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SUMMARY The choreography realization problem is a design chal-
lenge for systems based on service-oriented architecture. In our previous
studies, we studied the problem on a case where choreography was given
by one or two scenarios and was expressed by an acyclic relation of events;
we introduced the notion of re-constructibility as a property of acyclic re-
lations to be satisfied. However, when choreography is defined by multiple
scenarios, the resulting behavior cannot be expressed by an acyclic rela-
tion. An event structure is composed of an acyclic relation and a conflict
relation. Because event structures are a generalization of acyclic relations,
a wider class of systems can be expressed by event structures. In this paper,
we propose the use of event structures to express choreography, introduce
the re-constructibility of event structures, and show a necessary condition
for an event structure to be re-constructible.
key words: SOA, model-based development, event structure, re-
constructibility, choreography realization problem

1. Introduction

Service-Oriented Architecture (SOA) is an information sys-
tem architecture [1]. In SOA, an information system is con-
structed by combining independent software units called
peers. In SOA, the problem of designing a concrete model
from an abstract specification is called the Choreography
Realization Problem (CRP) [2], [3]. The abstract specifica-
tion defines the interaction between peers and is expressed
by message dependencies. This is called a scenario, and a
set of scenarios is called choreography. The concrete model
is called a service implementation and defines the behavior
of each peer.

We have studied the CRP on a case where chore-
ography was given by an acyclic relation of events [4].
Miyamoto introduced the concept of re-constructible de-
composition of acyclic relations, and showed the necessary
and sufficient conditions for decomposed acyclic relations to
be re-constructible [5]. In [5], it is assumed that choreogra-
phy is defined by one scenario. Kinoshita et al. showed the
necessary and sufficient conditions for choreography to be
realizable when it is defined by two scenarios [6]. In these
studies, it is assumed that choreography can be expressed by
an acyclic relation on events. However, for example, cases
exist where choreography is defined by three or more sce-
narios, or where different message sets are used in multiple
scenarios. In these cases, choreography cannot be expressed
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by an acyclic relation.
In this paper, we consider a case where choreography

consists of multiple scenarios where each scenario is ex-
pressed by an acyclic relation and, however, where choreog-
raphy cannot be expressed by an acyclic relation. We pro-
pose using the event structures as a modeling language of
abstract specifications and concrete models [7], [8]; we dis-
cuss the re-constructible decomposition of event structures.

An event structure is defined by a set of events,
an acyclic relation, and a conflict relation. For the re-
constructibility of event structures, the non-existence of
any relation across decomposed event structures is a nec-
essary condition. However, some redundant relations can
be deleted by reduction. A reduction of an acyclic relation
can be easily achieved by the transitive reduction, however,
to the best of our knowledge, no study on the reduction of
conflict relations exists. In this paper, we give necessary
and sufficient conditions for deleting redundant conflict re-
lations and give a necessary condition for event structures to
be re-constructible.

2. Re-Constructibility of Event Structures

2.1 Event Structure

In this paper, to express relations between events, event
structures are defined as follows:

Definition 1 (Event Structure): An event structure is a 3-
tuple F := (Σ, #,⇒), where Σ is a set of events, # ⊆ Σ × Σ is
a reflective and symmetric conflict relation, and ⇒⊆ Σ × Σ
is a flow relation.

When two events e1, e2 ∈ Σ occur in an execution, e1 must
occur before e2 if e1 ⇒ e2;⇒+ denotes the transitive closure
of⇒, and⇒∗ denotes the reflective and transitive closure of
⇒. If e1#e2, e1 and e2 cannot occur in the same execution.
However, there may be a pair (e1, e2) such that (e1, e2) � #
and they do not occur in any same execution. In this case,
e1 and e2 are called in potential conflict. A closure #̂ of con-
flict relation # is a conflict relation that includes all potential
conflict relations. The closure can be calculated by Algo-
rithm 1.

A configuration of an event structure is defined as fol-
lows:

Definition 2 (Configuration): A configuration of an event
structure F is a set of events C = {e1, · · · , en} ⊆ Σ, and sat-
isfies the following conditions: a) ∀e1, e2 ∈ C : (e1, e2) � #̂,
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Algorithm 1 Calculate closure conflict relation #̂
Require: F = (Σ, #,⇒)

