
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.8 AUGUST 2020
1783

PAPER Special Section on Formal Approaches

Evaluation the Redundancy of the IoT System Based on Individual
Sensing Probability

Ryuichi TAKAHASHI†a), Member

SUMMARY In IoT systems, data acquired by many sensors are re-
quired. However, since sensor operation depends on the actual environ-
ment, it is important to ensure sensor redundancy to improve system relia-
bility in IoT systems. To evaluate the safety of the system, it is important
to estimate the achievement probability of the function based on the sens-
ing probability. In this research, we proposed a method to automatically
generate a PRISM model from the sensor configuration of the target sys-
tem and calculate and verify the function achievement probability in the
assumed environment. By designing and evaluating iteratively until the
target achievement probability is reached, the reliability of the system can
be estimated at the initial design phase. This method reduces the possibil-
ity that the lack of reliability will be found after implementation and the
redesign accompanying it will occur.
key words: IoT system, autonomous driving system, sensing probability,
PRISM model checker

1. Introduction

1.1 Safety Verification of IoT System

In recent years, research and development related to IoT
have been actively promoted all over the world, and it is
growing rapidly [1]. IoT system equips several sensors into
any object in our environment. By acquiring various types
of information, control that was not possible before will be
possible. The autonomous driving system is a typical IoT
system. It aims to realize advanced automatic control with
data acquired from vehicles and road sensors. However,
some fatal accidents also have occurred. An autonomous
driving vehicle needs to acquire various information such
as the vehicle ahead, the opposing vehicle, pedestrians, and
location information by sensors, and determine the behav-
ior according to it. Compared to conventional vehicles, a
huge number of sensors are mounted on vehicles, and these
sensors are directly connected to vehicles’ behavior control.
Therefore, the design complexity increases at an accelerated
rate. On the other hand, it is difficult to solve with a heuristic
approach based on the developer’s experience. It is essential
to manage and verify design information using engineering
methods to ensure the safety of the IoT system.

Highly reliable data is required for the safe driving of

Manuscript received October 8, 2019.
Manuscript revised February 6, 2020.
Manuscript publicized May 14, 2020.
†The author is with the Dep. of Computer and Information

Sciences, College of Engineering, Ibaraki University, Hitachi-shi,
316–8511 Japan.

a) E-mail: ryuichi.takahashi.office@vc.ibaraki.ac.jp
DOI: 10.1587/transinf.2019FOP0001

autonomous vehicles. However, no matter how sophisti-
cated the sensor, false detection due to noise or the like al-
ways occurs. For example, if data is acquired once a second
by a sensor with a sensing probability of 99.999%, a data
acquisition error or false detection may occur once every 28
hours. If this occurs in a sensor used for collision avoidance,
it can lead to a serious accident. In particular, in autonomous
driving, where false control affects human life, it is very im-
portant to understand the sensing probability of the sensor
from the design stage and to evaluate the safety.

To guarantee the sensing probability, it is necessary to
consider two aspects. One is to ensure redundancy by mul-
tiplexing. One solution is to replace sensors with higher
performance and higher sensing probability to prevent acci-
dents due to sensor misdetections. However, the cost rises,
and no matter how expensive the sensor, 100% sensing prob-
ability cannot be guaranteed. Therefore, it is possible to
improve overall safety by mounting multiple sensors of the
same type and detecting only one of them. When two sen-
sors with a sensing probability of 99.999% are mounted, the
probability that the two sensors cannot acquire data simul-
taneously is 0.001% × 0.001% = 10−10. This means that
there will be one failure every 317 years. If the number of
sensors is increased further, safety can be improved. Also, if
the acquired data is noisy and unreliable, mounting an odd
number of sensors and taking a majority vote can improve
the reliability of the data. Thus, redundant configuration by
sensor multiplexing is very important in realizing automatic
operation. However, it is very difficult to determine the con-
figuration to secure the target sensing probability/reliabil-
ity. If there is only one type of sensor, it can be calculated
easily using the above formula, but this calculation is much
more difficult for autonomous vehicles because many types
of sensors depend on each other.

Another way to guarantee the sensing probability is a
sensor alternative/degenerate configuration. Some sensors
are not suitable for specific environments and purposes. For
example, obstacle recognition by an optical camera can de-
termine not only the distance to the object but also the type
and state of the object. However, it has the disadvantage of
being greatly affected by the weather such as rain and fog.
On the other hand, if it is an ultrasonic sensor, the distance
to the object is less affected by the weather and can detect
the distance to the obstacle. Based on these characteristics,
safety can be ensured by switching multiple types of sen-
sors according to the situation. For example, it is possible
to avoid obstacles with a stereo camera in normal times and

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

1784
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.8 AUGUST 2020

switch to an ultrasonic sensor in the rain or when the cam-
era sensor fails. Functions and safety may be degraded by
changing the sensor used, but functions such as autonomous
driving can continue to be provided.

1.2 Problem to Determine Sensor Configuration

If the sensor configuration described in Sect. 1.1 is used, if
N sensors of a single type should be mounted, and at least
one of them needs to be operated, the probability of function
failure can be calculated by 1 − (1 − P)N . The P specifies
the sensing probability of a sensor unit. However, to realize
autonomous driving, it is necessary to combine functions of
various granularities hierarchically and to use multiple types
of sensors in combination to realize each function. In such a
complex configuration, it is very costly to estimate any prop-
erty satisfaction probabilities (ex. probability of achieving a
specific function) based on each sensor’s sensing probabil-
ity. Because, in a system where various sensors and func-
tions work in a complex manner, the constraints to be veri-
fied are various, and it is a great task to manually construct
the calculation formulas for all the constraint verifications.
Ideally, a tool that automatically calculates the achievement
probability by specifying the state to be achieved, rather
than constructing the calculation formula, is desired.

