
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020
739

PAPER Special Section on Intelligent Information and Communication Technology and its Applications to Creative Activity Support

Software Development Effort Estimation from Unstructured
Software Project Description by Sequence Models

Tachanun KANGWANTRAKOOL†a), Member, Kobkrit VIRIYAYUDHAKORN†b),
and Thanaruk THEERAMUNKONG†c), Nonmembers

SUMMARY Most existing methods of effort estimations in software
development are manual, labor-intensive and subjective, resulting in over-
estimation with bidding fail, and underestimation with money loss. This
paper investigates effectiveness of sequence models on estimating develop-
ment effort, in the form of man-months, from software project data. Four
architectures; (1) Average word-vector with Multi-layer Perceptron (MLP),
(2) Average word-vector with Support Vector Regression (SVR), (3) Gated
Recurrent Unit (GRU) sequence model, and (4) Long short-term memory
(LSTM) sequence model are compared in terms of man-months difference.
The approach is evaluated using two datasets; ISEM (1,573 English soft-
ware project descriptions) and ISBSG (9,100 software projects data), where
the former is a raw text and the latter is a structured data table explained the
characteristic of a software project. The LSTM sequence model achieves
the lowest and the second lowest mean absolute errors, which are 0.705 and
14.077 man-months for ISEM and ISBSG datasets respectively. The MLP
model achieves the lowest mean absolute errors which is 14.069 for ISBSG
datasets.
key words: software effort estimation, regression, deep learning, sequence
model, recurrent neural network (RNN), gated recurrent units (GRU), long
short-term memory network (LSTM)

1. Introduction

Cost estimation is a heart of the software development pro-
cess. It helps not only have a knowledge of the budget
needed but also have an idea of the time needed to com-
plete the project. The time estimation can be easily trans-
lated into budget once we know how much man-hour costs
and all dependencies throughout the project. However, time
estimation for a software project is an arduous tasks. It is
a time-consuming task that requires professional software
analysts.

Many methods have been published to estimate the
effort on a software development project. Most of them
are using the rule-based decision method, or referencing
from previous data. L.H. Putnam firstly stated the empir-
ical method for estimating computer software in 1978 [1].
A macromethodology that produces accurate estimates of
manpower, costs, and times to reach critical milestones of
software projects was proposed. It used four software state

Manuscript received March 27, 2019.
Manuscript revised September 30, 2019.
Manuscript publicized January 14, 2020.
†The authors are with School of Information, Computer, and

Communication Technology, Sirindhorn International Institute of
Technology, Thammasat University, Thailand.

a) E-mail: tachanun@studentsiit.tu.ac.th
b) E-mail: kobkrit@gmail.com
c) E-mail: thanaruk@siit.tu.ac.th

DOI: 10.1587/transinf.2019IIP0014

variables such as the state of technology, the applied effort,
the development time, and the independent variable time.

Kemerer, and Chris F. proposed an empirical validation
of four algorithmic models (SLIM, COCOMO, Function
Points, and ESTIMACS) as general software-development
cost estimators [2]. M. Shepperd and C. Schofield estimated
the effort using the analogies database [3]. The feature of
a software project is extracted as the query. The devel-
opment effort is estimated by searching the most similar
project from the database.

Later, the machine learning approaches which gen-
erally show the promising results [4] over the rule-based
method in many regression tasks was proposed. A.L.
Oliveira used the support vector regression (SVR) to esti-
mate the effort of work [5]. The experiments were carried
out using a dataset of software projects from NASA. They
compared between support vector regression (SVR), radial
basis functions neural networks (RBFNs) and linear regres-
sion for estimation of software project effort. The SVR sig-
nificantly outperforms RBFNs and linear regression in this
task.

In this paper, we proposed the software project estima-
tors using deep learning techniques which are organized as
follows. Section 2 describes the ISEM and ISBSG software
projects datasets. Section 3 presents four proposed meth-
ods. Section 4 explains our experimental settings. Section 5
shows the experimental results. Section 6 concludes the pa-
per.

