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SUMMARY Modern mobile devices are equipped with a variety of
tools and services, and handle increasing amounts of sensitive information.
In the same trend, the number of vulnerabilities exploiting mobile devices
are also augmented on a daily basis and, undoubtedly, popular mobile plat-
forms, such as Android and iOS, represent an alluring target for malware
writers. While researchers strive to find alternative detection approaches to
fight against mobile malware, recent reports exhibit an alarming increase in
mobile malware exploiting victims to create revenues, climbing towards a
billion-dollar industry. Current approaches to mobile malware analysis and
detection cannot always keep up with future malware sophistication [2], [4].
The aim of this work is to provide a structured and comprehensive overview
of the latest research on mobile malware detection techniques and pinpoint
their benefits and limitations.
key words: smartphones, mobile malware, malware detection

1. Introduction

Continuous improvement in mobile device hardware and
mobile communication technologies has led to a highly in-
terconnected world, but also a world grown highly vulner-
able. Cybercriminals have proven significantly efficient in
uncovering new vulnerabilities in popular mobile Operating
Systems (OS) and the installed applications (apps). As a re-
sult, more and more mobile malware families are introduced
every year [1]. Just in 2017, more than 20M malware sam-
ples have been detected [2], while other studies show that
the chance for monetization is a key factor responsible for
the rise of mobile malware [3].

The increasing amount of malware introduced each
year is only a facet of this evolution. The variety of
these malware and the vulnerabilities exposed call for new
and improved detection methods. Furthermore, while re-
searchers strive to find alternative detection schemes to
counter mobile malware, recent reports show an alarming
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increase in mobile malware exploiting victims to create rev-
enues [2].

Until now, mobile malware detection techniques have
been surveyed by several works. Yan et al. [4] compare mo-
bile malware detection methods based on several different
evaluation criteria and metrics, but mainly focus on the An-
droid OS. La Polla et al. [5] survey the evolution of mobile
threats, vulnerabilities and intrusion detection systems over
the period 2004–2011. While this is one of the most compre-
hensive works on the topic, by now it misses current devel-
opments. Gandotra et al. [6] examine techniques for analyz-
ing and classifying mobile malware. Furthermore, they list
several works for each detection technique. Nevertheless,
they do not discuss the effectiveness of each work based on
their evaluation results. Yan et al. [7] report on mobile mal-
ware categories, taxonomy and attack vectors. Furthermore,
they provide a comparison of dynamic mobile malware de-
tection methods and discuss future research trends.

This survey aims to provide state-of-the-art informa-
tion on current mobile malware trends. Furthermore, it of-
fers a comprehensive overview of the different approaches
to mobile malware detection, in an effort to understand their
detection method, discuss their evaluation results, and possi-
bly categorize each contribution under a novel classification
scheme.

The remainder of this paper is organized in the follow-
ing manner: Section 2 focuses on current mobile malware
and their effects on the end-users. Section 3 presents the
different mobile malware detection techniques. The same
section categorizes various mobile malware detection ap-
proaches based on the corresponding detection techniques.
Section 4 provides a discussion on the findings. Finally,
Sect. 5 concludes the paper.

2. Mobile Malware Analysis

While there are many conventional types of mobile mal-
ware, including Trojans, worms [8], botnets [9], spyware
and ransomware, the latest ilks seem to be driven by a com-
mon factor, monetization [2], [3], [10]. The latest mobile
malware trends can be summarized as follows:

• Mobile Banking Trojans: Trojans steal user’s confiden-
tial information without the user’s knowledge. They
can usurp browsing history, messages, contacts and
even banking credentials. According to the McAfee
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Mobile Threat Report [2], mobile banking Trojans,
such as BankBot [11], increased by 60% in 2018. End-
user devices get infected by fake updates, email and
SMS phishing.
• Cryptocurrency Mining: While not as sophisticated

as their desktop counterparts, mobile malware related
to Bitcoin mining has increased by 80% in 2018 [2].
According to Kaspersky Security Network [12], most
malware of this type is hidden within popular apps,
that were secretly mining cryptocurrency while show-
ing soccer videos.
• Ransomware: This type of mobile malware prevents

users from accessing the data on their devices by en-
crypting them, until a considerable ransom amount is
paid. In the first half of 2017 mobile ransomware has
increased by 60% [2]. While this growth was triggered
by the “Ransom.AndroidOS.Congur” malware fam-
ily [13], many other ransomware families still present
an alarming threat to users who must choose to either
pay the ransom or end up with possibly valuable en-
crypted data.
• Hybrid: This type of mobile malware is very common

nowadays. For example, Android/LokiBot [2] com-
bines the functionality of a banking trojan with crypto
ransomware. It can encrypt files but it might also send
fake notifications in an attempt to trick users into log-
ging in to their bank account. Android/LokiBot has
targeted more than 100 financial institutions and kit
sales on the dark web generating a profit of up to 2$
million [2].

