
276
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

PAPER Special Section on Security, Privacy, Anonymity and Trust in Cyberspace Computing and Communications

Study on the Vulnerabilities of Free and Paid Mobile Apps
Associated with Software Library∗

Takuya WATANABE†,††a), Nonmember, Mitsuaki AKIYAMA†, Member, Fumihiro KANEI†, Nonmember,
Eitaro SHIOJI†, Member, Yuta TAKATA†††, Nonmember, Bo SUN††††, Member, Yuta ISHII,
Toshiki SHIBAHARA†, Nonmembers, Takeshi YAGI†††††, and Tatsuya MORI††b), Members

SUMMARY This paper reports a large-scale study that aims to under-
stand how mobile application (app) vulnerabilities are associated with soft-
ware libraries. We analyze both free and paid apps. Studying paid apps
was quite meaningful because it helped us understand how differences in
app development/maintenance affect the vulnerabilities associated with li-
braries. We analyzed 30k free and paid apps collected from the official
Android marketplace. Our extensive analyses revealed that approximately
70%/50% of vulnerabilities of free/paid apps stem from software libraries,
particularly from third-party libraries. Somewhat paradoxically, we found
that more expensive/popular paid apps tend to have more vulnerabilities.
This comes from the fact that more expensive/popular paid apps tend to
have more functionality, i.e., more code and libraries, which increases the
probability of vulnerabilities. Based on our findings, we provide sugges-
tions to stakeholders of mobile app distribution ecosystems.
key words: mobile app, software library, vulnerability

1. Introduction

Software libraries play a vital role in the development of
modern mobile applications (app). They enable developers
to improve development efficiency and app quality. In fact,
Wang et al. reported that more than 60% of sub-packages
in Android apps originate from third-party libraries [2]. Al-
though software libraries offer many advantages, in some
cases, they could be the source of security problems, e.g.,
vulnerabilities or potentially harmful functionalities. Chen
et al. [3] recently reported that 6.84% of apps published to
Google Play were potentially harmful apps associated with
harmful software libraries. These observations indicate that
libraries can be the origins of the mobile app vulnerabilities.

We report a large-scale study to understand how mobile
app vulnerabilities are associated with software libraries.

Manuscript received March 10, 2019.
Manuscript revised October 20, 2019.
Manuscript publicized November 22, 2019.
†The authors are with NTT Secure Platform Laboratories,

Musashino-shi, 180–8585 Japan.
††The authors are with Waseda University, Tokyo, 169–8555

Japan.
†††The author is with PwC Cyber Services LLC, Tokyo, 100–

0004 Japan.
††††The author is with National Institute of Information and Com-

munications Technology, Koganei-shi, 184–8795 Japan.
†††††The author is with NTT Security (Japan) KK, Tokyo, 101–

0021, Japan.
∗Early version of this paper [1] was presented at International

Conference on Mining Software Repositories (MSR 2017).
a) E-mail: takuya.watanabe.yf@hco.ntt.co.jp
b) E-mail: mori@nsl.cs.waseda.ac.jp

DOI: 10.1587/transinf.2019INP0011

To the best of our knowledge, this is the first study that
uses large datasets to systematically quantify the vulnera-
bilities associated with libraries. To perform our analysis,
we developed two frameworks, Droid-L and Droid-V, to
detect/classify software libraries used in mobile apps and
quantify how vulnerable mobile app libraries are, respec-
tively. By linking the output of the two frameworks, we
can specify the mobile app vulnerabilities associated with
libraries. As the number of active mobile apps published in
prominent mobile app marketplaces has exceeded four mil-
lion [4], using a small sample of apps may result in intrinsic
bias. However, analyzing all available mobile apps is not
feasible. Thus, we applied proper sampling approaches to
generate a dataset that is sufficient to extract statistically re-
liable results. We adopted two sampling approaches, i.e.,
top-K relative to the number of installs and random sam-
pling. Top-K reflects the most influential apps and random
sampling reflects the statistics of each population.

A unique and noteworthy approach of this study is that
we analyze both free and paid apps. Very few studies have
investigated the security of paid apps. We employ a rela-
tively large number of paid apps to ensure statistically re-
liable results. Studying paid apps enables us to understand
how differences in the development/maintenance of apps af-
fect vulnerabilities associated with libraries. We examined
software updates for these apps six months after they were
originally collected. We collected 2M free apps to construct
a database (DB) to detect/classify the libraries used in apps.
In total, we used 2M free apps and 30K paid apps for our
analyses.

Our primary findings are as follows.

• Roughly 70% of free apps and roughly 50% of paid
apps with vulnerabilities were vulnerable due to li-
braries.
• More expensive/popular paid apps tend to have more

vulnerabilities than other paid apps.
• Paid apps tend to have not been updated for longer peri-

ods than the free apps; thus, vulnerable libraries in paid
apps have not been updated for longer periods than the
free apps.
• Approximately one-half of the vulnerabilities detected

by existing vulnerability checking tools are found in
unreachable code.

Based on these findings, we derive suggestions
for stakeholders in mobile app distribution ecosystems

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers

WATANABE et al.: STUDY ON THE VULNERABILITIES OF FREE AND PAID MOBILE APPS
277

(Sect. 6.4).
The remainder of this paper is organized as follows. In

Sect. 2, we present a high-level overview of the methodolo-
gies developed for our analysis. In Sects. 3 and 4, we de-
scribe the Droid-L and Droid-V frameworks, respectively.
In Sect. 5, we characterize the dataset used for the analysis.
Findings are presented in Sect. 6. Limitations of the analysis
and future research directions are discussed in Sect. 7. We
also consider ethical issues associated with this research in
Sect. 7. Section 8 provides a summary of related work, and
conclusions are presented in Sect. 9.