2. Software Project Datasets

2.1 ISEM Dataset: Project Description Text

ISEM (Institute of Software Engineering improvement and
quality Management) [6] is the first CMM/CMMI consult-
ing team for software process in Thailand established in
1998. ISEM collected 1,573 pairs of a software project
description written in English and its actual man-month
while visiting 308 companies for CMMI appraisal through-
out Asia. This dataset is not publicly available due to unable
to disclose the clients’ confidential information. The exam-
ple of data is shown in Table 1.

2.2 ISBSG Dataset

ISBSG (International Software Benchmarking Standards

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

740
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

Table 1 Examples of the ISEM software project description and the effort estimation (in man-month)

Product Description Effort

Joint Office Automation System is based on the structural data management with the platform of www office automation system. 1.00
This system provides the operational support platform to local credit system data gathering, credit data sharing and credit application. 2.00
To realize centralized and unified management on the information such as order records, number, packages, preferential policies, etc. 3.00

and background management authority settings
To provide our clients a set of complete advanced function and good user experience vehicle-mounted recreational and multimedia system. 7.00

To develop a universal interface module based on Modbus communication agreement, makes each isomerous station can be connected. 11.00
This is a system used to support Interaction between China Unicom Guangzhou branch and customers, and provide a presentation of 15.00

analysis on interactive activity data to sales and management.
With the implementation of “Regulations of City Special Economic Zone on the Donation and Transplantation of Human Organ”, 18.00

It is developed to manage effectively the donor, transplant and other information.

Table 2 Examples of the ISBSG software project data and the effort estimation (in man-month)

Year Industry Sector Application Group Application Type Development Type Prog. Language ... Effort

1998 Service Industry Business Application Transaction/Production System New Development Oracle ... 10.51
2016 Communication Business Application CRM Enhancement Java ... 1.63
2000 Insurance Business Application Sales contact management New Development Java ... 103.18
2002 Wholesale & Retail Business Application Stock control & order processing Enhancement C ... 120.00
1994 Banking Business Application Transaction/Production System New Development EASYTRIEVE ... 10.65
2000 Communication Real-Time Application Real-time System Enhancement C ... 9.68

Table 3 Descriptive statistic of software project description datasets

Category Statistics ISEM Dataset ISBSG Dataset

Data Points Amount 1,573 9,100

Software Size Estimation (in Man-Months)

Min 1 0
Mean 5.729 17.873
Max 18 199.722

Variance 5.700 700.575
Skewness 1.031 3.217

Length of Software Project Description Text (in Words)

Min 4 7
Mean 33.587 43.230
Max 143 262

Variance 307.208 925.927
Skewness 1.076 1.957

Group) [7] is a not-for-profit organisation was founded in
1997 by a group of national software metrics associations.
Their aim was to promote the use of IT industry data to im-
prove software processes and products.

ISBSG’s Development & Enhancement Repository
contains software project data which is contributed by or-
ganisations around the world. It consists of 9,100 software
projected developed in 32 different countries. Wide vari-
ety of industries and business types are represented in this
dataset.

The data is arranged in Excel file format consisted of
253 columns shown in Table 2. They include:

• Project description details
• Size and size attributes
• Effort and effort attributes
• Defects
• Project schedule details
• Effort per phase
• Architecture
• Techniques

• Documentation used
• Platform details

All numerical information that directly indicates to the
effort estimates such as sizes, efforts, and their attributes are
removed from the dataset. We selected the column “Effort:
Summary Work Effort” as the prediction target, which is a
total summarized of man-hours of that project. We convert
the value into man-months by dividing 176 which is a num-
ber of working hours in a month assuming they are working
8 hours a day and 22 days a month.

2.3 Data Pre-Processing

We concatenated all textual information in 253 columns of
ISBSG dataset into a single raw text sentence for equally
performance comparison between both datasets. We re-
moved non-English characters and punctuation except the
hyphen and then performed word tokenization using the
space character. Then, we lemmatized every word using

KANGWANTRAKOOL et al.: SOFTWARE DEVELOPMENT EFFORT ESTIMATION FROM UNSTRUCTURED SOFTWARE PROJECT DESCRIPTION
741

Fig. 1 Descriptive statistic of both ISEM and ISBSG datasets.