3. Mobile Malware Detection

Mobile malware detection methods serve as countermea-
sures for the existing malware. However, their functional-
ity differs according to variables related to the focus of each
method. In this section, we classify the existing research
works, according to the detection techniques reported by the
authors, and we review their functionality and effectiveness.

Malicious activity detection in mobile devices occurs
in different patterns. Researchers have not yet agreed on a
unified classification. One aspect claims that there exist two
main types of malicious software analysis methods, namely
static and dynamic. Other researchers however, use an in-
verse approach in malware detection classification, where
static and dynamic detection serve as subcategories to sig-
nature and anomaly-based techniques [14]. Figure 1 depicts
the malware detection classification used in this work.

For the survey part of this work, we have focused on
research papers dated no more than 10 years ago. The con-
sidered works have been categorized in the following sub-
sections in chronological order.

3.1 Signature-Based Detection

The main categorization vector in malware detection meth-
ods is related to the detection type. The two main detection

Fig. 1 Mobile malware detection classification

types are signature-based and anomaly-based. Signature-
based detection collects patterns and signatures from known
malware and compares them against suspicious pieces of
code in order to determine whether they are malicious or be-
nign. Signature-based detection techniques are further clas-
sified to Behavior and Static signature-based subcategories.
Static signature-based techniques are used by most of the
commercial antivirus software solutions.

Static Signature-based Detection: This type uses a
database containing entries of malware sample signatures
and compares objects that reside either in the RAM or in
the SD storage of the device for matching patterns. Enck et
al. [15] proposed a security service for the Android Oper-
ating System (OS), named Kirin. Kirin certificates an app
at install time, using a set of security rules, which are tem-
plates designed to match suspicious properties in apps’ se-
curity configuration. More specifically, after the installer
extracts security configuration from the package manifest,
Kirin evaluates the configuration against a collection of pre-
defined security rules.

Behavior Signature-based Detection: In static signa-
ture-based technique, the acquisition of signatures occurs
during the decomposition and analysis of the malware
source code. On the other hand, signatures in dynamic
behavior-based techniques are acquired after the execution
of the malicious code. More specifically, information is
gathered during app execution to decide its maliciousness.
This is done using preconfigured and predetermined attack
patterns that are given beforehand by experts to build a sig-
nature database or a pattern set [4].

Chen et al. [16] proposed a detection approach which
identifies threat patterns. It analyzes the function invocation,
as well as the data flow to detect malicious behaviors in An-
droid devices. More specifically, their scheme uses reverse
engineering to recreate the source code and class files from
each app and builds the corresponding API invocation and
dependency graphs. Based on these two graphs, their sys-
tem can detect threat patterns, which may reveal whether an
app attempts to access confidential information or perform
any illegal access. Their experiments show 91.6% detection
rate over 252 malicious samples.

Hybrid Signature-based Detection: Hybrid signature-
based detection includes both static and behavior signature-
based detection. Papamartzivanos et al. [17] proposed a host
and cloud-based system that operates under a crowdsourc-
ing logic. Their system includes 3 main services, namely
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privacy-flow tracking, crowdsourcing, and detection and re-
action against privacy violations. The client communicates
with the cloud services over a TLS connection so as to be
relieved from resource demanding tasks. More specifically,
the client consists of 3 modules, namely privacy inspection,
response, and event sensor. The cloud side also comprises
3 modules, namely crowdsourcing, detection, and hook up-
date.

3.2 Anomaly-Based Detection

Anomaly-based methods use a less strict approach. This is
done by observing normal behavior of a device for a certain
amount of time and using the metrics of that normal model
as a comparison vector to deviant behavior. In regards to the
analysis part, the static and dynamic methods are used. The
static approach examines an app before installation by dis-
secting it, whereas the dynamic performs the analysis during
the app execution, by gathering data such as system calls and
events. Either in the dynamic or the static version, anomaly-
based detection techniques comprise two parts, the training
and detection phase. During the former, a non-infected sys-
tem is operating normally and this procedure is observed
and tracked. On the other hand, the detection phase serves
as a testing period, when deviations from the training period
model are considered anomalies.

