 0, 0010 �→ 7, 0011 �→ 0,
0100 �→ 10, 0101 �→ 0, 0110 �→ 0, 0111 �→ 0,
1000 �→ 7, 1001 �→ 1, 1010 �→ 13, 1011 �→ 0,
1100 �→ 0, 1101 �→ 0, 1110 �→ 0, 1111 �→ 0.

(4)

Given a packet arrival distribution F , a rule list R, and an
order of rules σ, the number of packets evaluated by ri un-
der F can be defined. We denote this number as |E(Rσ, i)|F
and call it the weight of ri. For example, under a uniform
distribution U : P → {1}, the number of evaluated pack-
ets r3 in Table 1 is |E(Rσ, 3)|U = 1. Considering that the
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comparison of a packet with a rule has latency 1, under the
order of rules σ and the packet arrival distribution F , the
classification latency L(Rσ,F ) of rule list R is defined as
follows:

Definition 2: (Classification latency)

L(Rσ,F ) =
n−1∑

i=1

i|E(Rσ, σ−1(i))|F

+ (n − 1)|E(Rσ, σ−1(n))|F .
(5)

In other words, latency can be expressed as

L(Rσ,F ) =
n∑

i=1

|E(Rσ, i)|F · σ(i) − |E(Rσ, σ−1(n))|F

in terms of the rule number. As a packet is not compared
with the last rule rσ−1(n), the second term is necessary. For
example, the classification latency for the rule list in Table 1
with a uniform distributionU is expressed as

L(R,U) = 1·4 + 2·1 + 3·1 + 4·3 + 5·3 + 5·4 = 56.

By reordering the rules in Table 1 according to σ while
maintaining the classification policy denoted by f , the la-
tency decreases from 60 to

L(Rσ,U) = 1·4 + 2·3 + 3·3 + 4·2 + 5·0 + 5·4 = 47.

As described above, by reordering the rules, the classi-
fication latency of a rule list can be decreased. In addition,
for each rule ri, reordering the rules may vary the number
of packets evaluated by ri. Therefore, the optimal order of
rules actually varies according to the packet arrival distribu-
tion. To clarify the optimal order for rules, we now define
RORO with a given packet arrival distribution.

Definition 3: (RORO)

Input: Rule list R and packet arrival distribution F
Output: Order of rules σ that minimizes L(Rσ,F )

s.t. ∀p ∈ P, R(p) = Rσ(p)

In the above definition, ∀p ∈ P, R(p) = Rσ(p) means that
order σ does not violate the policy represented by rule list
R. That is, order σ is a feasible solution.

In order to explain the difference of RORO and conven-
tional ORO whose constraint is based on overlap or depen-
dency relation on rules, we define the overlap and depen-
dency of the rules.

Definition 4: (Overlap of rules) If there is a packet that
matches both ri and r j, ri and r j are said to overlap.

For example, rules rD
4 and rD

6 in Table 1 overlap, because
packet 0010 exists and matches both rD

4 and rD
6 .

Definition 5: (Dependency of rules) If ri and r j overlap
and the evaluation type of ri is different from that of r j, we
say that ri and r j are dependent.

As an instance, rules rD
4 and rP

5 are dependent, because they

overlap, owing to 0111, and their evaluation types are differ-
ent. We say that ordering σ satisfies the overlap relation if,
for any overlapping rules ri and r j i < j, ri is placed ahead
of r j in σ. We say that ordering σ satisfies the dependency
relation if, for any dependent rules ri and r j (i < j), ri is
placed ahead of r j in σ. Most researchers define a constraint
for ORO such that an ordering must satisfy the overlap rela-
tion [2], [7]–[12].

Although an ordering violates the overlap relation, it
can satisfy the classification policy if it satisfies the depen-
dency relation. Therefore, Tanaka et al. defined the con-
straint of ORO such that an ordering must satisfy the de-
pendency relation [13], [14]. For example, although rules
rP

2 and rP
3 in Table 1 overlap, rule list [rP

1 , r
P
3 , r

P
2 , r

D
4 , r

P
5 , r

D
6 ]

that violates the overlap relation satisfies the policy. This is
because packet 0000, which makes rP

2 and rP
3 overlap, turns

out to receive evaluation type P with rP
3 .