Wordnet lemmatization†.
We converted a sentence into a list of word vectors by

looking up the pretrained 50-dimensional GloVe [8] word
embedding which is a dictionary mapping from vocabular-
ies (including words and general name entities) to numeri-
cal vectors. These vectors contain fine-grained semantic and
syntactic regularity of their representative words, which in-
troduce their semantic information into our machine learn-
ing model. This pre-processing method is proved by vari-
ous researches work [8]–[10] that significantly improved the
performance across a range of natural language processing
tasks.

After the pre-processing, statistic of software project
estimation and software project description text in both
datasets are computed in Table 3 and visualized in Fig. 1.

3. Proposed Methods

To perform ordinal regression tasks from text sequence, we
split algorithms into two approaches as follows.

3.1 Average Word-Vector Approach

The 50-dimensional vector of all words in a sentence are
arithmetic average. The average word-vector is fed into a

†https://www.nltk.org/ modules/nltk/stem/wordnet.html

ordinal regression algorithm as shown in Fig. 2. The regu-
larization is applied using Adam optimization and dropout
regularization techniques. Various regression algorithm is
tested as follows.

3.1.1 Multi-Layer Perceptron (MLP)

Multi-Layer perceptron is considered as a universal func-
tion approximating [11]. It can be used to create mathemat-
ical models for either classification or regression analysis
depended on the activation function.

Mean-squared error function is selected as the loss
function, since it is a standard cost function in regression
tasks. We feed an average word vector as an input into the
network. In the training process, the network learns the esti-
mation function from the average word vector for predicting
the software effort estimation in man-months. The structure
of the network is consisted of three layers listed as follows.

1. Input Layer: 50 Dimension average word-vector with
relu activation function.

2. Hidden Layer: 20 Hidden nodes with relu activation
function.

3. Output Layer: Single output nodes.

The equations of a multi-layer perceptron network are
shown in Eq. (1) below.

742
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

Fig. 2 Average word-vector approach

z(i)
1 = W.avg(i) + b1

a(i)
1 = relu(z(i)

1)

z(i)
2 = W.a(i)

1 + b2

a(i)
2 = relu(z(i)

2)

L(i) =
1

2ny

ny−1∑

k=0

(Y − Ŷ)2

(1)

where relu is a relu activation function and avg is an input
average word-vector.

3.1.2 Support Vector Regression (SVR)

Support Vector Regression (SVR) has been proved in many
research works that is significantly accurate more than other
regressors [12], [13]. SVR is generalized from Support Vec-
tor Machine (SVM) in which returns a continuous-valued
output for regression tasks, as opposed to an output from a
finite set for classification tasks. SVM is designed to find a
boundary that have the maximum margin separating the vec-
tor space while correctly classifying as many training sets as
possible.

SVR is accomplished by introducing an ε-insensitive
region around the function, called the ε-tube. SVR is for-
mulated as an optimization problem that find the narrowest
ε-tube centered around the surface, while minimizing the
prediction error, that is, the distance between the predicted
and the desired outputs as shown in Fig. 3.

In this study, the ε-insensitive loss function is used. Ra-
dial basis function kernel is selected for allowing non-linear
boundary. The following parameters are used for training
the SVR.

• Kernel: Radial basis function
• C: 100

Fig. 3 ε-tube and ε-loss foundation of SVR

• Epsilon: 0.1

3.2 Sequence Modeling Approach

Sequence models are deep-learning algorithms which can
traveling through time for processing sequence data, e.g.,
textual data, time-series data, etc. They have proven by
many research works that are suitable for machine transla-
tion, video processing, sentiment analysis and sarcasm de-
tection applications [13]–[16]. We select the following se-
quence models for this study:

3.2.1 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a recurrent neural net-
work (RNN) that have memory mechanism first proposed
by Hochreiter in 1997 [17]. A LSTM is composed of a cell,
an input gate, an output gate and a forget gate as shown in
Fig. 4. A cell remembers values in time-series data and the
three gates control the flow of information into and out of
the cell.

A LSTM was designed to model sequence that have
long-range dependencies, which solved the exploding and
vanish gradient problems. These problem can be normally
founded when training the long sequential data such as text
sequence in the traditional RNN. It is selected for this study
due to this reason.