2. Overview of Methodologies

Figure 1 presents a high-level overview of our approach,
which consists of the Droid-L and Droid-V frameworks.
Droid-L automatically detects/classifies software libraries
used in mobile apps. It first extracts packages from a given
APK file. In the Android OS, a package organizes multi-
ple classes; thus, it represents the smallest unit of a software
library. The package technique is used to provide modu-
lar programming in Java, which is a primary programming
language for Android app development. Droid-L then clas-
sifies the extracted libraries into three primary categories.
Droid-V is a compilation system that measures the degree
of vulnerability of mobile app libraries. For a given APK
file, we use five vulnerability checkers to detect vulnerabili-
ties and specify Java classes and package names associated
with the detected vulnerabilities. Finally, by linking Droid-
L and Droid-V outputs, we can detect vulnerable libraries
for a given APK file.

In the following sections, we describe Droid-L and
Droid-V, and we discuss threats to the validity of each
framework.

3. Droid-L: Library Detector

The Droid-L system detects and classifies software libraries.
Figure 2 shows an overview of the Droid-L system, which
comprises a fingerprint DB and a dead code checker. For
a given APK file, the system first decompiles the file and
extracts packages. The system then computes a fingerprint
for each package and compares the computed fingerprints
to the library fingerprint DB, which we describe in the next
section. The fingerprint DB returns one of three library cat-
egories, i.e., official, private, or third-party. If the DB does
not return anything, this implies that the package is not a li-
brary. Next, the system applies the dead code checker to the
extracted libraries. The dead code checker employs static
call graph analysis to determine if the detected library code
is dead code. In the following, we describe these two com-
ponents in detail.

3.1 Building the Fingerprint DB

As shown in Fig. 2, the role of the fingerprint DB is to
classify a given package as official, private, or third-party

Fig. 1 High-level overview of methodologies

Fig. 2 Overview of Droid-L.

(Sect. 3.1.2). To build such a DB, we take the following two-
stage approach. First, we employ cluster analysis to extract
a set of packages with similar characteristics, which we call
a fingerprint. A fingerprint is a unique signature that rep-
resents an extracted cluster. Then, we classify the extracted
clusters using two heuristics The first heuristic is the naming
convention of Java packages. Each package has an intrinsic
name that may suggest which category it should belong to.
For example, com.google.ads represents the AdSense li-
brary supported by the official Android SDK manager. The
second heuristic is the number of distinct developer certifi-
cates per cluster. This feature is useful to determine how
a detected library is used by developers. If it is a widely
used public library, we will find many distinct certificates
for apps that use the given library; if it is used by a single
developer, the library is likely a private library.

Once we build a library fingerprint using a large col-
lection of apps, we can extract software libraries and clas-
sify them into categories for a given app. Note that we as-
sume that code other than the detected software libraries is
attributed to app developers. We discuss the limitation of
this assumption in Sect. 3.3.

3.1.1 Clustering Packages

To detect libraries contained in the collected apps, we be-
gin by clustering packages. Similar packages used in many
apps are clustered. A set of clustered packages possibly rep-
resents a software library. There are several ways to clus-
ter packages [2], [3], [5]. LibRadar [5] leverages stable API

278
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

features that are resilient to code obfuscation or minor soft-
ware updates. LibFinder [3] compares two packages at the
method level using control flow graphs.

Due to its simplicity and high scalability, we adopted
the approach used in LibRadar as our base and extended it
for our purpose. Note that we could adopt other cluster-
ing approaches, such as LibFinder or other clustering algo-
rithms using features extracted from packages.

Following the LibRadar approach, we first extract
packages for the given apps. Here let p be an extracted
package. Next, for each p, we derive n(p), which is the total
number of API calls in p, and m(p), which is the number
of distinct API calls used in p. Finally, for a given package
p, we compute its fingerprint F(p): F(p) = h(n(p),m(p)),
where h() is a lightweight hash function. After processing
all packages found in all apps, packages with the same fin-
gerprint are clustered. We eliminate a cluster if it has only
one package.

From the set of all package names found in a clus-
ter, we choose the most frequently used name as the rep-
resentative package name (RPN). The RPN offers a human-
interpretable representation of a cluster while removing the
noise introduced by developers who modify the names of
packages. While extracting RPNs is common with Li-
bRadar, the method we use to extract RPNs may not be iden-
tical because not all details are disclosed in Ref. [5] and in
its open-source tool [6].

We also apply deobfuscation to package names by
heuristically identifying and removing obfuscated package
names (e.g., zzz.a.b.c) before choosing the RPN. For de-
obfuscation, We first extract words that are separated with
dots from a given package name. If at least one of the words
extracted is a single letter, we identify the package name as
obfuscated. For example, if the package name zzz.a.b.c
is given, we extract “zzz,” “a,” “b,” and “c” as words. Since
the package name included three single-letter components,
we detect it as obfuscated and eliminate it from the list of
RPNs. Note that this simple rule may falsely eliminate legit-
imate package names that include a single letter. However,
we found that such cases were not common in our datasets.

The extracted RPNs are useful for understanding the
provenance of libraries. We use the RPNs to classify de-
tected libraries into categories.

3.1.2 Library Classification

We aim to classify detected software libraries. Note that ex-
isting library detection schemes [2], [3], [5] have not consid-
ered such classification. We define three library categories,
i.e., official, private, and third-party, based on how they are
distributed. This distinction is particularly important in re-
lation to suggestions for managing libraries in the presence
of vulnerabilities. We use RPNs and the number of distinct
certificates per library for the classification task.

The descriptions of the three categories of libraries and
the ways to detect them are summarized below:
Official Libraries are those supported by the official

Table 1 Example RPNs in three categories of libraries

Category Example RPNs

Official android.support com.google.android

com.google.ads

Private kairo dubbeleCom

com.touchN

Third-party com.unity3d com.flurry

twitter4j org.apache.cordova

Table 2 Example RPNs in sub-categories of third-party libraries

Abbreviation Example RPNs

Ad com.inmobi com.chartboost

Analyt com.flurry com.crashlytics

Build com.adobe.air org.apache.cordova

Cloud com.andromo com.biznessapps

Dev bolts com.google.zxing

Game com.unity3d com.openfeint

Pymt com.prime31 com.paypal

SNS com.facebook twitter4j

Android SDK Manager [2], e.g., the Android Support Li-
brary. Detected if its RPN matches one of the package
names provided by the SDK Manager, e.g., android.support.
Private Libraries are those developed by a particular de-
veloper intended only to be used privately in apps developed
by that developer, e.g., special logging/debugging libraries.
Detected if all apps using the library are signed with a single
signature.
Third-Party Libraries are those distributed freely or com-
mercially to be used by any developers, e.g., an advertise-
ment library. Detected if it is not classified as an official
library or a private library.
We also listed examples of RPNs for each categories in Ta-
ble 1.