Further, there is a case, in which an ordering satisfies
the classification policy while violating the dependency re-
lation. For instance, although order π = (1 6 2 3 4 5) violates
the dependency relation, rule list Rπ = [rP

1 , r
P
3 , r

D
4 , r

P
5 , r

D
6 , r

P
2 ]

satisfies the policy. Placing rD
6 ahead of rP

2 violates the de-
pendency relation with respect to packet 0000. However,
packet 0000 is properly evaluated by rP

3 before rD
6 . Thus,

there is no policy violation. Hence, Misherghi et al. defined
ORO in terms of policy violation instead of the overlap or
dependency relation [15], and we defined RORO.

Existing heuristics for ORO based on the overlap or de-
pendency relations [2], [7]–[14] do not interchange depen-
dent rules ri and r j. However, if the weight of r j is large and
if, dependent rules ri and r j can be interchanged without a
policy violation, interchanging them considerably decreases
the latency. Therefore, we propose a reordering algorithm
that interchanges dependent rules in the above situation in
Sect. 4.

3. ZDD

Since our reordering method uses ZDD, this section outlines
the ZDD [3], [4].

A combination of l items can be represented by a l-bit
vector (b1, b2, . . . , bl), where each bk expresses whether or
not the combination contains the item. A set of combina-
tions can be represented by a set of l-bit vectors. A set of
evaluated packets can also be regarded as a set of combina-
tions.

The ZDD data structure was proposed by Minato to
manipulate a set of combinations efficiently [3]. A ZDD is
obtained by applying reduction rules to a binary decision
tree representing a set of combinations. Deleting a redun-
dant node and sharing an identical node are illustrated in
Figs. 4 and 5, respectively. Figures 2 and 3 represent the
same set of combinations {001, 111}. Circles denote non-
terminal nodes and boxes indicate terminal nodes. A nu-
meral i associated with a non-terminal node represents a
Boolean variable of item i. Non-terminal nodes have edges
with values of 1 and 0. The 1 and 0 edges of node i ex-



512
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.3 MARCH 2020

press whether or not this node contains item i. In ZDDs, the
variables are ordered. On the path from the root node to a
terminal node, indicated by a bold arrow, a skipped variable
i indicates that the combination does not contain item i.

Figure 6 shows the ZDDs M(ri)s and E(R, i) according
to rule list R in Table 1.

Fig. 2 Binary decision tree.

Fig. 3 ZDD.

Fig. 4 Node deletion.

Fig. 5 Node sharing.

Fig. 6 ZDDs according to the rule list in Table 1.

4. Simulated Annealing Method for RORO

In this section, we present a method for determining with
ZDDs whether interchanging dependent rules satisfies the
policy. We also propose simulated annealing with this de-
termination method.

4.1 Determining Whether Interchanging Dependent Rules
Satisfies the Policy

Under ordering σ, if adjacent rules ri and r j are dependent
and the weight of the posterior rule r j is large, interchanging
them can reduce the classification latency. Recall that M(ri)
is the set of packets that match rule ri regardless of other
rules in the rule list, and that E(Rσ, i) is the set of packets
that are evaluated by rule ri under ordering σ. In order to
perform the interchange described above under the ordering
σ, the sets E(Rσ, i) and M(r j) are important. This is be-
cause, although ri and r j are dependent as M(ri) ∩ M(r j) �
∅ and their evaluation types are different, interchanging de-
pendent rules re

i and r f
j does not violate policy when E(Rσ, i)

∩ M(r j) = ∅.
Consider the rule list R in Table 1 and ordering σ (2).

The rules rP
2 and rD

6 overlap, owing to packet 0000, and
they are dependent since their evaluation types are differ-
ent. Here, we need to determine whether we can interchange
these dependent rules. Under ordering σ, the set of packets
evaluated by rule rP

2 is E(Rσ, 2) = ∅, and the set of packets
that matches rD

6 is M(r6) = {0000, 0001, . . . , 1111}. Since
E(Rσ, 2) ∩ M(r6) = ∅, interchanging rP

2 and rD
6 does not

produce any packets that receive an evaluation type that is
different from the policy. Therefore, under ordering σ, we
can interchange rP

2 and rD
6 .

In contrast to the above rules, under the same rules and
ordering, we can not interchange the dependent rules rD

4 and
rP

5 . Because E(Rσ, 4) ∩ M(r5) = {0111}, interchanging rD
4
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Algorithm 1: Determination of whether placing r j

before ri satisfies the policy
input : Rule list R, rule ordering σ, and rule numbers i, j, s.t.