Also, when designing an alternative/degenerate config-
uration of sensors, it is important to understand the depen-
dency between functions and sensors. Depending on the op-
erating status of other sensors, it may be necessary to limit
the function or substitute another function. In the IoT sys-
tem where multiple types of sensors are complexly depen-
dent, the availability of a single sensor may affect multiple
functions, and it is very important to manage its traceabil-
ity. We think IoT systems also have variability similar to
the conventional system. For example, autonomous vehi-
cles may have different grades depending on the price range.
Even if the basic functions are the same, there are variations
in the types of mounted sensors and degenerative functions.
There is Software Product Line (SPL) as a method for en-
gineering product variation engineering, but it cannot man-
age sensor/function substitution or degeneration. Therefore,
there is a need for a method for engineering management of
sensor configurations including alternative and degenerate
configurations.

In the following sections, we will explain the details
of the proposed method, mainly on the autonomous driv-
ing system. Section 3 shows an overview of our proposed
method. Section 4 explains how to determine the sensor
configuration with considering redundancy. Sections 5 and
6 explains a method to evaluate system safety. Section 7
shows a case study and Sect. 8 discusses the effectiveness
of our method. Section 9 shows related works and Sect. 10
concludes this paper.

2. Overview of the Proposed Method

To solve the problem described in Sect. 1.2, this paper pro-

Fig. 1 Overview of proposed process

poses a sensor configuration design and evaluation method
for IoT systems. The contribution of this method is as fol-
lows.

1. Proposal of a model that can represent redundant sen-
sor configurations based on SPL

2. Convert sensor configuration to the PRISM model and
automatically evaluate sensing probability with a tool

3. Exhaustively evaluate the sensing probability accord-
ing to the operating environment

The first is to propose a model that structurally repre-
sents and manages the components of the IoT system. The
model is based on the feature model used in SPL and ex-
presses the sensor configuration by considering redundancy.
In this model, function substitution/degeneration can also be
regarded as a kind of product variability in SPL and system-
atically constructed and managed.

In the second, the above model is converted into a state
transition diagram with probability. The converted model
is input to the model checker PRISM for a state search.
PRISM tool can evaluate not only reachability to the spe-
cific state, but also the probability to reach that state. The
function achievement probability of the entire system can
be calculated from the sensing probability of each sensor.

Third, we propose a method to comprehensively eval-
uate the function achievement probability of the system in-
cluding the influence of environmental changes on the sen-
sor. Since the sensor greatly depends on the actual environ-
ment, we comprehensively assume the operating environ-
ment of the system and evaluate whether the target achieve-
ment probability is satisfied in all target environments.

Figure 1 shows the overall process of the proposed
method. This method first constructs a sensor configura-
tion model based on the feature tree. After that, the sen-
sor configuration model is converted to the PRISM model.
In conversion, sensing probabilities are estimated from op-
erating environment, and multiple PRISM models are ac-
quired. The obtained PRISM model automatically evaluates
the function achievement probability of the system by the
tool. If the calculated probability does not reach the target
level, review the sensor configuration and redesign it until
the level is reached.

The proposal of this method makes it possible to en-

TAKAHASHI: EVALUATION THE REDUNDANCY OF THE IOT SYSTEM BASED ON INDIVIDUAL SENSING PROBABILITY
1785

gineeringly manage the design of IoT systems considering
redundancy. Furthermore, it becomes possible to evaluate
the sensing probability quantitatively and automatically. As
a result, design costs can be reduced and safety can be easily
evaluated.

3. Sensor Configuration Tree

This section explains CBFM which is an existing feature
model and proposes a sensor configuration tree based on
CBFM.

3.1 Cardinary Based Feature Model

A feature model is a model used in the Software Product
Line (SPL). SPL analyzes the products to model and man-
ages the commonality of products and the variability that
characterizes each product. The autonomous driving vehi-
cles targeted in this research have common essential func-
tions and various optional functions are prepared depending
on the product grade. The feature model can manage these
commonalities and variability.

After the feature model was proposed in Feature-
Oriented Domain Analysis (FODA) in 1990 [2], several
models have been proposed. In either model, the common-
ality and variability of the system are captured as features,
and the relationship between features is represented hierar-
chically using a tree structure. In our research, Cardinary
Based Feature Model (CBFM) [3] is used as a basic model
to express the functions required for the system and the sen-
sors required to execute them.

Figure 2 shows an example of CBFM feature model.
Features are represented by rectangles on the model. There
are three type features (mandatory, optional, and OR).
These features are classified by analyzing the variability and
commonality of product groups. Mandatory features are
equipped in all products. Optional features are equipped
with only some products. OR is a feature that is selected
and equipped from a plurality of target features. Besides,
two types of cardinality are defined as features of CBFM.
First, group cardinality is the cardinality associated with
the selection relationship and describes the number of min-
imum/maximum features are selected from the target child

Fig. 2 Example of CBFM

features. Another cardinality is feature cardinality. It as-
sociates with individual features. This cardinality describes
the number of times the feature entity appears in the target
system.

These cardinalities are the reason why CBFM was
adopted in this research. In sensor configuration design con-
sidering redundancy, alternative configurations and multi-
plexing configurations of sensors are important. By using
the alternative feature and the group cardinality, it is possi-
ble to express an alternative configuration of the sensor to
achieve a specific function. Also, by using feature cardi-
nality, it is possible to represent multiplexing configuration
for sensors. By using these two types of cardinality, the re-
dundancy of the target system can be expressed as a kind of
system variability.

Besides, we extend the “require” relationship into
CBFM. The “require” expresses a direct dependency that se-
lecting a feature requires that another feature be selected at
the same time. It is especially used to express dependencies
that traverse the hierarchical structure of feature models. In
the autonomous driving system, it is considered that the op-
eration of a specific sensor is indispensable for the realiza-
tion of a certain function. The “require” is used to express
such relationships.

3.2 Determing Sensor Configuration with Considering
Redundancy

This section explains how to determine a sensor configu-
ration of the target system that is developed from the fea-
ture model in Sect. 3.1. In the conventional feature model,
the variability is analyzed, and after evaluating the require-
ments and costs, the features to be equipped in the system
are determined. A decision table is often used for this deter-
mination, and feature configuration is reflected in the sys-
tem configuration. In this research, we do not refer to the
process of configuration determination, and only focus to
define a model that represents the determined configuration.
In the sensor (system) configuration determined by the con-
ventional method, information such as optional and alterna-
tive nature is lost, and only a set of features equipped to the
system can be obtained. However, the lost information is
useful to manage system redundancy. In this research, we
define a model that expresses the function and the sensor
configuration by considering redundancy.