#̂← #
tsort[]← an array of events such that ∀i, j ∈ {0, . . . , |Σ| − 1} : i < j ⇒
(tsort[ j], tsort[i]) �⇒+
for i← 0 to |Σ| − 1 do

ei ← tsort[i]
Gi(Vi, Ei) ← new graph such that Vi ← {e | (e, ei) ∈⇒}, Ei ←
{(e1, e2) ∈ V2 | (e1, e2) � #̂}
Kei ← {V′i ⊆ Vi | V′i is a clique of Gi}
for j← 0 to i do

e j ← tsort[ j]
G j(V j, E j) ← new graph such that V j ← {e | (e, e j) ∈⇒}, E j ←
{(e1, e2) ∈ V2 | (e1, e2) � #̂}
Ke j ← {V′j ⊆ V j | V′j is a clique of G j}
if (e j, ei) �⇒+ ∧(e j, ei) � #̂ then

if (∀ke j ∈ Ke j ,∃e ∈ ke j : (ei, e) ∈ #̂) ∨ (∀kei ∈ Kei ,∃e′ ∈ kei :

(e′, e j) ∈ #̂) then
#̂← #̂ ∪ {(ei, e j), (e j, ei)}

end if
end if

end for
end for

Fig. 1 An example of event structure

and b) for all events e2 ∈ C and e1 � C such that (e1, e2) ∈⇒,
it holds that there is an event e3 ∈ C such that (e1, e3) ∈ #̂
and(e3, e2) ∈⇒.

The set of all configurations of an event structure F is de-
noted by Conf(F).

The set of events that appear in a sequence w =
e1e2 · · · en of events is called a support of w and is denoted
by sup(w). A word of an event structure is a sequence w of
events and satisfies the following conditions: a) sup(w) ∈
Conf(F), b) ∀i, j ∈ {1, . . . , n}, i < j : (e j, ei) �⇒+, and c) a
word w′ such that w is a substring of w′ does not exist. The
set of all words in an event structure is denoted by L(Σ, #,⇒)
or L(F).

Figure 1 shows an example of event structures, where
a, b, and c are events. The acyclic relation is represented
by arrows, and the conflict relation is represented by dotted
lines. For the event structure shown in Fig. 1, Conf(F) =
{∅, {a}, {a, b}, {a, c}} and L(F) = {ab, ac}.

Let us define three families, Ca, Ta, and Ia, for an event
a:

Ca = {C = {e1, . . . , en} ∈ Conf(F) |
∀i ∈ {1, . . . , n} : (ei, a) ∈⇒∗} (1)

Ta = {C ∈ Ca | a ∈ C} (2)

Ia = {I ⊆ Σ\{a} | ∀T ∈ Ta : T ∩ I � ∅} ∪ {a} (3)

Ca is a family of configurations composed of a and ancestor
events of a; Ta is a family of configurations when a occurs
for the first time in Ca. For certain I ∈ Ia, a does not occur

if the occurrence of all the events in I is prohibited.

2.2 Re-Constructibility of Event Structures

Let P be a set of peers. Fp = (Σp, #p,⇒p) is a partition of
the event structure w.r.t. p ∈ P on F = (Σ, #,⇒), where
#p ⊆ Σ2

p and ⇒p⊆ Σ2
p. A flow relation between peers

⇒com⊆⇒ \(⋃p Σ
2
p) is called a communal relation. The re-

constructible decomposition of event structures can be de-
fined as follows:

Definition 3 (Re-constructible Decomposition): For a set
{(Σp, #p,⇒p)} of event structures and a communal relation
⇒com, {(Σp, #p,⇒p)} is re-constructible to (Σ, #,⇒) when
the following equation holds:

L

⎛⎜⎜⎜⎜⎜⎜⎝Σ,
⋃

p

#p,⇒com ∪
⋃

p

⇒p

⎞⎟⎟⎟⎟⎟⎟⎠ = L(Σ, #,⇒). (4)

When there exists a re-constructible {(Σp, #p,⇒p)}, it is
called that (Σ, #,⇒) has re-constructibility.

When two events in a conflict relation exist in different
peers, it is impossible to directly control so that only one of
the events occurs. However, in some cases, only one event
can be allowed to occur if we control the ancestors of both
events. In other words, the existence of conflict relations
across peers does not mean that the event structure does not
have re-constructibility. Therefore, we can delete unneces-
sary conflict relations as long as the deletion does not affect
the overall behavior. Let F\(a#b) be the event structure ob-
tained by deleting the conflict relation between a and b from
F. That is, for F = (Σ, #,⇒), F\(a#b) is given by:

F\(a#b) = (Σ, #\{(a, b)},⇒). (5)

If L(F\(a#b)) = L(F), then a conflict relation (a, b) ∈ # can
be deleted. Obviously, the necessary condition for an event
structure to have re-constructibility are that no conflict rela-
tion exists across peers in the partitioned set of event struc-
tures after deleting all possible conflict relations.