σ( j) − σ(i) = 1
output: true if interchanging adjacent rules yet satisfies the

policy, false otherwise
1 set Zi to the ZDD for E(Rσ, i) ;
2 set Z j to the ZDD for M(r j) ;
3 if Zi ∩ Z j points to 0 terminal node then return true ;

else return false ;

Algorithm 2: Determination of whether interchang-
ing rules satisfies the policy

input : Rule list R, rule ordering σ, and rule numbers i, j, s.t.
σ(i) < σ( j)

output: true if interchanging rules yet satisfies the policy, false
otherwise

// comparing E(Rσ, i), E(Rσ, σ−1(σ(i) + 1)), . . . ,
E(Rσ, σ−1(σ( j) − 1)) with M(r j) ;

1 k ← σ(i) ;
2 while k < σ( j) do
3 flag← Algorithm 1(R, σ, σ−1(k), j) ;

if ¬ flag then return false;
4 k ← k + 1 ;

end
// comparing M(rσ−1(σ( j)−1)), M(rσ−1(σ( j)−2)), . . . , M(rσ−1(σ(i)+1))

with E(Rσ, i) ;
5 k ← σ( j) − 1 ;
6 while σ(i) < k do
7 flag← Algorithm 1(R, σ, i, σ−1(k)) ;

if ¬ flag then return false;
8 k ← k − 1 ;

end
9 return true;

and rP
5 gives the evaluation type D for packet 0111 even

though P must be applied to 0111. That is, a policy vio-
lation occurs.

We show the algorithm that determines whether we
can interchange adjacent rules ri and r j (i < j) without a
policy violation under ordering σ in Algorithm 1, where
we suppose that the ZDD for E(R, i) of each ri in the rule
list has already been constructed. Algorithm 1 takes a rule
list R, an ordering σ, and rule numbers i and j such that
σ(i) + 1 = σ( j) under σ as inputs. It returns true if we can
interchange those rules, and returns false, otherwise.

Next, Algorithm 2 determines whether rules ri and r j

can be interchanged under ordering σ. Note that the algo-
rithm does not require that ri and r j are adjacent in ordering
σ. Algorithm 2 determines whether rule r j can be inter-
changed with the rules from σ(i) to σ( j) − 1 under ordering
σ in lines 2–4, and determines whether rule ri can be inter-
changed of rules at σ( j)− 1 to σ(i)+ 1 under σ in lines 6–8.

When ri and r j are interchanged in Algorithm 2, we
should update evaluation packets sets ZDDs for rules rk in
σ(i) ≤ k ≤ σ( j). We update E(Rσ, σ−1(k)) as follows:

E(Rσ, σ−1(k))← E(Rσ, σ−1(k)) ∪ Zik \ Zjk

Algorithm 3: Simulated Annealing
input : Rule list R,

Frequency distribution F ,
Inner loop parameter loop,
Temperature factor temp,
Freezing parameter freeze

output: Rule ordering σ
1 σ← order obtained by the method [13] as an initial order;
2 o← searching order for |N(σ)| ;
3 t ← 200 ;
4 j← 0 ;
5 while j < freeze ·|N(σ)| do
6 i← 0 ;
7 while i < loop ·|N(σ)| do
8 get σ

′ ∈ N(σ) according to o ;

9 Δ = h(σ,σ
′
) ;

10 if Δ ≤ 0 then σ← σ′ , j← 0;
else

11 choose a random value q ∈ [0, 1] ;

12 if q < e−Δ/t then σ← σ′ ;
13 j← j + 1 ;

end
14 i← i + 1 ;

end
15 t ← t· temp

end

where, Zik = E(Rσ, i) ∩ M(rk) and Zjk = E(Rσ, σ−1(k)) ∩
M(r j).

In [15], Misherghi et al. use a binary decision diagram
(BDD) [16]–[18] to partition the packet space. Our deter-
mination algorithm can likewise be based on BDD instead
of ZDD. However, since practical rules consist of few don’t
cares and E(Rσ, i) is so sparse, ZDD can more efficiently
manage E(Rσ, i) for each rule ri in the rule list in terms of
the number of nodes required. Thus, we utilize ZDD instead
of BDD.

4.2 Simulated Annealing by Exchanging Dependent Rules
without Any Policy Violation

In this subsection, we present a simulated annealing method
based on the above determination algorithm of policy equiv-
alence. Since it is important to place a heavy rule in the up-
per position to reduce the latency, we define the neighbor
of a solution σ used in the simulated annealing method as
follows:

N(σ) =
{
τi j ◦ σ | Rτi j◦σ holds policy

}
(6)

where, τi j is the transposition interchanging ri and r j. Note
that the solution in the neighbor is only a feasible solution
and that, using ZDDs, the solution is determined exhaus-
tively by whether it is feasible.