KANGWANTRAKOOL et al.: SOFTWARE DEVELOPMENT EFFORT ESTIMATION FROM UNSTRUCTURED SOFTWARE PROJECT DESCRIPTION
743

The equations of a LSTM cell are shown at Eq. (2) be-
low.

it = σ
(
xtU

i + ht−1Wi)

ft = σ
(
xtU

f + ht−1W f)

ot = σ
(
xtU

o + ht−1Wo)

C̃t = tanh
(
xtU

g + ht−1Wg
)

Ct = σ
(
ft ∗Ct−1 + it ∗ C̃t

)

ht = tanh(Ct) ∗ ot

(2)

where it, ft, ot represents an input gate, a forget gate, and
an output gate respectively. W is the recurrent connection
at the previous hidden layer and current hidden layer. U is
the weight matrix connecting the inputs to the current hid-
den layer. C̃ is a candidate hidden state that is computed
based on the current input and the previous hidden state. C

Fig. 4 LSTM architecture

Fig. 5 Double LSTM layers with fully connected layers

is the internal memory of the unit. h is output hidden state,
computed by multiplying the memory with the output gate.

In this study, we implemented a many-to-one LSTM
with fully connected layers. We fed word vectors in each
project description sentence into the LSTM network. The
outputs of LSTM network are connected with the group
of the Fully Connected (FC) networks to predict the man-
month estimation. There is total approximately 20,145,883
trainable parameters. Its layers are listed as follows.

1. Input Layer (1, 143): Index of words respected to the
GloVe [8] dataset of an input sentence describing the
project characteristic from training set. The maximum
length of input sentence is 143. For any sentences
which have length less than 143 words, they are filled
by 0 value.

2. Embedding Layer (1, 143, 50): The embedding 50 di-
mension vector representing 143 words, it is initialized
from the GloVe [8] dataset.

3. Many-to-Many LSTM Layer (1, 143, 128): Unidi-
rectional 128-dimensional hidden state many-to-many
LSTM memory cells with tanh activation function.

4. Dropout Layer: Dropout Layer with 0, 0.2, 0.5, 0.8
dropout rate.

5. Many-to-One LSTM Layer (1, 143, 128): Unidi-
rectional 128-dimensional hidden state many-to-one
LSTM memory cells with tanh activation function.

6. Dropout Layer: Dropout Layer with 0, 0.2, 0.5, 0.8
dropout rate.

7. FC (1, 32): 32 fully-connected neurons with relu acti-
vation function.

8. Dropout Layer: Dropout Layer with 0, 0.2, 0.5, 0.8
dropout rate.

744
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

Fig. 6 GRU architecture

9. FC (1, 4): 4 fully-connected neurons with relu activa-
tion function.

10. Dropout Layer: Dropout Layer with 0, 0.2, 0.5, 0.8
dropout rate.

11. Output Layer (1, 1): Single output neurons without ac-
tivation function.

We create variants LSTM structures based on the above
architecture as follows.

1. Single vs Double Layer(s): In single LSTM layer, we
remove the Many-to-Many LSTM layer (layer 3) and
the Dropout layer (layer 4). For double LSTM layers,
we use the original architecture.

2. Uni-directional vs Bi-directional: For Bi-directional
layer setting, we replace both Many-to-Many LSTM
layer (layer 3) and Many-to-One LSTM layer (layer 5)
with the bi-directional LSTM.

3. With vs Without the Fully-Connected layer (FC):
For without FC setting, we remove FC(1,32), Dropout,
FC(1,4), and Dropout layers (layers 7-10). For with FC
setting, we leave it as it.

3.2.2 Gated Recurrent Units (GRUs)

Gated Recurrent Units (GRUs) were first introduced by
Kyunghyun Cho et al. [18] which is a simplified version of
a LSTM network as shown in Fig. 6. Instead of having two
separate gates, an input and an output gate is combined as
the reset gate. The reset gate determines how to combine
the new input with the previous memory. An forget gate
was renamed to the update date which defines the size of the
previous memory to keep around in the cell.