Next, we classify third-party libraries into sub-
categories that describe their functionality or purpose. We
considered 8 sub-categories: Ad (Advertisement), Analyt
(Mobile analytics), Build (App building framework), Cloud
(Cloud-based app building), Dev (Development aid), Game
(Game engines), Pymt (Payment), and SNS (Social net-
works). We also listed examples of RPNs for each sub-
categories in Table 2. Our task is to assign a detected li-
brary/RPN to one of the categories.

First, we compile a list of package names that are as-
sociated with popular third-party libraries listed in websites
such as [7]. Let the compiled list be “list A.” Second, for
RPNs that are not detected in list A, we manually inspect
the top package names used for at least 100 distinct apps.
We summarize the results as “list B.” Finally, for libraries
not covered by lists A and B, we apply the following prefix-
matching heuristics. For a given unclassified RPN C, if there
is a classified RPN D that matches a prefix of C, then C is
assigned the same category as D.

Finally, using the procedures described above, we con-
struct a fingerprint DB. Each record consists of the fol-
lowing three-tuple, i.e., fingerprint, deobfuscated RPN, and
class/category. The fingerprint DB is employed as follows.

WATANABE et al.: STUDY ON THE VULNERABILITIES OF FREE AND PAID MOBILE APPS
279

We extract packages from a given APK file and compute
a fingerprint for each package. By querying the obtained
fingerprints in the DB, we can obtain corresponding deob-
fuscated RPNs and categories. Note that an APK file may
contain code from multiple libraries in the same category,
e.g., it is quite common that an app uses more than two dis-
tinct ad libraries.

3.2 Dead Code Checker

Since some detected vulnerabilities may reside in dead code,
we must distinguish such cases from legitimate cases. Thus,
we built a dead code checker that can determine whether a
given class is reachable in a generated function call tree.

Figure 3 presents the pseudo code of the dead code
checker. For convenience, let the term function include
method, constructor execution, and field initialization; i.e.,
we trace not only method calls but also class initializa-
tions. The code checks whether a given class is a dead
code (true) or not (false). The algorithm uses depth-
first search to search a function call tree. If it finds a
path from the given function to a class of ORIGIN (line
4), it concludes that the given class is reachable, where
ORIGIN is composed of three classes: Application, App
Components, and Layout. Application is a class that
initiates an Android app, and it is called when an app
is launched. App Components are the essential building
blocks that define the overall behavior of an Android app,
including Activities, Services, Content providers,

Fig. 3 Pseudo code of dead code checker

and Broadcast receivers. While the Application and
App Components classes need to be specified in the man-
ifest file of an app, the Layout class does not. It is often
used by ad libraries to incorporate ads using an XML.
getf (Line 5) is a function that returns a list of meth-

ods that instantiate/call a class. refFunctions (line 21) is
a function that returns a list of functions that reference the
given function. As an implementation of refFunctions,
we adopted Androguard [8], which we modified for our pur-
pose. If a function of a class, say Foo, implements a func-
tion of the Android SDK class whose code is not included
in the APK, we cannot trace the path from the function in
some cases. To deal with such cases, we made a heuristic
to trace the function that calls the init-method of class Foo
(lines 16–19). We note that the heuristics can handle several
cases such as async tasks, OS message handlers, or call-
backs from framework APIs such as onClick(). A method
is callable if it is overridden in a subclass or an implemen-
tation of the Android SDK and an instance of the class is
created. Async tasks, the OS message handler, or other call-
backs implement their function by overriding the methods of
the Android SDK subclass. Therefore, this should be han-
dled by heuristics. Finally, if there are no paths for which a
given class can reach ORIGIN, the algorithm concludes that
the class is a dead code.

Note that our approach has an intrinsic limitation asso-
ciated with static code analysis. This will be discussed in
the next subsection.

3.3 Threats to Validity

3.3.1 Accuracy of Results

To validate the accuracy of the results generated by the
Droid-L system, we inspected the detected libraries man-
ually. We randomly sampled 25 apps from each of four
datasets, i.e., free top, free random, paid top, and paid ran-
dom apps. We summarize the dataset in Sect. 5.1. These
100 apps contained 11,633 packages, which were grouped
into 7,620 distinct clusters, and 85% of the clusters (6,460)
were detected as libraries using the fingerprint DB. The re-
maining packages (1,160) were not detected as libraries for
the following reasons. First, the fingerprints of those li-
braries have been changed due to software updates. Sec-
ond, some libraries use code optimization tools, such as
ProGuard, which could also change fingerprints. We then
inspected the 6,460 packages manually. First, we disassem-
bled/decompiled the APK files. Then, we looked at the de-
tected packages and inspected the classes/methods within
the packages. We also searched the origins of the package
source code using Internet search engines. We found that
6,308 packages (97.6%) were classified correctly. This re-
sult clearly validates the accuracy of the Droid-L system.

3.3.2 Dead Code Checker

Static analysis, which is the basis of our approach, has the

280
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

following two limitations. First, although the algorithm can
exclude dead code, we cannot precisely ensure that remain-
ing code is actually used in the app. Second, static code
analysis cannot dynamically track assigned program code at
run time, such as reflection. These limitations are common
among static analysis approaches.

4. Droid-V: Vulnerability Checker

Our next goal is to identify vulnerabilities in detected li-
braries. To this end, we built a vulnerability checker,
i.e., Droid-V, which uses various vulnerability scanners and
compiles their results for further analysis. Taking an app
as input, Droid-V detects the presence of vulnerabilities and
identifies where in the code the vulnerabilities reside. This
information can be combined with the results of Droid-L to
identify the responsible libraries. In this section, we list and
describe the vulnerabilities we targeted. Some of the limita-
tions of our system are also discussed.