Our method makes the random order o : [|N(σ)|] →
[|N(σ)|] and search an improved solution in N(σ) in this or-
der.

The evaluation function h of solutions σ and σ
′ ∈ N(σ)

is defined as follows:
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h(σ,σ
′
) = w(i) − w(σ(i)−a), (7)

where σ
′
=
(
σ(i)−a σ(i)

) ◦σ, and w(i) is the weight of rule
ri. Although we should consider the variation of the weights
of rules when interchanging overlapping rules as claimed
in [19], considering it takes a lot of resource and, we thus
ignore it.

We show a simulated annealing method based on the
neighbor (6) and the evaluation function (7) in Algorithm 3.
Algorithm 3 takes rule list R, packet arrival distribution F ,
loop parameter loop, cooling temperature freeze, and de-
crease ratio temp as inputs and returns the ordering of rules.

Since our method defines the neighbor as Eq. (6) and
ignores transitions of light rules, the method does not ex-
haustively search for the solution space. Thus, if we gener-
ate an initial solution at random, we cannot obtain a good
solution. Therefore, our method uses the solution obtained
by applying the reordering method of Tanaka et al. [13] as
the initial solution on line 1.

5. Experiments

We demonstrated the efficiency of the proposed method
through experiments. The proposed method was imple-
mented in C++ under CentOS 7.3 on an Intel Core i7 3.2
GHz with 8 GB main memory. We used the CUDD ZDD
package [20]. For the comparison, we implemented a sim-
ple rule sorting algorithm (SR) [7], the method by Tanaka et
al. [13], sub-graph merging (SGM) [10], and the method by
Hikage et al. [11] in Java. We generated rules and headers
with the standard packet benchmark tool for packet classifi-
cation algorithms, namely, ClassBench [21]. For the exper-
iments on RORO, we added an evaluation type P or D to
each rule in rule lists generated by ClassBench with a prob-
ability of 1/2. A packet header generated by ClassBench
consists of source/destination addresses, source/destination
port numbers, and the protocol number. Since the lengths of
these components are 32, 32, 16, 16, and 8 bits, respectively,
the total length of the packet header and the condition of the
rule is 104 bits. The number of headers generated according
to each rule list was approximately 100,000.

Using the generated rule lists and headers, we mea-
sured the time for reordering rules and the latency of a rule
list for every algorithm. The units of measurement is sec-
onds. The means of 10 trials for RORO are shown in Figs. 7
and 8. Note that we plot the reordering times on a loga-
rithmic scale in Fig. 8. In addition, the construction time
of ZDDs M(ri)s and E(R, i)s is under a second. With our
method, therefore, the ZDDs can be constructed in a practi-
cal amount of time.

As shown in Fig. 7, the proposed method decreases
the latency by about 11% compared to Tanaka et al. [13],
SGM [10], and Hikage et al. [12]. This 11% reduction of
classification latency is large improvement. Moreover, as
the number of rules becomes large, the proposed method
decreases the latency compared to the other heuristics.

Figure 8 shows that the proposed method can terminate

Fig. 7 Latency for SRS [7], Tanaka [13], SGM [10], Hikage [11], and the
proposed method.

Fig. 8 Reordering time (s) for the proposed method.

for approximately 2,000 rules in half a day. Thus, it is fast,
owing to the use of simulated annealing. Furthermore, as
shown in Fig. 8, the time for reordering rules is not expo-
nential to the number of rules.

6. Conclusion

In this paper, we presented a simulated annealing method
for RORO based on policy violation rather than the overlap
or dependency relations on rules. The proposed method fo-
cuses on an ordering that satisfies the policy yet does not
satisfy the dependency relation using ZDD. Such an order-
ing can not be obtained when we focus exclusively on the
dependency relation, and its latency is often less than that
of orderings in the dependency relation. Experimental re-
sults showed that the proposed method decreased the latency
compared to other heuristics.

By pruning redundant searches in the neighbor, reduc-
ing the reordering time of the proposed method is an impor-
tant task.

The proposed method determines whether an order sat-
isfies the policy using ZDDs. Since the worst-case space
complexity of ZDD is exponential and length of rules, there
is a case where a ZDD cannot be made according to each
rule in the rule list. Thus, a reordering algorithm should be
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developed that determines whether an ordering satisfies the
policy yet does not satisfy the dependency relation. We will
pursue this in future work.
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