The feature model expresses the maximum possibility
that the target system can take. Therefore, the elements de-
termined as system specifications are a subset. Figure 3
shows determined sensor configuration based on the model
of Fig. 2. Certain features require data acquired by sen-
sors. Therefore, it is necessary to assign related sensors
to the determined feature structure in consideration of re-
dundancy. Specifically, edge features and a specific sen-
sor model for realizing them are connected with relational
lines. This assignment means not assigning individual sen-
sors but assigning sensor types. Therefore, even if one type
of sensor model is assigned, the product configuration may

1786
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.8 AUGUST 2020

Fig. 3 Determing sensor configuration

include multiple sensors of the same product. This quantity
relationship is expressed using the cardinality of the sensor.
When sensors are multiplexed, not all sensors need to be in
operation. For example, if we have three of the same sen-
sors and two of them are operating normally, we can get
the correct information by majority vote and determine the
correct function to activate the function. Such sensor multi-
plexing information is added to the sensor model in the form
of M/N. In the case of the previous example, the multiplex-
ing information is 2/3. The relationship between the sensor
multiplexing information M/N and the feature cardinality
[
fmin.. fmax

]
is as follows.

fmin ≤ M ≤ N ≤ fmax (1)

Based on this multiplexed information, the sensing proba-
bility is calculated for each sensor type in the next section.

Alternative configurations for the sensor are deter-
mined using alternative features. When we determine an al-
ternative configuration of features, we need to determine the
number of features X to be equipped in the range of group
cardinality < gmin..gmax >. However, like the sensor, not all
X features need to be active. For example, multiple meth-
ods such as optical cameras and ultrasonic radars are used
to detect obstacles in autonomous driving. If one or more
of these different methods operate normally when obstacles
can be detected, the redundant information is expressed in
the form of a supplementary relationship. The relationship
between the redundancy information X and the group cardi-
nality is as follows.

gmin ≤ X ≤ gmax (2)

This redundant information will be used to integrate the
sensing probabilities in the next section.

4. Evaluation of Sensor Configuration

This section explains how to evaluate the safety by calculat-
ing the function (sensor) execution probability of the target
system based on the sensor configuration determined in the
previous section.

4.1 Model Checker PRISM

Model checking is a method for describing the system be-
havior formally and checking the correctness of the opera-

tion algorithmically. It is very effective as a method to im-
prove system reliability because it can check the system de-
sign before the implementation of the target system, and can
eliminate dependency on individual skills from the inspec-
tion and can perform a comprehensive inspection according
to the algorithm.

PRISM [4] is one of the model checkers. In PRISM,
the behavior of the system and the accompanying internal
state change can be expressed by a state transition diagram.
The determination of the transition destination by behavior
can be expressed with probability. For example, in the case
of network communication, an environment can be assumed
in which packets arrive at 99.9%, and requests and ack are
lost at 0.1%. When a packet does not arrive, it is necessary
to execute retransmission processing up to a specified num-
ber of times. The probability of reaching a specific state can
be calculated by expressing the local behavior of the system
with probability and exhaustively searching the model. In
the previous example, the tool can calculate the final com-
munication success probability considering retransmission
processing.

4.2 Sensing Probability Model

In this research, the sensor configuration tree defined in
Sect. 3.2 is automatically converted into a PRISM model.
The converted model consists of a sensing success/failure
model for each sensor type and a model that expresses the
achievement probability of each function of the system by
integrating the sensing results of multiple sensor types. In
the converted model, the probability of function failure (sys-
tem safety) due to sensor failure is quantitatively evaluated
by the tool calculating the transition probability to the func-
tion execution success state.

4.2.1 Sensor Model

First, a model for each sensor type is created with the
PRISM model based on the sensor configuration tree de-
signed in the Sect. 3.2. In the sensor configuration tree, the
edge of the tree represents a single sensor type. Each sensor
is assumed to succeed in detecting environmental informa-
tion with probability p. Up to N units of this sensor are
operated, and M of them are sensed successfully. In other
words, if the relationship of M/N is 1/1, only one target sen-
sor is operating, and the target environment data cannot be
obtained unless that sensor is successfully operated. Also,
2/3 indicates that three sensors of the same type are operat-
ing and the correctness of the sensed data is being verified
by majority vote. In this case, if up to one sensing failure
occurs, system operation will not be hindered.

The Fig. 4 shows the sensing behavior of each sensor
type as a state transition diagram with probability. First,
each sensor evaluates its preconditions at the “Idle” state.
By using the “requires” relationship expressed in the sen-
sor configuration tree, it is possible to express a relationship
in which the operation of one sensor depends on the opera-

TAKAHASHI: EVALUATION THE REDUNDANCY OF THE IOT SYSTEM BASED ON INDIVIDUAL SENSING PROBABILITY
1787

Fig. 4 State transition in sensor model

tion status of other sensors. In the “Idle” state, when a sen-
sor with a “require” relationship becomes a success state, it
transitions to the “Sensing” state. In the “ Sensing ” state,
the sensor operates normally with a probability of p. By
performing this success judgment N times, the simultane-
ous operation state of N sensors is reproduced. The results
of sensor success and failure are totaled using a counter. If
the number of successes is greater than or equal to M, it is
assumed that the data has been sensed correctly by sensing,
and if it is less than M, it is assumed that the sensing has
failed and transitions to the “Failure” state.

list 1 Sensor Model
1 const int SUCCESS = 1;
2 const int FAILURE = 0;
3 const int N_sensor=1;
4 const int M_sensor=1;
5 const double p_sensor=0.9;
6
7 module sensor
8 s_sensor : [0..3] init 0;
9 result_sensor : [0..1] init 0;