Although the number of parameters is much fewer, the
performance of GRUs on various tasks such as speech sig-
nal modeling [19] was found similar to that of the LSTM.
Compared with the LSTM, the GRUs have been exhibited
better performance on some smaller datasets. The equations
of a GRU cell are shown at Eq. (3) below.

zt = σ
(
xtU

z + ht−1Wz)

rt = σ
(
xtU

r + ht−1Wr)

h̃t = tanh
(
xtU

h + (rt ∗ ht−1)Wh)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t

(3)

where r and z is a reset gate, and a update gate respectively.
W is the recurrent connection at the previous hidden layer
and current hidden layer. U is the weight matrix connecting
the inputs to the current hidden layer. h is output hidden
state.

In this paper, we implemented a many-to-one GRU
with fully connected layers. The GRUs structure for this
study is exactly the same with the LSTM structure visual-
ized in the previous section, except all LSTM cells (in layer
3, and layer 5) are replaced by GRU cells as described in
Sect. 3.2.1. There is total approximately 20,145,883 train-
able parameters. The variations of GRU structures for seek-
ing the best configuration in the experiment are the same
with the LSTM shown in Sect. 3.2.1.

4. Experimental Settings

We evaluate the performance of four architectures by find-
ing the lowest mean absolute error (MAE) between 10 - 200
epochs on test datasets. MAE = 1

n

∑n
t=1 |(Y − Ŷ)|. Note that,

all models were trained against the mean square error (MSE)
as the loss function since it is outlier insensitive. The MAE
was chosen as the evaluation metric since it is easier to un-
derstand. The experiments were early stopped if there is no
improvement in the test loss after 10 epochs. The training
and test datasets are generated by using ten-fold cross vali-
dation.

We chose Adam optimizer. It combines the best prop-
erties of the AdaGrad and RMSProp algorithms which
can handle sparse gradients on noisy problems [20]. The
dropout regularization is chosen since it is very compu-
tationally cheap and remarkably effective regularization
method [21].

4.1 Hyper-Parameters

All experiments used the following hyper-parameters as fol-
lows..

• Epoch: 10-200
• Loss: Mean Square Error (MSE)
• Optimizer: Adam Optimization
• α: 0.001
• β1: 0.9
• β2: 0.999
• Fuzz factor: disabled
• Decay rate: 0.0
• AMSGrad: disabled
• Regularization: Dropout
• Dropout rate: 0, 0.2, 0.5, 0.8

The values of followings parameters: α, β1, β2, fuzz

KANGWANTRAKOOL et al.: SOFTWARE DEVELOPMENT EFFORT ESTIMATION FROM UNSTRUCTURED SOFTWARE PROJECT DESCRIPTION
745

Table 4 Experimental result on ISEM dataset

Method Without Dropout 0.2-Dropout 0.5-Dropout 0.8-Dropout

Mean Average (Based Line) 1.983

Support Vector Regression (SVR) 1.971

Multi-Layer Perceptron (MLP) 1.758 1.626 1.433 1.129

Single Uni-LSTM without FC 1.310 1.212 1.276 1.236
Double Uni-LSTM without FC 1.148 1.208 1.261 1.183
Single Bi-LSTM without FC 1.091 1.182 0.991 1.100
Double Bi-LSTM without FC 0.724 0.705 0.832 0.803

Single Uni-LSTM with FC 1.333 1.567 2.253 1.850
Double Uni-LSTM with FC 1.414 1.628 2.164 1.878
Single Bi-LSTM with FC 1.168 1.499 2.369 2.943
Double Bi-LSTM with FC 1.298 1.256 2.599 2.703

Single Uni-GRU without FC 1.180 1.137 1.097 1.134
Double Uni-GRU without FC 0.989 0.940 1.041 1.092
Single Bi-GRU without FC 1.169 1.345 1.308 1.278
Double Bi-GRU without FC 0.859 0.846 0.815 1.013

Single Uni-GRU with FC 1.739 1.348 2.077 1.867
Double Uni-GRU with FC 1.612 1.873 2.039 1.911
Single Bi-GRU with FC 1.326 1.535 3.190 2.790
Double Bi-GRU with FC 1.172 1.182 2.887 3.265