4.1 Vulnerabilities

As summarized in Sect. 8, common and influential vulner-
abilities found in recent mobile platforms can be broadly
classified into four categories, i.e., information disclosure,
SSL/TLS and cryptography, inter-component communica-
tion (ICC), and WebView. While the first two are underlying
for all softwares, not just mobile apps and devices, the last
two are mobile app/device-specific issues.

Each of these vulnerability categories has the following
implications. Information disclosure involves the inclusion
or improper access control of sensitive information that may
lead to undesired leakage. Cryptography involves the mis-
use of SSL/TLS and cryptographic-related code, which may
lead to cryptographic integrity being compromised. ICC in-
volves improper permissions that may allow another app to
access an app’s sensitive information. WebView involves
the misuse of Android’s WebView class, which has been
a source of many vulnerabilities, including remote code
execution.

Table 3 lists the vulnerabilities we tested. We scanned
our dataset for a total of 18 types of vulnerabilities using 2
original tools and 3 open source tools. We summarize the
tools we used as follows:
AndroBugs [9] is an open source tool for scanning an app
for a wide variety of flaws. Its lightweight static analysis
and non-requirement of source code suits our needs well.
AndroBugs has several detection levels, but we only adopted
the “Critical” level flaws, and in addition, we excluded those
that are not vulnerabilities, such as bugs.
Secret Token Finder is a tool we developed to detect secret
tokens present in an app, in a way similar to how it is done
in the work of PlayDrone [10]. Basically, it extracts all text
strings in an APK file and searches for matches with the
regex patterns of IDs and secret tokens of known services.
If such string patterns are present in any of the strings, we
marked the app as vulnerable. We used regex patterns for

Table 3 List of checked vulnerabilities

ID Descriptions Tools

Information Disclosure
ID-GLOB Writes data to globally accessible area AB
ID-STOK Contains secret token STF
ID-FGMT Fragment injection vulnerability AB

SSL/TLS and Cryptography
CR-KSPW SSL keystore is not password-protected AB, QA
CR-KSHC SSL keystore is hard-coded AB, QA
CR-SSLV Miscellaneous SSL validation flaws AB, MD, QA
CR-CERT Contains weak certificate WCC, QA
CR-ECBM ECB mode encryption is used QA
CR-PKEY Contains private key QA

Inter-Component Communication
IC-CPRV ContentProvider without export attribute AB
IC-SRVC Service with intent filter AB
IC-DNGR Declares “dangerous” level permission AB
IC-EXPT Export attribute is missing “android:” AB
IC-DEBG Debuggable flag is manually set to true QA

WebView
WV-SSLV WebView does not validate SSL AB
WV-RCEV WebView RCE vulnerability AB
WV-FSYS File system access is enabled in WebView QA
WV-DOMS DOM storage is enabled in WebView QA

AB = AndroBugs, STF = Secret Token Finder,
MD =MalloDroid, WCC =Weak Certificate Checker, and QA = QARK

AWS and Google OAuth tokens.
MalloDroid [11], [12] is an open-source tool for statically
analyzing an APK file for various potential SSL related se-
curity flaws, such as the inclusion of an invalid SSL certifi-
cate or misuse in the SSL validation logic. We considered
the app vulnerable if at least one of the flaws was detected.
Weak Certificate Checker is a tool we implemented to find
cryptographically weak certificates used to sign an APK file.
It does several checks, such as whether a certificate was cre-
ated with a key with less than 1,024 bits, or is vulnerable to
certain attacks, e.g., Wiener’s attack and common modulus
attack. We considered the app vulnerable if at least one of
the flaws was detected.
QARK [13] is an open-source tool for analyzing vulnera-
bilities of Android apps either in source code or packaged
APKs. The tool automates the use of multiple decompil-
ers and combines their outputs to improve results. It cov-
ers various security related Android application vulnerabili-
ties such as the creation of world-readable or world-writable
files, activities that may leak data, private keys embedded in
the source code, apps that are debuggable, etc.

4.2 Threats to Validity

Similar to the Droid-L system, Droid-V employs static code
analysis to perform a large-scale study. Clearly, static code
analysis may not be able to track dynamically assigned
program code. Poeplau et al. [14] reported that malicious
apps using dynamic code loading techniques can evade de-
tection using offline vetting processes, e.g., static analy-
sis, anti-virus scanning, or dynamic analysis in a sandbox
without Internet connectivity. A malicious app can con-
tain only the minimal functionality sufficient to circumvent

WATANABE et al.: STUDY ON THE VULNERABILITIES OF FREE AND PAID MOBILE APPS
281

the vetting process on Google Play, i.e., Bouncer [15]. The
malicious code is downloaded only after the app is installed
on a device. Dynamic code loading is an obstacle to vulner-
ability assessment for external code for non-malicious apps.
Employing dynamic code analysis with Internet connectiv-
ity could be a promising solution to this problem. However,
dynamic code analysis has several technical challenges, i.e.,
scalability, measuring and improving code coverage, and
generating a test scenario for UI navigation [16]. We intend
to address these challenges in future work.

5. Data

This section describes the free and paid app datasets used in
our analysis. Since there have been no studies that analyzed
paid mobile apps on a large scale, it would be meaningful to
present how they are different from free apps. As discussed
later, paid apps exhibit different characteristics compared to
free apps. We construe that this reflects differences in app
development and maintenance processes. We first provide
an overview of datasets and then present interesting find-
ings derived through an analysis of paid/free apps and the
corresponding metadata, such as the prices of paid apps and
the number of installs.