10 s_count_sensor : [0..N] init 0;
11 e_count_sensor : [0..N] init 0;
12
13 [](s_sensor=0)-> (s_sensor’=1);
14 [](s_sensor=1)&!(s_count_sensor>=M_sensor)

&!(e_count_sensor>N_sensor-M_sensor) ->
p_sensor : (s_count_sensor’=
s_count_sensor+1) + (1-p_sensor) : (
e_count_sensor’=e_count_sensor+1);

15 [](s_sensor=1)&(s_count_sensor>=M_sensor)
-> (s_sensor’=2)&(result_sensor’=
SUCCESS);

16 [](s_sensor=1)&(e_count_sensor>N_sensor-
M_sensor) -> (s_sensor’=3)&(
result_sensor’=FAILURE);

17 endmodule

List 1 shows the sensor model in the PRISM language.
The internal state of each sensor is managed by the state
variable s sensor (0: Idle state, 1: Sensing state, 2: Sensed
success, 3: Sensed failure). The sensing results of each sen-
sor are counted using s count and e count variables. In
the Sensing state, it increments s count with probability
p sensor and e count with probability 1 − p sensor. When
the number of s count become equal to M sensor, it shifts
to the sensed success state, and conversely, when e count
exceeds N sensor − M sensor, it transits to the sensed fail-
ure state.

Judgment, when the operation of a sensor depends on
the state of other sensors, is described by the expression in
the “Idle” state on line 7. The success status of other sensors

Fig. 5 State transition in integration model

is described as a transition condition. For example, if the
target sensor operates only when sensor 2 is successfully
sensed, write a conditional expression like follows.

1 [](s_sensor=0)&(result_sensor2=SUCCESS) -> (
s_sensor’=1);

4.2.2 Integration of Sensor Results

After generating the individual sensor models, integrated
models are generated that determines the success/failure of
features by integrating the sensing results of each sensor.
The integrated model is generated from the composition of
intermediate features in the sensor configuration tree. Fig-
ure 5 shows the state transition diagram of the integrated
model.

An integrated model is generated for each feature in the
sensor configuration tree. Each integrated model consists of
four states. In the “Waiting” state, it judges the states of the
child nodes (feature/sensor) relating to its feature and waits
until judges of all the child nodes are finished. Next, in the
“Judging” state, the results of the child nodes are integrated.
If the number of child nodes equal to or greater than the
achievement condition X is successful, it transitions to the
success state, otherwise it transitions to the failure state. The
achievement condition X is determined when designing the
sensor configuration tree.

list 2 Integration Model
1 module integration
2 s_integration : [0..3] init 0;
3 result_integration : [0..1] init 0;
4
5 [](s_integration=0)&(s_sensor1>=2)&...&(

s_sensorN>=2) -> (s_integration’=1);
6 [](s_integration=1)&(result_sensor1+...+

result_sensorN>=X)-> (s_integration’=2)
&(result_integration’=SUCCESS);

7 [](s_integration=1)&!((result_sensor1+...+
result_sensorN>=X))-> (s_integration’=3)
&(result_integration’=FAILURE);

8 endmodule

1788
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.8 AUGUST 2020

List 2 shows the integrated model in PRISM language.
At first, the sensor integration model judges whether all the
child features (sensors) have been finished. The conditional
expression on line 5 confirms that all the target sensor mod-
els (sensor1 - sensorN) have reached the end state. After
that, in line 6-7, the sensor results are integrated. Each
sensor judges the success/failure of detection considering
the multiplexing of M/N. If the target sensor is success-
ful, 1 is stored in the variable result sensorN. If the val-
ues of all sensor variables reuslt sensorN are summed and
exceed the threshold value X, it means that the data nec-
essary to achieve the feature is available. As a result, the
feature is achieved and the state transitions to the success
state (result integration′ = S UCCES S).

5. Management of Environmental Information and Es-
timation of Sensing Probability

The autonomous driving system uses various sensors. En-
vironmental information is acquired using a sensor, and the
operation is determined based on that information. It can
be said that the operation of the system depends on environ-
mental information. This dependency can be applied to the
sensor itself that acquires environmental information. Var-
ious sensors have strengths and weaknesses concerning the
environment in terms of detection accuracy. For example,
optical cameras can obtain information on the surrounding
environment with high accuracy when the weather is clear
during the daytime. On the other hand, the sensing accu-
racy and performance are greatly reduced when the lighting
is poor at night or in rainy weather or fog. Thus, to evaluate
the designed sensor configuration, it is necessary to identify
the environment in which the target system operates. This
section explains how to calculate and evaluate the sensing
probability of the target system based on the environmental
information that affects the sensors.

5.1 Management of Environment Information and Sensing
Probability

In this study, we assume that the performance of each sen-
sor used in the system is evaluated and managed in advance.
This means that the characteristics of each sensor are mea-
sured by the catalog information of the sensor manufacturer
or the preliminary analysis by the developer. The sensing
probability of sensor s is determined depending on the en-
vironment E =< e1, e2, . . . , en > in which it operates. En-
vironment E consists of environmental elements en (eg, il-
luminance, temperature, humidity, etc.). In the implementa-
tion of this research, each environmental element is divided
into arbitrary Mn intervals, and the sensing probabilities are
recorded and managed in the form of multidimensional ar-
rays of M1 × M2 × . . . × Mn. The multidimensional array
stores the minimum guaranteed value of sensing probability
in the target environment.

The sensing probability of each sensor can be estimated
by determining the environmental factors based on the op-

eration scenario of the target system. For example, consider
the operation of an autonomous driving system when testing
a driving scene on a highway at night in rainy weather. It can
be expected that the illuminance is low at night, the humidity
is high due to rain, and the temperature is low, and specific
value in that environment can be assumed. As a result, the
sensing probability of each sensor in the target environment
can be estimated. The estimated value is assigned to the de-
tection probability p of each sensor model. By enumerating
operational scenarios in advance, a PRISM model reflecting
the sensing probability corresponding to each scene can be
automatically generated.