Table 5 Experimental result on ISBSG dataset

Method Without Dropout 0.2-Dropout 0.5-Dropout 0.8-Dropout

Mean Average (Based Line) 17.590

Support Vector Regression (SVR) 16.413

Multi-Layer Perceptron (MLP) 14.069 14.342 14.870 15.416

Single Uni-LSTM without FC 14.900 14.909 14.951 14.903
Double Uni-LSTM without FC 14.822 14.573 14.505 14.543
Single Bi-LSTM without FC 14.216 14.365 14.331 14.596
Double Bi-LSTM without FC 14.189 14.077 14.140 14.262

Single Uni-LSTM with FC 15.000 14.582 14.236 14.274
Double Uni-LSTM with FC 14.853 14.424 14.255 14.288
Single Bi-LSTM with FC 14.696 14.127 14.511 15.166
Double Bi-LSTM with FC 14.285 14.161 14.318 15.111

Single Uni-GRU without FC 14.998 15.023 15.131 14.876
Double Uni-GRU without FC 15.254 15.380 15.265 15.285
Single Bi-GRU without FC 14.691 14.822 14.584 14.616
Double Bi-GRU without FC 15.717 14.559 14.370 14.286

Single Uni-GRU with FC 14.762 14.495 14.253 14.297
Double Uni-GRU with FC 14.910 14.556 14.322 14.269
Single Bi-GRU with FC 14.977 14.278 15.125 15.712
Double Bi-GRU with FC 14.541 14.301 14.612 15.442

factor, decay rate, AMSGrad, and dropout rates are rec-
ommended in Adam Optimization and Dropout original pa-
pers [20], [21] and in the Keras deep-learning library web-
site†.

5. Experimental Results

The detailed experimental results for ISEM and ISBSG
datasets are show in Table 4 and Table 5 respectively.

Compared between four proposed methods, the se-
quence models mostly obtained the lowest mean absolute
error, followed by the the multi-layer perceptron, followed
by the support vector regression, and finally the based line
method.

†https://keras.io/optimizers/

For the ISEM dataset, the LSTMs architecture achieved
the lowest mean absolute error at 0.705 man-months. The
best configuration is the double-layers bi-directional LSTMs
with single neuron as the output layer.

For the ISBSG dataset, the multi-layer perceptron
(MLP) achieved the lowest mean absolute error at 14.069
man-months. Note that, the second lowest come from the
double-layers bi-directional LSTMs with single neuron as
the output layer like in the ISEM dataset at the mean abso-
lute error of the 14.077 man-months. It is tiny difference.

After we examine on the experimental results, we see
the effect of parameters as follows.

1. Sequence models generally give higher accuracy than
Fully-connected layers.

2. Most of the time, the double-layer sequence models are

746
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.4 APRIL 2020

Fig. 7 Mean absolute errors and losses (mean square errors) of the
LSTM model of training and test sets over 200 epochs

mostly obtained lower mean absolute errors than the
single-layer sequence models.

3. Bi-directional sequence model obtained smaller mean
absolute error compared to Uni-directional sequence
model.

4. LSTM gave a slightly better performances than GRU.

Mean absolute errors and loss (mean square error) of
a LSTM model of training and test sets over 200 epochs
are visualized on Fig. 7. Most of the time, the models are
early stopped learning about 75-125 epochs since there is
no improvement in the test loss for 10 epochs.

We have investigated the effect of technical terms in
software project description which is normally in the soft-
ware development domain. We found small amount of
the out-of-vocabulary (OOV) problem, since the GloVe [8]
word embedding extracted vocabularies from the Wikipedia.
It has a fair amount of technical terms such as MySQL, JSP,
and Java. We have minor effect on the internal jargons of
each software development company, since the ISEM and
ISBSG are quite formal datasets. They are rarely using the
self-developed jargons in the software text description.

6. Conclusion

This study explored the possibilities of helping the software
companies to quickly estimate an accurate development ef-
forts by artificial intelligence. This tool can greatly accel-
erate sale processes of software development businesses.
Their customers can get a roughly price estimation of any
software project instantly by just typing down the project

text descriptions, which boost the great customer experi-
ence. Moreover, this tool will greatly support the project
management process. The miscalculations from overcon-
fident developers or diffident programmers normally create
the money loss. Using this tool can create fair references for
their estimations.