The conflict relation between sets X and Y is defined as
follows:

X#Y ⇔ ∀x ∈ X,∀y ∈ Y : (x, y) ∈ #̂. (6)

Then, Lemma 1 holds.

Lemma 1: ∃Ia ∈ Ia,∃Ib ∈ Ib : Ia#Ib, (Ia � {a} ∨ Ib �
{b})⇔ L(F) = L(F\(a#b)).

Proof : For the events a and b, it always holds that {a} ∈ Ia
and {b} ∈ Ib. Since events a and b are in the conflict rela-
tion, Ia and Ib that satisfy Ia#Ib always exists. To eliminate
this case, (Ia � {a} ∨ Ib � {b}) is in the condition. In the
following, (Ia � {a} ∨ Ib � {b}) is assumed to be satisfied.

(⇒) Obviously, L(F) ⊆ L(F\(a#b)). Suppose that
L(F\(a#b))\L(F) � ∅. Then, all words in L(F\(a#b))\L(F) in-
clude both a and b.

Now, we define Se = {C ∈ Conf(F) | e ∈ C}; then it
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holds that:

(e1, e2) ∈ #̂⇔ Se1 ∩ Se2 = ∅. (7)

Ia#Ib means ∀ei ∈ Ia,∀e j ∈ Ib : (ei, e j) ∈ #̂, so it holds that:
⋃

i
Sei ∩

⋃
j
Se j = ∅. (8)

Also, we define Sa,ei = {C ∈ Conf(F) | a ∈ C, ei ∈ C}; then
for all ei ∈ Ia, it holds that Sei ⊇ Sa,ei . Therefore,
⋃

i
Sei ⊇

⋃
i
Sa,ei (9)

holds.
Suppose that

⋃
ei∈Ia
Sa,ei � Sa. Therefore,

⋃
ei∈Ia
Sa,ei ⊂

Sa, so Sa\⋃i Sa,ei � ∅ holds. That is, there is a config-
uration C that has a and does not have any ei ∈ Ia as an
element. Then, for a configuration C1 ∈ Sa\⋃i Sa,ei , there
exists a configuration C2 ∈ Sa\⋃i Sa,ei such that C2 ⊆ C1

and (e, a) ∈⇒∗ for all e ∈ C2.
C2 does not have any elements ei ∈ Ia, so

C2 ∩ Ia = ∅ (10)

holds. For C2, a ∈ C2 and (e, a) ∈⇒∗ for all e ∈ C2, so
C2 ∈ Ta. However, Eq. (10) is inconsistent with the def-
inition of Ia. Thus, there is no configuration that satisfies
C ∈ Sa\⋃i Sa,ei . Therefore, it holds that

⋃

ei∈Ia

Sa,ei = Sa. (11)

From Eqs. (9) and (11),
⋃

i Sei ⊇ Sa. Similarly, for the
event b,

⋃
j Se j ⊇ Sb holds. Also, from Eq. (8),

⋃
i Sei ∩⋃

j Se j = ∅, so Sa ∩ Sb = ∅. Thus, from Eq. (7), there is no
case where both a and b exist in all words of F.

From the above, L(F\(a#b))\L(F) = ∅, so L(F) =
L(F\(a#b)) holds.

(⇐) We prove the contrapositive, i.e., ∀Ia ∈ Ia,∀Ib ∈
Ib,∃ea ∈ Ia,∃eb ∈ Ib : (ea, eb) � #̂ ∨ (Ia = {a} ∧ Ib =

{b}) ⇒ L(F) � L(F\(a#b)). Suppose that ∀Ia ∈ Ia,∀Ib ∈
Ib,∃ea ∈ Ia,∃eb ∈ Ib : (ea, eb) � #̂∨ (Ia = {a} ∧ Ib = {b}) and
L(F) = L(F\(a#b)). Now, the word w, which contains both
a and b, does not exist in L(F). Thus, there exists an event
that conflicts with b in all Ta ∈ Ta. Let I′a = {e1, e2, · · · , en}
be a set of such events. By the definition of Ia, I′a is also
included in Ia. However, since {b} ∈ Ib, an ei that satisfies
(ei, b) � #̂ should exist in I′a. This is inconsistent. Therefore,
the contrapositive holds. �

For an event structure F, let Fred := (Σ, #red,⇒) be the
event structure that is obtained by deleting all possible con-
flict relations by Lemma 1. Then, Theorem 1 holds.