5.2 System Safety Evaluation

This section describes how to calculate the probability
of achieving any property of the system using the model
checker PRISM. In PRISM, the probability of reaching
any state can be calculated by expressing any state to be
achieved using LTL (Linear Temporal Logic) formula. For
example, to verify that the entire system works properly, cal-
culate the probability that the top node of the sensor config-
uration tree will be in a successful state. In this case, the
LTL formula can be described as follows.

1 P=?[(F result_top=SUCCESS)]

The above formula is the most typical one for evaluating
safety, and makes the PRISM tool calculate the probability
of achieving the function of the entire system. The leading
“P =?” instructs the PRISM tool to calculate the probabil-
ity of transition to the target state. In the above formula, by
specifying (F result top = S UCCES S), the probability
that the value of result top will be eventually SUCCESS is
calculated. “result top” is a variable that records the execu-
tion result of the top node of the sensor configuration tree.
By checking that variable, it can be judged whether the ob-
jective of the entire system has been achieved.

It is possible to evaluate not only the entire system but
also partial functions and the probability of occurrence of
special states. For example, to verify whether the probability
that the specified function will be achieved is 10% or less
when a specific sensor is not working, verify the following
formula.

1 P<=0.1 [!(result_sensor=SUCCESS) U (result_func
=SUCCESS)]

In the above formula expresses the state in which detection
by the sensor does not be achieved (not operating normally)
until the specified function is executed normally. PRISM
can set a threshold for the probability P, and can verify
whether the condition is satisfied. In the above example, it
verifies whether the probability is less than 10% by setting
“P<=0.1”.

In this way, by constructing the model of the target sys-
tem and specifying the state which wants to be satisfied by
the LTL formula, PRISM can calculate probability reach-
ing a specified state. This process makes easy to verify any

TAKAHASHI: EVALUATION THE REDUNDANCY OF THE IOT SYSTEM BASED ON INDIVIDUAL SENSING PROBABILITY
1789

Fig. 6 Feature model for autonomous drive system

Fig. 7 Sensor configuration tree for autonomous drive system

system safety.

6. Case Study

In this section, we evaluate the effectiveness of the proposed
method using an autonomous driving system as an example.
First, the domain acknowledgment of the target system is
shown below.

• To satisfy all requirements of the system, self-position
estimation, collision avoidance and parking assistant
must all active.
• Self-position estimation consists of two functions: ac-

quisition of map information and current position mea-
surement.
• Current position measurement can be achieved by GPS

positioning or dead reckoning based on in-vehicle sen-
sor information.
• To avoid collisions, three recognitions are required:

lane recognition, forward recognition, and backward
recognition.
• Although forward recognition is performed by front

recognition using a long-range radar, it can be substi-
tuted by front-side recognition using a medium-range
radar.
• Parking assistant requires to use both functions: back

recognition and front side recognition.
• The autonomous driving failure probability due to sen-

sor errors is aimed at 0.1% or less (success rate 99.9%
or more).

Figure 6 shows the relationship between the functions

that make up the system based on the above knowledge
in a feature model. It is essential to achieve the three
sub-functions “Self-position recognition”, “Collision avoid-
ance” and “Parking assist” necessary to achieve the top-
level function “Auto driving”. The two functions for achiev-
ing self-positioning are connected in a selective relation-
ship with group multiplicity < 1..2 > so that one or more
of the two needs to be achieved. Similarly, long-distance
“Front recognition” and medium-distance “Front side recog-
nition” are connected in a selective relationship for forward
recognition, indicating that one or more of them are re-
quired. “Parking assist” also requires “Back recognition”
and “Front side recognition”. The requirements are ex-
pressed by require relation.

Next, the sensor configuration of the system is deter-
mined based on the feature model. First, redundancy at the
functional level is determined from the selective relation-
ship between features. The two features of self-position es-
timation and forward recognition have a selective relation-
ship on the feature model. The group cardinality of self-
position estimation is < 1..2 >. Here, we will use only the
Global Navigative Satelite System for self-position estima-
tion. Similarly, forward recognition also has group cardi-
nality < 1..2 >, but this is installed with both functions for
providing redundancy. This means that there is no problem
if either one is operating normally. In this way, the function
to be installed is determined by referring to the selective re-
lationship part on the feature model and selecting a subset
from the candidates. After determining the functional con-
figuration as described above, the sensors are determined
and assigned to the functions. Refer to the feature (func-

1790
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.8 AUGUST 2020

Table 1 Sensing probability in each situation

Sensor Type Situation 1 Situation 2

GPS sensor 0.99999 0.97
Detail Map 0.99999 0.99999
Sterao Camera 0.99999 0.97
LRR 0.99999 0.99999
MRR front side 0.99999 0.99999
MRR rear side 0.99999 0.99999
Ultra sonic sensor 0.99999 0.99999

Wheel encoder - 0.99995

tion) at the edge of the feature model, and determine and
assign the sensor required to achieve the function. At this
time, referring to the feature cardinality of the target fea-
ture, the number of sensors to be mounted in that range is
determined. For example, the MRR rear side sensor is as-
signed to achieve back recognition. It is assumed that these
sensors are mounted one by one on the left and right rear of
the vehicle, and that both of them operate normally, and that
back recognition is achieved. Therefore, M/N = 2/2 is de-
termined as the minimum number of operating sensors and
the number of installed sensors. The sensor configuration
of the target system is determined by completing the sensor
assignment for other edge features in the same way.