Static Anomaly-based Detection: Static anomaly-based
detection methods do not require the execution of the mali-
cious payload. Their function is to check the code of the po-
tentially malicious app for specific snippets of code, suspi-
cious functionality, and other behavioral traits. It is not only
capable of detecting unknown malware, but also of pointing
out potential vulnerabilities in the source code. However,
this method has its shortcomings as well. False positive
ratios continue to be high and the task of code inspection
can be costly in resources such as time and computational
power.

Wu et al. [18] implemented DroidMat, which provides
malware detection through manifest and API call tracing.
The authors extract app information from its manifest file
and disassembly codes. More specifically, they collect infor-
mation from the app’s manifest file such as “intent”, which
is an abstract description of an operation to be performed,
and Inter-Component Communications (ICC) and API calls
related to permissions. The authors collected 238 Android
malware and 1,500 benign apps to test DroidMat, and their
results show an up to 97.87% accuracy rate in detecting mo-
bile malware.

An approach which analyses an app’s permissions to
detect malware in Android (PUMA), was presented by Sanz
et al. [19]. The authors gathered 1,811 benign Android apps,
as well as 4,301 malware samples. The authors state that
they observed several differences in permissions usage by
malware apps. More specifically, they noticed that malware
often requires only one permission, while benign apps usu-
ally ask for 2 or 3 permissions. The authors used several ma-
chine learning techniques for malware detection, including

SimpleLogistic, NaiveBayes, BayesNet, SMO, IBK, J48,
RandomTree, and RandomForest. Finally, they performed
analysis on the extracted permissions from mobile apps and
observed a detection accuracy of 92%.

Peiravian et al. [20] proposed the combination of per-
missions and API calls and the use of machine learning
methods to detect malicious Android apps. Their frame-
work consists of 4 components. The first one decompresses
the APK file of an app to extract the manifest and class
files. The second characterizes apps based on the requested
permissions and API calls. The third one carries out fea-
ture extraction on the permissions and API calls. The latter
employs the training of the classification models from the
collected data. The authors state that during the evaluation
tests, the proposed method achieved a promising detection
rate, while holding precision up to 94.9%.

In an attempt to address the issue of removing mali-
cious apps from mobile app markets, Chakradeo et al. [21]
proposed an approach for market-scale mobile malware
analysis (MAST). MAST analyzes attributes extracted from
the app package and uses Multiple Correspondence Analy-
sis (MCA) to measure the correlation between multiple cat-
egorical data. Furthermore, only easily obtained attributes
are extracted to keep MAST less costly than meticulous anal-
ysis. These attributes are permissions included in the man-
ifest file, intent filters and pre-agreed upon action strings
(also included in the manifest file), native libraries inside
the source code and malicious payloads hidden in zip files
inside the app package. During the training phase, 15,000
apps from Google Play [25] and a dataset of 732 known-
malicious apps were used to train MAST. According to the
authors, MAST triage processes mobile app markets in less
than a quarter of the time required to perform signature de-
tection.

Liang et al. [22] proposed a permission combination-
based scheme for Android mobile malware detection. The
authors collected permission combinations declared in the
app manifest file, which are requested frequently by mobile
malware, but rarely by benign apps. More specifically, a
tool called k-map was developed in order to find permission
combinations extracted from the app’s manifest file. More-
over, they calculated the permission request frequencies out
of the permission combinations extracted. Their experi-
ments showed that the system was able to detect malware
with low false positive and negative rates, that is, malware
detection rate up to 96%, and the benign app recognition
rate was up to 88% [22].

Canfora et al. [23] proposed mobile malware detection
using op-code frequency histograms. Their approach clas-
sifies malware by focusing on the number of occurrences of
a specific group of op-codes. More specifically, the authors
used a detection technique, which uses a vector of features
obtained from 8 Dalvik op-codes. These op-codes are usu-
ally used to alter the app’s control flow. After training the
classifier, the authors tested their proposed method to con-
clude that these features are able to classify a mobile app as
trusted or malicious with a precision rate of 93.9%.
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Yusof et al. [24] proposed a mobile botnet classifica-
tion based on permissions and API calls. During the train-
ing phase, 5,560 malware from 179 different mobile mal-
ware families were collected. The authors examined 50 An-
droid botnet samples using static analysis and reverse engi-
neering to extract the 16 most important permissions and 31
API Calls from the botnet samples. Finally, they chose 800
random apps from Google Play [25] to test their classifica-
tion using Naive Bayes, K-nearest Neighbour, Random For-
est, and Support Vector Machine algorithms. Their results
achieved 99.4% detection rate and 16.1% false positive rate.