The comparisons between state-of-the-art traditional
machine learning algorithms and deep learning sequence
models for software efforts estimation on unstructured
project description are evaluated. achieved the lowest mean
absolute errors, which are 0.705 and 14.069 man-months us-
ing LSTM and MLP networks on the ISEM and the ISBSG
software project datasets respectively. Several best practices
for deep learning algorithms are discovered in this paper
such as the usage of the fully-connected layers, the usage
of the bi-directional layers, and the best number of layers of
the sequence models.

For future works, we aimed to expand our studies in
evaluating software efforts for small programming tasks
which are helpful for software agile developments. The
problems will be harder because of the shorter text. We
found out that the language models from transforms such as
the Bidirectional Encoder Representations from Transform-
ers (BERT) are quite interesting [22].

Acknowledgments

This research is financially supported under the Thammasat
University’s research fund, Center of Excellence in Intel-
ligent Informatics, Speech and Language Technology and
Service Innovation (CILS), and Intelligent Informatics and
Service Innovation (IISI) Research Center, the Thailand Re-
search Fund under grant number RTA6080013, the Tham-
masat University Fund on Research on Intelligent Infor-
matics for Political Data Analysis, Royal Institute project
of the e-test system, the Faculty Development Fund at Bu-
rapha University, Chanthaburi Campus, as well as the STEM
workforce Fund by National Science and Technology De-
velopment Agency (NSTDA).

References

[1] L.H. Putnam, “A general empirical solution to the macro software
sizing and estimating problem,” IEEE Trans. Softw. Eng., vol.SE-4,
no.4, pp.345–361, 1978.

[2] C.F. Kemerer, “An empirical validation of software cost estimation
models,” Commun. ACM, vol.30, no.5, pp.416–429, 1987.

[3] M. Shepperd and C. Schofield, “Estimating software project ef-
fort using analogies,” IEEE Trans. Softw. Eng., vol.23, no.11,
pp.736–743, 1997.

[4] J. Alzubi, A. Nayyar, and A. Kumar, “Machine learning from theory
to algorithms: an overview,” Journal of Physics: Conference Series,
vol.1142, p.012012, IOP Publishing, 2018.

[5] A.L.I. Oliveira, “Estimation of software project effort with
support vector regression,” Neurocomputing, vol.69, no.13-15,
pp.1749–1753, 2006.

[6] I..I. of Software Engineering improvement and quality Management,
“About us, year = 2007, url = http://www.isem.co.th/home/index.
php/about-us, urldate = 2007.”

http://dx.doi.org/10.1109/tse.1978.231521
http://dx.doi.org/10.1145/22899.22906
http://dx.doi.org/10.1109/32.637387
http://dx.doi.org/10.1088/1742-6596/1142/1/012012
http://dx.doi.org/10.1016/j.neucom.2005.12.119

KANGWANTRAKOOL et al.: SOFTWARE DEVELOPMENT EFFORT ESTIMATION FROM UNSTRUCTURED SOFTWARE PROJECT DESCRIPTION
747

[7] M. Fernández-Diego and F. González-Ladrón-De-Guevara, “Poten-
tial and limitations of the isbsg dataset in enhancing software en-
gineering research: A mapping review,” Information and Software
Technology, vol.56, no.6, pp.527–544, 2014.

[8] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” Proc. 2014 conference on empirical meth-
ods in natural language processing (EMNLP), pp.1532–1543, 2014.

[9] D. Tang, B. Qin, X. Feng, and T. Liu, “Effective LSTMs for target-
dependent sentiment classification,” arXiv preprint arXiv:1512.
01100, 2015.

[10] X. Chen, L. Xu, Z. Liu, M. Sun, and H. Luan, “Joint learning of char-
acter and word embeddings,” 24th International Joint Conference on
Artificial Intelligence, 2015.

[11] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Mathematics of control, signals and systems, vol.2, no.4,
pp.303–314, 1989.

[12] D. Basak, S. Pal, and D.C. Patranabis, “Support vector regression,”
Neural Information Processing-Letters and Reviews, vol.11, no.10,
pp.203–224, 2007.

[13] C.-H. Wu, J.-M. Ho, and D.T. Lee, “Travel-time prediction with sup-
port vector regression,” IEEE Trans. Intell. Transp. Syst., vol.5, no.4,
pp.276–281, 2004.