Next, we assume the verification environment of the
determined system. Two environments are assumed this
time. The first is for driving on ordinary roads when the
weather is clear during the day, and the second is for driv-
ing on highways when it is raining. To estimate the sensing
probability of the sensor in the assumed environment, the
environment is decomposed into environmental elements.
Assuming speed range, brightness, and weather as envi-
ronmental elements, element values in the assumed envi-
ronment are determined. For example, in the first environ-
ment, it can be converted into environmental element values
in the form of E1 = {speedrange = medium, lightness =
high, weather = clear}. Similarly, the second environment
can be converted to E2 = {speedrange = high, lightness =
low, weather = rain}. Based on these environmental ele-
ment values, the sensing probability is obtained from the
sensing probability array of each sensor. For example, the
sensing probability of the GPS sensor can be estimated as
X% in the first environment and Y% in the second envi-
ronment. By repeating this ““number of sensor types” ×
“number of environments”” times, the sensing probability
necessary for system verification is obtained. Table 1 shows
the sensing probability of each sensor estimated in this case
study.

list 3 Model for Autonomous Driving
1 ---(omission)---
2
3 //// Model of GPS_sensor ////
4 const int N_GPS_sensor=1;
5 const int M_GPS_sensor=1;
6 const double p_GPS_sensor=0.99999;
7
8 module GPS_sensor
9 s_GPS_sensor : [0..3] init 0;

10 result_GPS_sensor : [0..1] init 0;
11 s_count_GPS_sensor : [0..1] init 0;

12 e_count_GPS_sensor : [0..1] init 0;
13
14 [](s_GPS_sensor=0)-> (s_GPS_sensor’=1);
15 [](s_GPS_sensor=1)&!(s_count_GPS_sensor>=

M_GPS_sensor)&!(e_count_GPS_sensor>
N_GPS_sensor-M_GPS_sensor) ->
p_GPS_sensor : (s_count_GPS_sensor’=
s_count_GPS_sensor+1) + (1-p_GPS_sensor
) : (e_count_GPS_sensor’=
e_count_GPS_sensor+1);

16 [](s_GPS_sensor=1)&(s_count_GPS_sensor>=
M_GPS_sensor) -> (s_GPS_sensor’=2)&(
result_GPS_sensor’=SUCCESS);

17 [](s_GPS_sensor=1)&(e_count_GPS_sensor>
N_GPS_sensor-M_GPS_sensor) -> (
s_GPS_sensor’=3)&(result_GPS_sensor’=
FAILURE);

18 endmodule
19 ///////////////////////////////
20
21 //// Model of Self_position_estimation ////
22 module Self_position_estimation
23 s_Self_position_estimation : [0..3] init 0;
24 result_Self_position_estimation : [0..1]

init 0;
25
26 [](s_Self_position_estimation=0)&(

s_Detailed_map_recognition>=2)&(
s_Global_Navigation_Satellite_System>=2)
-> (s_Self_position_estimation’=1);

27 [](s_Self_position_estimation=1)&(
result_Detailed_map_recognition=SUCCESS)
&(
result_Global_Navigation_Satellite_System
=SUCCESS)-> (s_Self_position_estimation
’=2)&(result_Self_position_estimation’=
SUCCESS);

28 [](s_Self_position_estimation=1)&!((
result_Detailed_map_recognition=SUCCESS)
&(
result_Global_Navigation_Satellite_System
=SUCCESS))-> (s_Self_position_estimation
’=3)&(result_Self_position_estimation’=
FAILURE);

29 endmodule
30 ///////////////////////////////
31
32 ---(omission)---

The sensor configuration model and the sensing prob-
ability are input to the model conversion program that im-
plements the proposed method and converted to the PRISM
model. A part of the converted PRISM model is shown in
list 3. For this model, specify the property to be verified
and calculate its achievement probability. This time, we cal-
culate the achievement probability of the top feature “Auto
driving”. The formula given is

1 P =? [(F result_Auto_driving = SUCCESS)]

By repeating the conversion to the PRISM model and the
verification of properties, the verification of the system can
be achieved comprehensively.

6.1 Revision and Revaluation

Once the sensing probabilities are determined based on the
environment, PRISM can calculate the achievement proba-
bility of the specified constraint. To calculate manually the
probability, it can be obtained by calculating the achieve-
ment probability of sensors and functions from the bottom
up. For example, the achievement probability of “Forward

TAKAHASHI: EVALUATION THE REDUNDANCY OF THE IOT SYSTEM BASED ON INDIVIDUAL SENSING PROBABILITY
1791

recognition” Pf or rec can be obtained by the following cal-
culation.

Plrr = Pf ro rec = 0.99999

Pmrr f s = 0.99999

Pf s rec = (Pmrr f s)
2 = 0.9999800001

Pf or rec = 1 − ((1 − Pf ro rec) ∗ (1 − Pf s rec))

= 0.9999999998

The difference between the calculation result and the
PRISM result is less than 10−7. The numerical errors are
caused by differences in approaches. We believe that it
is accurate enough to estimate the probability of achieve-
ment in the early phase of development. By performing
the same calculation up to the root node of the system, the
achievement probability of the entire system can be calcu-
lated. However, the calculation must take into account the
calculation order based on the dependencies. In the case
study, “Back recognition” and “Front side recognition” must
be calculated before calculating “Parking assist”.

In the initial configuration, the achievement probabili-
ties of entire system in the two environments were 99.989%
and 94.082%. Figure 8 shows a screenshot of the PRISM
tool evaluating the rainy environment. The probability of
the first sunny environment exceeds 99.9%, but the target
value is not reached in the second rainy environment. This
is thought to be because the communication accuracy of the
GPS sensor is reduced due to rain clouds and the sensing
probability of the stereo camera is reduced due to water
droplets. Considering the variability of the feature model,

Fig. 8 Evaluation result in rainy environment

Fig. 9 Revised sensor configuration tree

we aim to increase the achievement probability by strength-
ening redundancy. First, instead of relying solely on the
GPS sensor to estimate self-position, we install dead reck-
oning as GPS support. Dead reckoning uses a wheel en-
coder to estimate self-position. Also, as a countermeasure
against a decrease in the accuracy of lane recognition cam-
eras due to water droplets, two cameras are installed at dif-
ferent positions. If either camera can recognize the lane, it
can work without problems. The revised sensor configura-
tion is shown in Fig. 9. The achievement probability is cal-
culated again for the revised model. With this revision, the
achievement probability in rainy weather became 99.901%,
and it was reached that the target value. By repeating the
designing, evaluation, and revision of the sensor configura-
tion as described above, the safety of the target system can
be evaluated at the early stage of system design.

7. Discussion

This section describes the effectiveness and limitations of
the proposed method.