5.1 Data Description

We collected paid and free Android apps available on
Google Play [17]. We collected and used Android apps for
two purposes. The first purpose was to generate the finger-
print DB (Sect. 3.1). To this end, we collected 2M free apps
and 30K paid apps from Google Play. Table 4 summarizes
the data collected to generate the fingerprint DB. The second
purpose was to analyze the vulnerabilities of the libraries.
Collecting and analyzing all paid and free apps on Google
Play was not feasible due to budgetary and labor costs; thus,
we made use of filtration and sampling as follows. First, we
compiled lists of paid and free apps published on Google
Play. From each list, we selected both the top-K and ran-
domly sampled apps. The selected apps were divided into
four sets, i.e., paid top, paid random, free top, and free ran-
dom apps. The top-K apps represent the most influential
apps, and the randomly sampled apps reflect the statistics of
each population. We used the top-5k and random-10k (rand-
10k) apps for our analysis. In total, we 30k apps were used
in our analyses. To further investigate the changes of vulner-
abilities of apps/libraries over time, we updated these apps
six months after we first collected them. Results for updated
apps are presented in Sect. 6.3.

Table 4 Data for building fingerprint DB

Source # of APK files Date

Free 1,495,745 Nov 2014
Free 461,594 Jun–Jul 2016
Paid 30,000 Jan 2016

5.2 Characteristics of Free/paid Apps

In the following analyses, we attempt to characterize the col-
lected data. The derived characteristics are useful to under-
stand the sources and impacts of vulnerabilities associated
with libraries. In other words, we investigate the number of
installs, prices, and number of classes.

5.2.1 Number of Installs

Figure 4 shows the cumulative distribution function of the
number of installs per application. Note that these num-
bers were discretized into logarithmic ranges. Generally,
free apps demonstrate a larger number of installs than paid
apps. Approximately 60% of randomly sampled paid apps
show fewer than 10 − 50 installs, and approximately 60%
of randomly sampled free apps show fewer than 500− 1000
installs. This tendency also applies to the top apps.

5.2.2 Prices

In this study, we are interested in how prices correlates
to vulnerabilities. It is known that customers use price-
perceived quality heuristics [18] when appraising the quality
of a product or service. It is natural to assume that such per-
ception might reflect expectations regarding security risks.
In other words, customers may believe that a paid app has
fewer security risks than a free app. After analyzing the
vulnerabilities of paid mobile apps in the next section, we
return to this issue in Sect. 7.

Table 5 summarizes the price statistics for the top and
randomly sampled paid apps. Generally, the prices of the
top apps were slightly higher than those of randomly sam-
pled apps. In addition, among random paid apps, several
apps had the maximum price that can be set, i.e., 200 USD.
We investigated such apps and found that most were a type

Fig. 4 Distributions of number of installs.

Table 5 Statistics of prices of paid apps (USD)

Top-5k Rand-10k

mean 3.44 3.30
standard deviation 4.09 8.90
median 2.40 1.51
min 0.99 0.99
max 81.67 200.0

282
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

of joke app, such as the “I am rich” app, which does not
have any practical function.

5.2.3 Time of Last Update

We look into the time of the last update, which represents
whether a particular app is actively developed/maintained.
This information is useful for predicting the security aware-
ness of a developer. For instance, if an app has not been
updated for a long time, it may have more security risks
than apps with recent updates. Ideally, it is good to use the
full history of updates to measure the average time between
updates. However, such information is not accessible from
the web interface of the official market. As a substitute, we
made use of the last date an app received an update. Al-
though the last update date is more coarse-grained than the
full history of updates, it gives us useful information about
an app’s development activity.

Figure 5 shows the distributions of the last update date
for each class of apps. Usually, we may expect that top apps
tend to have a more recent last update date than randomly
sampled apps for both free and paid classes. However, it is
somewhat surprising that the top paid apps tend to have not
been updated for longer periods than the random free apps.
As presented in Sect. 5.2.1, we consider that this originates
from the fact that paid apps tend to have a lower number of
installs, i.e., the higher the number of users, the more app
updates. In addition, this tendency may reflect the “sell-
once-and-that’s-it” model of some paid apps.

5.2.4 Number of Classes

Figure 6 shows the distributions of the number of classes per

Fig. 5 Distributions of last updated date

Fig. 6 Distributions of number of classes

app. We find two general observations here. First, free apps
have a larger number of classes. Second, top apps also have
a larger number of classes. These observations suggest that
top and free apps tend to have more functionality than ran-
dom apps. As discussed in the next section, it is interesting
that, for paid apps, the prices and numbers of classes exhibit
a positive correlation, i.e., the more expensive an app is, the
more classes (functionalities) the app has.

6. Analysis Results

This section describes the results we obtained through ex-
tensive analysis of the datasets. We first present the soft-
ware libraries detected using the Droid-L system (Sect. 6.1).
Then, we present vulnerable libraries found with the two
systems, i.e., Droid-L and Droid-V (Sect. 6.2). We also an-
alyze how these results have changed over time (Sect. 6.3).
Finally, we summarize the key findings derived through the
analyses. Based on the findings, we provide several sugges-
tions to stakeholders (Sect. 6.4).

6.1 Detected Software Libraries

Table 6 shows statistics about the number of detected li-
braries per app. The results indicate two clear tendencies.
First, free apps have more libraries than paid apps. Sec-
ond, top apps have more libraries than randomly sampled
apps. Note that this characteristic is similar to the one de-
rived through the analysis of the number of classes (Fig. 6).
We also applied the two-sample t-test [19] and computed the
p-values to test whether there are statistical differences be-
tween each dataset (i.e., free vs. paid and top vs. random).
Each p-value is less than 0.01, indicating there are statistical
differences.

Tables 7 and 8 present breakdowns of the extracted li-
braries per category/sub-category. In Table 7, we see that,
across all the datasets, third-party libraries accounted for
roughly 70%–80% of the detected libraries. Official li-
braries accounted for roughly 20%–30% of the detected li-
braries. The number of detected private libraries was much
smaller than other categories. Next, in Table 8, we see that,
across all datasets, development aid (Dev) was the most
dominant type of third-party library. This observation was

Table 6 Statistics of the number of detected libraries per app.

Datasets mean std max min

Free (Top-5k) 10.67 9.39 101 0
Free (Rand-10k) 6.09 7.40 66 0
Paid (Top-5k) 4.86 6.45 69 0
Paid (Rand-10k) 3.07 5.20 74 0

Table 7 Total number of detected libraries per each category.