Li et al. [26] proposed SIGPID, a malware detection
system based on permission usage analysis on the Android
platform. To test their detection model, the authors col-
lected 3 different datasets which contain 2,650, 5,494 and
54,694 malware apps respectively. Their detection model
uses 22 out of 135 permissions to improve the runtime per-
formance by 85.6%. Finally, they used machine learning al-
gorithms to evaluate their results, including RandomForest,
PART, FT, RotationForest, RandomCommittee, and SVM,
and achieved a detection rate of 93.62%.

Tao et al. [27] proposed MalPat, an automated malware
detection system which scans for malicious patterns in An-
droid apps. During the training phase, the authors were able
to acquire hidden patterns from malware and extract APIs
that are widely used in Android malware. The authors col-
lected 31,185 benign apps and 15,336 malware samples and
extracted features from the source code of decompiled files.
To evaluate MalPat, the authors followed a repeated pro-
cess, in which they randomly selected a percentage of both
malicious and benign datasets as the training set, and the
remaining part is regarded as the testing set. The average
of their results show that MalPat can detect malware with a
98.24% F1 score.

Shen et al. [28] proposed a malware detection approach
based on information flow analysis. The authors proposed
complex-flow as a new representation schema for informa-
tion flows. According to the authors, complex-flow is a set
of simple flows that share a common portion of code. For
example, if an app is able to read contacts, store them and
then send them over the Internet, then these two data flows
would be (contact, storage) and (contact, network). The au-
thors state that their approach can detect if an information
flow is malicious or not based on the app’s behavior along
the flow. When a new app is installed, their system compares
its behavior patterns (obtained from the complex-flows rep-
resentation of the app) to decide whether it is more similar
to benign or malicious apps from the training set using two-
class SVM classification. During the evaluation process, the
authors used 4 different data sets, totaling 8,598 apps, to test
the precision of their detection approach.

Dynamic Anomaly-based Detection: In dynamic
anomaly-based detection, the training and detection phases
happen during the execution of the app. Apart from the ca-
pability of detecting unknown malware, this trait also en-
ables the detection of zero-day attacks. However, as already
mentioned before, the false positive rate issues are rather

intense, particularly in dynamic anomaly-based detection
techniques. In order to soften this incident, accurate normal
behavioral models have to be constructed during the training
sessions.

Shabtai et al. [29] presented a system for detecting
meaningful deviations in a mobile app’s network behavior.
The system monitors the running apps to create their “nor-
mal” network behavior. It is then able to detect deviations
from the learned patterns. According to the authors, their
main goal was “to learn user-specific network traffic patterns
for each app and determine if meaningful changes occur”.
For this reason, semi-supervised machine learning methods
were used to create the normal behavioral patterns and to
detect deviations from the app’s expected behavior.

Damopoulos et al. [30] proposed a tool which dynami-
cally analyzes iOS apps in terms of method invocation. The
authors designed and implemented an automated malware
analyzer and detector for the iOS platform, namely iDMA.
iDMA is able to generate exploitable results, which can be
used to trace app’s behavior to decide if it contains malicious
code. Also, Damopoulos et al. [31] proposed an IDS frame-
work that supports both host- and cloud-based protection
mechanisms. Their framework employs diverse anomaly-
based mechanisms. To evaluate their architecture, the au-
thors developed a proof-of-concept implementation of the
framework, equipped with 4 smartphone detection mecha-
nisms. “The first two detection mechanisms, namely SMS
Profiler and iDMA, aim to detect the illegitimate use of sys-
tem services and identify unknown malware. The other two,
coined iTL and Touchstroke, can provide (post) authentica-
tion to ensure the legitimacy of the current user” [31].

Jang et al. [32] presented Andro-AutoPsy, an anti-
malware system based on similarity matching of malware
information. During the training phase, the authors gath-
ered malware-centric and malware creator-centric informa-
tion from anti-virus technical reports, malware repositories,
community sites and web crawling. The authors chose 5
footprints as features: “the serial number of a certificate,
malicious API sequence, permission distribution (critical
permission set, likelihood ratio), intent and the intersec-
tion of the usage of system commands and the existence of
forged files” [32]. Andro-Autopsy consists of a client app
running on the device and a remote server. The client app
sends the app package file (.apk) to the remote server. The
latter entity then analyzes the app and decides whether it is
malicious or not, based on integrated footprints. The authors
state that Andro-AutoPsy “successfully detected and classi-
fied malware samples into similar subgroups by exploiting
the profiles extracted from integrated footprints” [32], while
it is able to detect zero-day exploits at the same time. Fur-
thermore, Andro-AutoPsy allows anti-virus vendors to con-
duct similarity matching on previously detected samples.