7.1 Advantage of Using Model Checker

The verification time in the case study was 20.994 seconds
for the initial configuration and about 385.226 seconds for
the revised configuration. This verification time increases as
the number of features and sensors that construct the model
increases. If only the probability of achievement of the top
function is calculated, it is possible to calculate faster than
the PRISM model by designing a dedicated program. How-
ever, we chose using PRISM tool to calculate them for two
reasons.

The first reason is that we do not need to consider the
calculation order due to dependencies. If it is a simple tree
structure, it is sufficient to calculate in order from the leaf
to the root. When multiple functions share the same sensor,
cross-cutting dependency on the tree occurs, and it is neces-
sary to determine the calculation orders. However, in using
of PRISM, it automatically started the calculation from the
part that can be calculated, so there is no need for the devel-
oper to consider such order.

The second reason is the ease of constraint verifica-
tion. The most typical constraint is whether the entire sys-

1792
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.8 AUGUST 2020

tem works properly. However, actual system verification re-
quires verification of various constraints. As described in
Sect. 5.2, in this method, various verifications can be per-
formed simply by describing constraint expressions. If we
want to manually verify the achievement probabilities for
constraints, we must design a formula to calculate them.
Similarly, the cost is high when implementing a calcula-
tion program. Our method using a model checker facilitates
probability verification.

7.2 Computational Cost

As mentioned in Sect. 7.1, the proposed method takes a lot
of time to calculate a large model, and there is still a prob-
lem in scalability. In this paper, conversion to the PRISM
model and evaluation process are a major contribution, and
we think the scalability of the method is out of the scope.
However, scalability improvement is considered essential
for actual operation, and one strategy for improvement is
described in this section.

Converting an entire system into a single PRISM model
requires enormous computational costs. Therefore, the com-
putation time can be dramatically reduced by decomposing
the system into multiple subtrees and calculate them in a
step by step. For example, if the revised configuration can
be decomposed into three subtrees (“self-position estima-
tion”, “collision avoidance and parking assist” and “Integra-
tion into top function”), they can be calculated in about 0.5
seconds in total by PRISM. When decomposing into sub-
trees, it is important to decompose into appropriate sizes,
taking into account the cross-cutting dependencies. There
is another benefit to decomposing into subtrees. When re-
designing the sensor configuration, if it is divided into sub-
trees, it only revaluates the changed subtrees and the upper
subtrees, so the results of subtrees that do not need to be
changed can be reused. Thus, the cost of redesign can be
reduced. Proposal of specific algorithm is future work.

7.3 Verification Ability

In this method, the achievement probability of the function
is the object of verification, and for this purpose, the model
checking method PRISM that can handle the probability is
adopted. The ability to handle probabilities is a major fea-
ture of PRISM, but it is also possible to verify whether or not
a specific state can be achieved. Depending on the verifica-
tion formula, flexible verification can be performed. How-
ever, real-time property cannot be verified as a model lim-
itation. For example, depending on the situation, when the
correct value cannot be obtained, the old value may be tem-
porarily used. In the case of position estimation, the restric-
tion can be expressed as property such as “use position infor-
mation acquired within the past 10 seconds”. This method
cannot handle real-time information such as “within the past
10 seconds”. To verify this, it is necessary to express the
sensing time and the interval in the model, and also use time
information in the constraint equation. We are planning the

model extension for the verification of real-time properties.
The purpose of this method is to estimate the probabil-

ity of achievement of functions at the initial stage of design.
Even if this verification is passed, it is possible that the func-
tion cannot be achieved in the actual environment due to the
influence of sensor placement and unexpected environmen-
tal factors. The unexpected behaviors can be dealt with by
dynamically changing the functional configuration using the
self-adaptive system technique.

7.4 Estimation of Sensing Probability

To use this method, it is necessary to evaluate the sensing
probability of the individual sensor in advance. It is neces-
sary to manage environmental elements and sensing prob-
abilities. It is necessary to determine what environmental
elements should be considered and how much the environ-
mental elements should be divided based on domain knowl-
edge. When new environmental elements are added, the ef-
fects of these elements need to be remeasured. It is costly.
As for the estimation of the sensing probability in a specific
environment, instead of clearly defining and managing the
environmental elements to be considered as in this method,
a method of estimating by using machine learning is also
conceivable. With machine learning, we expect that the po-
tential influences from the environment can be estimated.

8. Related Works

Model checking is useful for verifying system operation be-
fore implementation. Various model checkers that have dif-
ferent characteristics have been proposed [5]. The SPIN [6]
is particularly good at expressing communication between
parallel processes, and it is possible to check whether
constraints can be satisfied by writing LTL expressions.
This is especially effective for protocol verification. The
NuSMV [7] is a model checker called a symbolic model
checker. This also can verify the reachability of a specific
state by describing the constraints by the LTL expression.
A large number of states can be inspected efficiently. The
UPPAAL [8] is a model checker that can express time in-
formation on a model. This makes it possible to verify sys-
tems with time constraints. In our method, the PRISM [4]
is adopted as a model checker. This is because a transition
probability can be expressed in the model. Since the sens-
ing probability of the sensor can be handled explicitly and
the probability of normal operation of the system based on
it can be calculated, it is suitable for this research.

The autonomous driving system in this research re-
alizes collision avoidance by integrating information from
multiple sensors. Machine learning has been attracting at-
tention to realize these information integrations and various
researches have been proposed [9], [10]. Machine learning
is suitable for automatically modeling behaviors that are dif-
ficult to rule manually. However, generated models become
black boxes. They are difficult to be proved own safety.
By using our method, it is possible to perform comprehen-

TAKAHASHI: EVALUATION THE REDUNDANCY OF THE IOT SYSTEM BASED ON INDIVIDUAL SENSING PROBABILITY
1793

sive inspections and mathematical quantitative evaluations,
which can be used to explain the safety of these systems.