Category
Free Free Paid Paid

Top-5k Rand-10k Top-5k Rand-10k

Official 14,404 21,022 8,977 11,480
Private 1,477 2,067 1,094 2,018
Third-party 53,344 60,511 24,301 28,797

WATANABE et al.: STUDY ON THE VULNERABILITIES OF FREE AND PAID MOBILE APPS
283

Table 8 Total number of detected third-party libraries per each sub-
category.

Free Free Paid Paid
Top-5k Rand-10k Top-5k Rand-10k

Ad 5,453 2,629 1,122 884
Analyt 3,264 3,365 1,872 1,835
Build 269 1,575 227 1,084
Cloud 537 1,167 299 674
Dev 17,525 24,594 8,309 10,001
Game 2,592 2,419 1,620 1,736
Pymt 831 1,108 462 439
SNS 2,805 2,560 1,043 1,020

Table 9 Most popular categories of detected third-party libraries.

Free Free Paid Paid
Top-5k Rand-10k Top-5k Rand-10k

Ad Chart Boost StartApp Chart Boost Inmobi
Analyt Flurry Flurry Flurry Flurry

Build
Apache Cor-
dova

Apache Cor-
dova

Adobe Air Apache Cor-
dova

Cloud App Inventor App Inventor App Inventor App Inventor

Dev
Google Gson Google Gson Apache Com-

mon
Apache Com-
mon

Game Unity3D Unity3D Unity3D Unity3D
Pymt Prime31 Prime31 Prime31 Prime31
SNS Facebook Facebook Facebook Facebook

somewhat interesting to us because, before we performed
the analysis, we conjectured that the most dominant type of
third-party library would be advertisements. Other popular
third-party libraries include advertisements (Ad), mobile an-
alytics (Analyt), game engines (Game), and social networks
(SNS).

As a result of the detection, the most popular sub-
categories of the detected third-party libraries for each
dataset are listed in Table 9. We see that some categories
have the most popular libraries in common, e.g., Facebook
is the most popular SNS third-party library across all the
datasets. We also see some differences among the dataset.
While Apache Common was the most popular development
aid library for the paid apps, Google Gson was the most
popular development aid library for the free apps.

Finally, we inspect how the prices of apps and the num-
ber of libraries are related. Figure 7 presents a box plot of
the price of an app against the number of libraries in the app.
We make two interesting observations. First, the higher the
price of an app, the more libraries the app uses. Although
not conclusive, we construe that, because expensive apps
tend to provide more functionality than less expensive apps,
they tend to use more libraries. Second, top apps have more
libraries than randomly sampled apps. Our interpretation of
this finding is the same as above, i.e., top apps provide more
functionality than other apps.

In the next subsection, we examine how the detected
libraries are associated with vulnerabilities.

6.2 Analysis of Vulnerable Apps/Libraries

Here, we first present the statistics for apps that contain the

Fig. 7 Box plot of the prices of apps vs. the numbers of libraries in the
apps. The top/bottom of the box is the first/third quartiles, and the band
inside the box is the median. Whiskers represent the lowest/highest da-
tum within 1.5 IQR of the first/third quartile where IQR is the difference
between the first and third quartiles. Outliers beyond the whiskers are rep-
resented with plus symbols.

Fig. 8 Distributions of the number of vulnerabilities per each app. Note
that the lines for the Free random and Paid top overlap.

Table 10 Fractions of detected vulnerabilities in dead code, Vdead , and
fractions of apps whose vulnerabilities originated from their libraries over
all the vulnerable apps, Vlib.

Vdead (%) Vlib (%)

Free (Top-5k) 49.7 71.2
Free (Rand-10k) 54.7 71.7
Paid (Top-5k) 40.1 45.9
Paid (Rand-10k) 52.3 52.1

summarized vulnerabilities. We then examine the libraries
with vulnerabilities. We also examine how the detected vul-
nerable libraries changed over a period of six months. Note
that an app could have a vulnerability contained in multiple
libraries.

6.2.1 Vulnerable Apps

Figure 8 shows the distributions of the number of vulner-
abilities found for each app. Generally, while the number
is less than that for free apps, paid apps do contain many
vulnerabilities. In fact, for the top paid apps, roughly 20%
contained at least three of the vulnerabilities. We also find
that top apps contain more vulnerabilities than random apps.
We applied the two-sample t-test and confirmed that each p-
value is less than 0.01.

Table 10, Vdead shows the fractions of detected
vulnerabilities that reside in dead code. Surprisingly,

284
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

Table 11 Breakdown of detected vulnerabilities for each category

Total fractions (%)
of Offi- Pri- Third Non

vulns ciai vate party libs

Free (Top-5k) 21,730 2.1 2.3 43.6 52.0
Free (Rand-10k) 15,516 1.3 6.4 59.5 32.8
Paid (Top-5k) 12,133 1.3 3.2 16.2 79.3
Paid (Rand-10k) 7,202 1.3 9.8 38.9 50.0

Table 12 Fractions of dead code in the vulnerable libraries, Dv, and in
the non-vulnerable libraries, Dn.

Dv (%) Dn (%)

Free (Top-5k) 61.1 34.9
Free (Rand-10k) 62.6 27.3
Paid (Top-5k) 71.5 19.5
Paid (Rand-10k) 66.0 24.5

approximately one-half of the vulnerabilities detected by
the five independent vulnerability checkers were attributed
to dead code. By combining the outputs of Droid-L and
Droid-V, we can successfully exclude vulnerabilities origi-
nating from dead code. Note that we exclude dead code in
the following analyses.

6.2.2 Vulnerable Libraries

Here, we examine how many detected vulnerabilities were
attributed to libraries. We also assess the origins of the vul-
nerable libraries. Table 10, Vlib shows the fractions of apps
whose vulnerabilities originated from their libraries for all
vulnerable apps. For free apps, of the apps that contain at
least one vulnerability, 71%–72% were vulnerable due to
libraries. For paid apps, the fractions were a bit smaller;
however, 46%–52% were vulnerable due to libraries. Thus,
we conclude that most mobile apps’ vulnerabilities originate
from libraries. On the other hand, the p-value of the two-
sample t-test for the top free apps and randomly sampled
free apps exceeded 0.5. Thus, we did not see the difference
of tendencies due to the popularity of the apps.