Chen et al. [33] aimed to combine network traffic anal-
ysis with machine learning methods to identify malicious
network behavior in highly imbalanced traffic. The authors
captured traffic from over 5,560 mobile malware samples.
Furthermore, they designed a tool to convert mobile traffic
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packets into traffic flows. According to the authors, the ac-
curacy rate of the machine learning classifiers can reach up
to 99.9%. However, the performance of the classifiers de-
clines when the imbalanced problem gets worse.

Kouliaridis et al. [34] proposed Mal-warehouse, an
open-source tool performing data collection-as-a-service for
Android malware behavioral patterns. Specifically, the au-
thors collected 14 malware samples to analyze their effects
on the Android platform. The authors developed an open
source tool called “MIET”, which extracts usage informa-
tion, over a period of time, from the Android device for each
malware installed on the device. Finally, Mal-warehouse is
enhanced with a detection module, which the authors evalu-
ated via the use of machine learning techniques.

Wang et al. [35] proposed a method which combines
analysis of network traffic with the c4.5 machine learn-
ing algorithm which according to the authors is capable of
identifying Android malware with high accuracy. During
the evaluation process the authors tested their model with
8,312 benign apps and 5,560 malware samples. Further-
more, their results show that the proposed model performs
better than state-of-the-art approaches. Finally, when com-
bining two detection mechanisms, it achieves a detection
rate of 97.89%.

Hybrid Anomaly-based Detection: Hybrid anomaly-
based detection incorporates both static and dynamic
anomaly-based detection. Hanlin et al. [36] presented
a cloud-based Android malware analysis service called
ScanMe mobile. The service allows users to scan app pack-
age files on their smartphone’s SD memory card and per-
form dynamic analysis in a pre-configured sandbox environ-
ment prior installing them. The service also allows users to
compile a comprehensive report, and share the report via a
web interface. ScanMe mobile performs both static and dy-
namic analysis on app package files. The authors collected
malicious and benign app samples to test the service on dif-
ferent Android devices. According to the authors, the sys-
tem scored a detection rate of 85% when dynamic analysis
was employed.

Alam et al. [37] proposed DroidNative for the detection
of both bytecode and native code Android malware. Accord-
ing to the authors, DroidNative is the first scheme to build
cross-platform (x86 and ARM) semantic-based signatures
for Android and operates at the native code level. When
apps are analyzed, bytecode components are passed to an
Android Runtime (ART) [38] compiler to produce a native
binary. The binary code is then disassembled and translated
into Malware Analysis Intermediate Language (MAIL)
code. After MAIL code is generated, DroidNative operates
in two phases, training and testing. To evaluate DroidNative,
the authors performed a series of tests with more than 5,490
Android apps. Their results demonstrated a detection rate
of 93.57% with a false positive rate of 2.7%. Unfortunately,
as with all static analysis detection techniques, DroidNative
cannot detect compressed or encrypted malicious code.

Fei et al. [39] proposed a hybrid approach for mobile
malware detection. The authors collected information per-

taining to runtime system calls over a set of known malware
and benign apps using a dynamic approach. More specifi-
cally, they gathered system-calling data during runtime by
modifying the Android OS source code. Furthermore, they
processed and analyzed the collected information to create
malicious patterns and normal patterns from both system
calls and sequential system calls. That is, malicious and
normal patterns are produced “by calculating the ratio of
the average frequency of a sequential system call in the set
of malware and the average frequency of the same sequen-
tial system calls in the set of benign apps” [39]. According
to the authors, the accuracy rate of their detection approach
exceeds 90%.