Theorem 1: For an event structure (Σ, #,⇒) and its par-
tition {(Σp, #p,⇒p)}, if {(Σp, #p,⇒p)} is re-constructible to
(Σ, #,⇒), it holds that:

#red ⊆
⋃

p

#p. (12)

Proof : Consider the contrapositive of the proposition.
Suppose that #red �

⋃
p #p, then, there exists a pair of events

in the conflict relation and in different peers. Let (a, b) be
the pair of events, then it holds that (a, b) ∈ #red and (a, b) �⋃

p #p. That is, L(Σ, #red,⇒) does not contain both a and b,
and L(Σ,

⋃
p #p,⇒com ∪⋃p ⇒p) contains both. Therefore,

L(Σ, #red ⇒) = L(Σ, #,⇒) � L(Σ,
⋃

p #p,⇒com ∪⋃p ⇒p).
�

3. Application to CRP

In SOA, the problem of synthesizing a concrete model from
an abstract specification is known as the choreography real-
ization problem (CRP), and is given as follows:

Problem 1 (CRP): Let C(CD) be the behavior defined by
the set of communication diagrams CD, and C(SM) be the
behavior defined by the set of state machines SM. For a set
CD of communication diagrams, is it possible to synthesize
the set SM of state machines to satisfy C(CD) = C(SM)?
If possible, obtain the set of state machines.

Consider a system consisting of four peers. CD =
{cd1, cd2, cd3}, and each communication diagram is shown
in Figs. 2–4. Figures 5–7 show the message dependencies in
each communication diagram. The event structure, which is
constructed from the dependencies in Figs. 5–7, is shown in
Fig. 8. We will not describe the details on how to construct
the event structure due to space limitations.

As an example, consider whether the conflict relation
between ?m4 and ?m3 can be deleted. In the event structure
of Fig. 8, I?m4 and I?m3 are as follows:

I?m4 = {{!m1}, {?m1}, {!m4} · · · }, and

I?m3 = {{!m1}, {?m1}, {!m3} · · · }.

Fig. 2 cd1 Fig. 3 cd2

Fig. 4 cd3

Fig. 5 Dcd1 Fig. 6 Dcd2 Fig. 7 Dcd3
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Fig. 8 F Fig. 9 Fred

Fig. 10 Decomposition of F

Because !m4 and !m3 are in the conflict relation, ?m4
and ?m3 satisfy the conditions in Lemma 1. There-
fore, the conflict relation between ?m4 and ?m3 can be
deleted. By deleting all conflict relations, the event struc-
ture shown in Fig. 9 is obtained. Therefore, #red =

{(!m2, !m4), (!m4, !m2), (!m4, !m3), (!m3, !m4), (!m5, !m6),
(!m6, !m5)}. Then, (Σp, #p,⇒p), which is decomposed from
F, is obtained as #p = # ∩ Σ2

p and⇒p=⇒ ∩Σ2
p as shown in

Fig. 10. Thus, conflict relations in each peer are as follows:

#S 1 = ∅
#S 2 = {(!m3, !m4), (!m4, !m3), (!m4, !m2), (!m2, !m4)}
#S 3 = {(!m5, ?m6), (?m6, !m5), (?m2, ?m4), (?m4, ?m2)}
#S 4 = {(?m5, !m6), (!m6, ?m5)}

Therefore, Eq. (12) in Theorem 1 is not satisfied. That is, the
event structures are not re-constructible to F. In addition, F
does not have re-constructibility because it is impossible to
delete further conflict relations. In this case, we need to
redesign the choreography.

When an event structure is partitioned into peers, be-
ing re-constructible to the original event structure for the
decomposed event structures implies that the state ma-
chines synthesized from the set of event structures satisfies
C(CD) = C(SM). Since Eq. (4) in Definition 3 uses lan-
guage equivalence, the amount of computation for check-
ing re-constructibility is exponential. On the other hand,
the condition of Theorem 1 can be checked on the event

structure. If we can check the conditions of Lemma 1 in
polynomial time, we can expect a reduction in the amount
of computation for the re-constructibility test. The deleting
method for the conditions of Lemma 1 will be left for our
future study.

4. Conclusion

In this paper, we proposed the use of event structures when
choreography is given by multiple communication diagrams
with different message sets. Since the class of event struc-
tures includes acyclic relations, the class of choreography
that can be described has expanded.

In order to realize the choreography, event structures
partitioned into peers need to be equivalent to the original
event structure. Therefore, we introduced re-constructibility
as the condition for event structure equivalence and derived
a necessary condition for it to be re-constructible. This
makes it possible to check realizability using the event struc-
ture composed of choreography. However, it may be real-
izable even if the condition is not satisfied, because it is a
necessary condition. Deriving necessary and sufficient con-
ditions will be the focus of a future study.

In addition, it is necessary to study the method of de-
riving an event structure from the choreography, and the
method for synthesizing state machines from event struc-
tures. We would like to consider these as future tasks.
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