In this research, the redundancy of the software sys-
tem is modeled using the variability of the feature model.
The purpose of this research is to assist the designing of re-
dundancy, and even if the target probability is achieved by
this research, it does not guarantee that the system operates
as a safe system. Even if there is sufficient system redun-
dancy, it does not make sense if it cannot be switched opera-
tions properly in runtime. To continue to achieve the objec-
tives, it is considered that the combination with the research
of the self-adaptive system is effective. In a self-adaptive
system, the system configuration and behavior are dynami-
cally determined and changed according to the runtime en-
vironment. For example, Ghezzi et al. [11] have proposed a
method of changing the behavior appropriately by judging
the timing when the system can be safely switched. Ramirez
et al. [12] proposed a method to prevent the occurrence of
fatal problems as a system by allowing some of the require-
ments to be relaxed. To effectively operate the redundant
configuration handled in our method in an actual environ-
ment, it is effective to combine these techniques.

9. Conclusion

In IoT systems, data acquired by many sensors are required.
However, since sensor operation depends on the actual en-
vironment, it is important to ensure sensor redundancy to
improve system reliability in IoT systems. To evaluate how
many sensors are multiplexed and what is effective as an
alternative function, it is important to estimate the achieve-
ment probability of the function based on the sensing prob-
ability at the initial design phase. In this research, we pro-
posed a method to automatically generate a PRISM model
from the sensor configuration of the target system and to
calculate and verify the function achievement probability in
the assumed environment. By designing and evaluating it-
eratively until the target achievement probability is reached,
the reliability of the system can be estimated at the initial
design phase. This method reduces the possibility that the
lack of reliability will be found after implementation and the
redesign accompanying it will occur.

Future works include strengthening verification abili-
ties. We believe that it is possible to verify the properties
and constraints for the operation cycle of IoT systems by ex-
tending real-time information to the model. This extension
makes it possible to design reliable IoT systems more easily.
Also, as a problem inherent to model checking, scalability
needs to be improved. We think that it is possible to verify
large-scale complex systems composed of a large number
of sensors by using model decomposition and aggregation
methods.

References

[1] L.D. Xu, W. He, and S. Li, “Internet of things in industries: A sur-
vey,” IEEE Trans. Ind. Informat., vol.10, no.4, pp.2233–2243, Nov.

2014.
[2] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: Probabilistic

symbolic model checker,” Computer Performance Evaluation: Mod-
elling Techniques and Tools, ed. T. Field, P.G. Harrison, J. Bradley,
and U. Harder, Berlin, Heidelberg, vol.2324, pp.200–204, Springer
Berlin Heidelberg, 2002.

[3] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged configura-
tion using feature models,” Software Product Lines, ed. R.L. Nord,
Berlin, Heidelberg, vol.3154, pp.266–283, Springer Berlin Heidel-
berg, 2004.

[4] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: Probabilistic
symbolic model checker,” Computer Performance Evaluation: Mod-
elling Techniques and Tools, ed. T. Field, P.G. Harrison, J. Bradley,
and U. Harder, Berlin, Heidelberg, vol.2324, pp.200–204, Springer
Berlin Heidelberg, 2002.

[5] S. B and S. Jayadevappa, “Model checkers - tools and languages for
system design - a survey,” 5th International Conference on Advanced
Information Technologies and Applications, pp.39–51, 11 2016.

[6] G. Holzmann, The SPIN Model Checker: Primer and Reference
Manual, 1st ed., Addison-Wesley Professional, 2011.

[7] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri, “Nusmv:
A new symbolic model verifier,” Proc. 11th International Confer-
ence on Computer Aided Verification, CAV ’99, London, UK, UK,
vol.1633, pp.495–499, Springer-Verlag, 1999.

[8] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “Up-
paal — a tool suite for automatic verification of real-time systems,”
Proc. DIMACS/SYCON Workshop on Hybrid Systems III: Verifi-
cation and Control: Verification and Control, Secaucus, NJ, USA,
vol.1066, pp.232–243, Springer-Verlag New York, Inc., 1996.

[9] S. Hoermann, M. Bach, and K. Dietmayer, “Dynamic occupancy
grid prediction for urban autonomous driving: A deep learning ap-
proach with fully automatic labeling,” 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pp.2056–2063, May
2018.

[10] Q. Rao and J. Frtunikj, “Deep learning for self-driving cars: Chances
and challenges,” 2018 IEEE/ACM 1st International Workshop on
Software Engineering for AI in Autonomous Systems (SEFAIAS),
pp.35–38, May 2018.

[11] C. Ghezzi, J. Greenyer, and V.P.L. Manna, “Synthesizing dynami-
cally updating controllers from changes in scenario-based specifica-
tions,” 2012 7th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), pp.145–154,
June 2012.

[12] A.J. Ramirez, B.H.C. Cheng, N. Bencomo, and P. Sawyer, “Relaxing
claims: Coping with uncertainty while evaluating assumptions at run
time,” Model Driven Engineering Languages and Systems, ed. R.B.
France, J. Kazmeier, R. Breu, and C. Atkinson, Berlin, Heidelberg,
vol.7590, pp.53–69, Springer Berlin Heidelberg, 2012.

Ryuichi Takahashi received the B.E., M.E.
and D.E. from Waseda University, Tokyo, Japan
in 2007, 2008 and 2012. During 2011–2017,
he was an assistant professor at Waseda Univer-
sity. He is now with Ibaraki University, Japan.
His research interests include software engineer-
ing especially the design of interactions for dis-
tributed systems.

http://dx.doi.org/10.1109/tii.2014.2300753
http://dx.doi.org/10.1109/tii.2014.2300753
http://dx.doi.org/10.1007/3-540-46029-2_13
http://dx.doi.org/10.1007/978-3-540-28630-1_17
http://dx.doi.org/10.1007/3-540-46029-2_13
http://dx.doi.org/10.5121/csit.2016.61304
http://dx.doi.org/10.1007/3-540-48683-6_44
http://dx.doi.org/10.1007/bfb0020949
http://dx.doi.org/10.1109/icra.2018.8460874
http://dx.doi.org/10.1145/3194085.3194087
http://dx.doi.org/10.1109/seams.2012.6224401
http://dx.doi.org/10.1007/978-3-642-33666-9_5