4. Discussion

This section presents a comprehensive comparison of the 22
mobile malware detection approaches surveyed in Sect. 3.
Figure 2 illustrates the timeline of the research works in-
cluded in this survey. As already mentioned, the sur-
veyed works are dated between 2009 and 2018. Different
kinds of geometrical shapes refer to detection classifica-
tion (e.g., square to static signature-based, trapezium to be-
havior signature-based, parallelogram to hybrid signature-
based, circle to static anomaly based, diamond to dynamic
anomaly-based, and hexagon to hybrid anomaly-based).
The various works are placed within the diagram in chrono-
logical order (top to bottom). Numbers inside them corre-
spond to the matching reference. The letter on the left refers
to OS type (A is for Android, I is for iOS), while the letter
on the right refers to the detection method. The selection of
letters is as close to the first letter of each detection method
as possible. Solid lines between two shapes imply influence
(of a given work vis-a-vis to another), while dashed ones
imply compliance or reference to previous work.

As shown in Fig. 2, Enck et al. [15] and Wu et al. [18]
had an important impact on the evolution of mobile mal-
ware detection. Furthermore, while there is a variation in
detection methods used during the previous 8 years, latest
contributions lean towards anomaly-based detection. More
specifically:

• At least 9 out of 22 approaches depend on the app’s
manifest file for their detection process, including [15],
[18]–[20], [22], [24], [26], [27], [36]. Permission anal-
ysis is a popular detection technique among these ap-
proaches and it is the most popular detection technique
since 2014. According to evaluation results from these
contributions, permission-based detection can produce
results with high detection rate, but also in some cases
high false positive rate (FPR).
• Schemes which utilize native code analysis, such as

Alam et al. [37], can produce a high detection rate of up
to 93.57% and 2.7% FPR. Unfortunately, this approach
cannot detect compressed or encrypted code.
• Complex-flow analysis is a new type of information

flow analysis proposed by Shen et al. [28], which ac-
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Fig. 2 Malware detection techniques in chronological order

cording to the authors, can produce 86.5% detection
rate. Unfortunately, their method cannot detect mali-
cious behavior that is present in native code, which is
the case for some of the latest mobile malware.
• Chen et al [33] produced the highest accuracy rate

among dynamic anomaly-based approaches. However,
while this approach can be highly accurate, it can only
detect a subset of malware samples, i.e. those that gen-
erate considerable network traffic.
• iOS Detection approaches, such as the work proposed

by Damopoulos et al. [30], [31], produce high accuracy
results, however these approaches require jailbreak-
ing [40], which could put the device at risk and make
the end-user reluctant to employ it.
• Hanlin et al. [36] use sandboxing to safely analyze mal-

ware behavior. Although this is a rather promising ap-
proach, previous research has shown that some mobile
malware are able to detect emulators by looking into
several device features [41].

• Some methods combine 2 detection categories into a
hybrid solution so as to detect a wide range of mal-
ware types. Several of these hybrid solutions carry out
mobile malware detection on both the host and cloud,
including [17], [31], [36], [39]. While hybrid solutions
could offer many benefits, the small amount of reported
results from the works included in Sect. 3, as well as
previous work [45] suggests that these benefits should
be subject to careful examination.

Some approaches were rendered as inconclusive during
this survey due to doubtful methodologies or metrics. These
approaches are:

• Canfora et al. [23] showed a promising accuracy rate of
up to 95% using OP-code frequency analysis, but their
results are doubtful due to outdated app samples dated
from 2012.
Tao et al. [27] showed high F1 score, but the authors
used an outdated Android OS version and malware
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samples.
• Damopoulos et al. [30] proposed a promising approach

for the iOS platform and reported zero FPR, but failed
to report on essential data, such as the number of non-
malware samples used.

Most of the techniques surveyed in Sect. 3 still lack
in detecting zero-day malware, but this is somewhat ex-
pected. Furthermore, with the current sophistication of mal-
ware, it is difficult to detect it through traditional rule match-
ing using existing technologies [42], [43]. This may be the
main reason behind the large number of malicious apps still
on the loose in official app stores. Therefore, future research
efforts should concentrate on clarifying how to efficiently
join detection techniques into hybrid solutions with the pur-
pose of increasing the subset of malware which can be de-
tected, as proposed in previous work [44], but also offer ac-
tual detection improvement [45].

5. Conclusions

This work provides a state-of-the-art survey on the timely
topic of mobile malware detection techniques. To do so,
we categorized and succinctly analyzed the various detec-
tion schemes as proposed in the literature during the last
8 years, i.e., from 2011 to 2018, based on their detection
method. We also highlight on the benefits and limitations
per category of techniques and per examined scheme where
applicable, in an effort to offer a comprehensive overview
of this challenging and fast evolving topic. As a side contri-
bution, we elaborated on the existing interrelations between
the examined works, which not only reveals the major influ-
encers in this fast evolving research area, but also the chief
challenges to be addressed in the near future.
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