[14] P. Pan, Z. Xu, Y. Yang, F. Wu, and Y. Zhuang, “Hierarchical re-
current neural encoder for video representation with application to
captioning,” Proc. IEEE Conference on Computer Vision and Pat-
tern Recognition, pp.1029–1038, 2016.

[15] J. Wang, L.C. Yu, K.R. Lai, and X. Zhang, “Dimensional sentiment
analysis using a regional cnn-lstm model,” Proc. 54th Annual Meet-
ing of the Association for Computational Linguistics (Volume 2:
Short Papers), pp.225–230, 2016.

[16] L.H. Son, A. Kumar, S.R. Sangwan, A. Arora, A. Nayyar, and M.
Abdel-Basset, “Sarcasm detection using soft attention-based bidi-
rectional long short-term memory model with convolution network,”
IEEE Access, vol.7, pp.23319–23328, 2019.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neu-
ral computation, vol.9, no.8, pp.1735–1780, 1997.

[18] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H.
Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” CoRR,
vol.abs/1406.1078, 2014.

[19] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “Improv-
ing speech recognition by revising gated recurrent units,” CoRR,
vol.abs/1710.00641, 2017.

[20] D.P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: A simple way to prevent neural net-
works from overfitting,” The Journal of Machine Learning Research,
vol.15, no.1, pp.1929–1958, 2014.

[22] J. Devlin, M.W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understand-
ing,” arXiv preprint arXiv:1810.04805, 2018.

Tachanun Kangwantrakool is CMMI Lead
Appraiser Certificate (Certificate of Lead Ap-
praiser for Capability Maturity Model Integra-
tion): Standard for Project Management Process
Category, Quality Management Process Cate-
gory, Process Improvement Process Category,
Engineering Process Category.

Kobkrit Viriyayudhakorn received a bach-
elor degree in Computer Science from Sirind-
horn International Institute of Science and Tech-
nology in 2008, and master degree in Computer
Engineer (Embedding System) from TAIST To-
kyo Tech in 2010, and a doctoral degree in
Knowledge Science from Japan Advanced In-
stitute of Science and Technology in 2013.
His research interests are artificial intelligence
and machine learning such as natural language
processing, deep learning, speech recognition,

computer vision and creativity support systems.

Thanaruk Theeramunkong received a
bachelor degree in Electric and Electronics, and
master and doctoral degrees in Computer Sci-
ence from Tokyo Institute of Technology in
1990, 1992 and 1995, respectively. He is cur-
rently a professor at School of Information,
Computer and Communication Technology at
Sirindhorn International Institute of Technol-
ogy (SIIT) at Thammasat University, Bangkok,
Thailand. He also is the Program Director of In-
formation and Communication Technology for

Embedded Systems (ICTES) at TAIST Tokyo Tech, National Science and
Technology Development Agency (NSTDA). He is also an Associate Fel-
low, Academy of Science, the Royal Society of Thailand. As a profes-
sional society, He is the president of Artificial Intelligence Association of
Thailand. He serves as an academic committee to the Industrial Section,
National Research Council of Thailand (NRCT). His research interests are
natural language processing, data mining, text mining, machine learning
and applications to service science. He was an associate editor of the In-
stitute of Electronics, Information and Communication Engineers (IEICE).
He is a member of the Steering Committee of the Pacific-Asia Conferences
on Knowledge Discovery and Data Mining (PAKDD) and a member of the
Steering Committee of the Pacific Rim International Conferences on Ar-
tificial Intelligence (PRICAI). He is the author of more than 45 papers in
a number of journals with impact factors and more than 130 conference
papers.

http://dx.doi.org/10.1016/j.infsof.2014.01.003
http://dx.doi.org/10.3115/v1/d14-1162
http://dx.doi.org/10.1007/bf02551274
http://dx.doi.org/10.1109/tits.2004.837813
http://dx.doi.org/10.1109/cvpr.2016.117
http://dx.doi.org/10.18653/v1/p16-2037
http://dx.doi.org/10.1109/access.2019.2899260
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.3115/v1/d14-1179
http://dx.doi.org/10.21437/interspeech.2017-775