Table 12 shows the breakdown of the fractions of dead
code in vulnerable and non-vulnerable libraries. The de-
tected vulnerable libraries are more likely to contain dead
code. This observation suggests that it is crucial that
static vulnerability scanners include a dead code checking
mechanism.

Table 11 shows a breakdown of the number of de-
tected vulnerabilities for each category. Here, the num-
bers indicate the total number of Java classes that contained
vulnerabilities in each set of apps. The fractions are the
breakdown of the detected libraries. Note that, while this
analysis counts the total number of vulnerabilities, the pre-
vious analysis shown in Table 10, Vlib analyzed the frac-
tions of apps with vulnerabilities due to their libraries. Free
apps tend to contain more vulnerabilities in their libraries
than paid apps. We also note that top apps tend to contain
more vulnerabilities than random apps. These results agree
with the results for app-level containment of vulnerabilities

Table 13 Breakdown of detected vulnerabilities. The numbers X/Y in-
dicate the total number of detected libraries (X) and the fractions (percent-
ages) for which the vulnerabilities were due to libraries (Y). Bold fonts in-
dicate the vulnerabilities that had a large impact (> 500) and were largely
contributed by libraries (> 40%).

Vulnerability
Free Free Paid Paid

Top-5k Rand-10k Top-5k Rand-10k

ID-GLOB 2166/31 1469/46 5468/3 902/28
ID-STOK 186/10 128/71 71/23 61/57
ID-FGMT 4425/18 3168/49 2288/16 1362/31
CR-KSPW 6/33 7/71 4/75 8/12
CR-KSHC 932/60 485/78 219/44 124/54
CR-SSLV 3644/61 2733/81 1195/59 772/75
CR-CERT 0/0 1/0 0/0 6/0
CR-ECBM 0/0 0/0 6/16 9/55
CR-PKEY 72/0 81/0 217/0 217/0
IC-CPRV 237/0 151/0 164/0 161/0
IC-SRVC 1167/0 413/0 533/0 409/0
IC-DNGR 36/0 13/0 14/0 5/0
IC-EXPT 1/0 1/0 0/0 0/0
IC-DEBG 16/0 136/0 78/0 313/0
WV-SSLV 1251/60 1032/73 206/47 285/85
WV-RCEV 7586/71 5689/83 1516/63 2338/78
WV-FSYS 3/0 6/0 141/39 224/54
WV-DOMS 2/0 3/0 13/7 6/33

shown in Table 6. Note that this also agrees with the re-
sults shown in Fig. 6, i.e., more classes/libraries lead to more
vulnerabilities.

Table 13 shows a breakdown of the detected vulnera-
bilities. While we see library-driven vulnerabilities span-
ning many vulnerabilities, they are particularly concen-
trated for the ID-GLOB, ID-FGMT, CR-KSHC, CR-SSLV,
WV-SSLV, and WV-RCEV vulnerabilities. Examples of li-
braries that caused these vulnerabilities are IronSource (CR-
KSHC), Conduit App (ID-FGMT), PayPal (CR-SSLV),
Apache Cordova (WV-SSLV), and Inmobi (WV-RCEV).

The top panel of Fig. 9 shows the relationship between
the library categories and vulnerabilities. For each vulner-
ability, we inspected the distribution of categories, i.e., the
fractions were normalized in each row. Most vulnerabilities
were attributed to third-party libraries. In addition, although
the amount was small, there are a few official libraries that
contained vulnerabilities. Our manual inspection found that
these vulnerabilities were attributed to certain libraries, such
as Admob and the Google Mobile Service. Thus, they are
classified as “official.” We also found that the vulnerabilities
were due to the use of older versions of libraries in which the
vulnerabilities had not been fixed.

Finally, the bottom panel of Fig. 9 shows the rela-
tionship between third-party library sub-categories and vul-
nerabilities. Among the sub-categories, Development Aid
(Dev), Social Network (SNS), Advertisement (Ad), and App
building framework (Build) were the main origins of the
vulnerabilities. In addition, each sub-category contains in-
trinsic vulnerability patterns, e.g., while Ad libraries mainly
contributed to the ID-GLOB and WV-RCEV, SNS libraries
mainly contributed to WV-SSLV and WV-DOMS.

WATANABE et al.: STUDY ON THE VULNERABILITIES OF FREE AND PAID MOBILE APPS
285

Fig. 9 Relationship between library categories (top) / sub-categories
(bottom) and vulnerabilities. Vulnerabilities shown with bold fonts in Ta-
ble 13 are marked with asterisk.

Fig. 10 The prices of apps vs. the number of vulnerabilities associated
with the libraries in the apps.

6.2.3 Price vs. Vulnerabilities

Figure 10 shows a correlation between the prices of paid

Fig. 11 The number of Java classes vs. the number of vulnerabilities.

apps and the numbers of total vulnerabilities that originated
from libraries. Interestingly, more expensive apps tend to
have more vulnerabilities. In addition, top apps tend to have
more vulnerabilities than random apps. This finding can be
interpreted as follows. As shown in Fig. 7, more expen-
sive/popular apps tend to have more libraries. In addition,
as Fig. 11 shows, apps with a higher number of classes, pro-
portional to the number of libraries, tend to have more vul-
nerabilities. In order to understand this result statistically,
we calculated Pearson’s correlation coefficient, which is a
measure of the linear correlation between two variables, and
obtained 0.441. This value indicates that there is a strong
or moderate positive correlation [20] between the number
of classes and the number of vulnerabilities for each app.
Therefore, expensive/popular apps have more library code;
thus, they are more likely to have vulnerabilities.

The anomaly shown in Fig. 10, i.e., an app in the range
of 50 USD, had 4,525 total vulnerabilities. We inspect this
case in detail. The app was a digital book application. The
price of the app was 12 USD. All 4,525 detected vulnera-
bilities were attributed to a single vulnerability†. Note that
these 4,525 vulnerabilities were found in the distinct 4,525
Java classes contained in the app. For each page of the book,
the app declares a unique class rather than introducing a sin-
gle generic class that represents a page. In other words, ev-
ery time a user turns a page of the book, the app calls a new
class. To fix this vulnerability, the developer must modify all
4,525 Java classes. Despite this rather poor code implemen-
tation, it is ranked as a top paid app and had been installed
more than 10,000 times at the time of data collection.

In summary, even if an app is a paid app, it is likely
to have vulnerabilities. Somewhat paradoxically, more ex-
pensive/popular paid apps tend to have more vulnerabilities.
These results indicate that we cannot apply price-perceived
quality heuristics when we appraise the quality of an app
with respect to security.

6.3 Time-Domain Analysis

We examined how vulnerabilities in apps are addressed over
time. Here, we examine the status of the same apps with
vulnerabilities six months after we first acquired them, and

†MODE WORLD READABLE OR MODE WORLD WRITEABLE which
is classified as an information disclosure vulnerability

286
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

Fig. 12 Statistics of apps over time

we summarize the statistics of the apps (Fig. 12). The per-
centage of apps removed from the marketplace in that pe-
riod was less than 9% for each category. The percentages
of apps that were updated are as follows: free (top): 59.0%,
paid (top): 26.6%, free (random): 16.1%, and paid (ran-
dom): 8.5%. The update intervals of paid and random apps
were longer than that of free and top apps. We randomly
acquired over one-half of the updated apps in the four cat-
egories and confirmed which vulnerabilities were fixed us-
ing Droid-V. The percentages of apps with fixed vulnera-
bilities indicate the same update interval tendency, i.e., paid
and random apps were more difficult to fix than free and top
apps. It is shown statistically since the p-values of the two-
sample t-test between each category are less than 0.01. The
percentages of apps whose vulnerabilities were fixed com-
pletely are as follows: free (top): 18.5%, paid (top): 6.4%,
free (random):4.7%, and paid (random): 2.8%. Unfortu-
nately, a large proportion of apps were still vulnerable even
six months after our initial investigation.

Free apps are updated in a short period due to their
monetization model, i.e., updating an ad library to optimize
advertising effectiveness. Therefore, vulnerabilities in li-
braries are fixed when apps are updated. Ruiz et al. indi-
cated that ad libraries are frequently updated by advertising
companies, and such frequent app updates force developers
to update their apps [21]. In contrast to the above freemium
monetization model, premium monetization of paid apps re-
sults in less frequent updates. In addition, we assume that
the effort spent on product development for random apps is
less than that of top apps, and this results in infrequent up-
dates for random apps.

The top three fixed vulnerabilities are CR-KSHC, ID-
STOK, and WV-SSLV, and there is little difference between
free and paid apps. The first two arise from the problem of
hardcoded secret keys/tokens. WV-SSLV arises from prob-
lems with SSL validation. The reasons why these vulnera-
bilities are more likely fixed are as follows. First, CR-KSHC
and ID-STOK are fairly easy to discover and fix. For in-
stance, a developer can simply obfuscate secret keys/tokens.
Second, since all these vulnerabilities pose a high risk to the
integrity of server-side services, developers have motivation
to fix them.

6.4 Key Findings and Suggestions

Here, we summarize key findings derived from our exten-
sive analyses.
• Roughly 70% of free apps with vulnerabilities were vul-
nerable due to libraries, and Roughly 50% of paid apps with
vulnerabilities were also vulnerable due to libraries.
• Among the three library categories, third-party libraries
were the main source of vulnerabilities.
• While most vulnerable libraries originated from third-party
libraries, a few official libraries were also detected as vulner-
able due to the use of old versions.
• Paid apps can contain vulnerabilities, and more expen-
sive/popular paid apps tend to have more vulnerabilities.
• Paid apps tend to have not been updated for longer periods
than the free apps; thus, vulnerable libraries in paid apps
have not been updated for longer periods than the free apps.
• Approximately one-half of the detected vulnerabilities
were attributed to dead code. We demonstrated that Droid-L
can successfully exclude such cases from analysis.

These key findings enable us to derive clues to reme-
diate vulnerabilities in mobile app. We make the follow-
ing suggestions to the stakeholders of mobile app distri-
bution ecosystems, i.e., mobile app developers, mobile OS
developers, app market operators, and mobile app library
providers. We also offer a suggestion for the developers of
vulnerability test tools.
• Mobile app developers: Developers of apps with many
classes/libraries must pay more attention to their apps. They
could apply vulnerability assessment before release to at
least eliminate easily-detectable vulnerabilities. After the
release of apps, they could also check the updates of li-
braries they use. As we discuss in short, building a sys-
tematic update checking mechanism will be useful.
• Mobile OS developers: Generally, infrequent updates lead
to vulnerabilities. For instance, some paid apps adopt the
“sell-once-and-that’s-it” model. For such apps, it may not
be reasonable to expect developers to perform vulnerability
assessment of their products. If a mobile OS provides an
automated mechanism that updates obsolete libraries/codes
in an app, that could address the vulnerabilities caused by
outdated software.
• Mobile app market operators: Mobile app market opera-
tors should inspect all active apps using systems like Droid-
L and Droid-V. In addition, they should provide vulnerabil-
ity notification mechanisms that inform app developers of
the sources of detected vulnerabilities. It may also be ef-
fective to present ways to update apps appropriately. Using
systems like Droid-L and Droid-V, a mobile app market op-
erator can also inform users of the potential risks of an app.
• Mobile app library providers: By linking Droid-L and
Droid-V outputs, a list of libraries that contain vulnerabil-
ities are generated. The results of our analysis would be
useful for library providers to quickly know about the vul-
nerabilities and fix them.
• Vulnerability test developers: As reported, roughly

WATANABE et al.: STUDY ON THE VULNERABILITIES OF FREE AND PAID MOBILE APPS
287

one-half of vulnerabilities detected by existing vulnerabil-
ity check tools reside in dead code. The developers of such
tools could implement a dead code checker to address this
issue.

7. Discussion

This section discusses the limitations of our analyses, user
perception of security risks, and ethical issues.

7.1 Limitations of the Analyses

As discussed in Sects. 3.3 and 4.2, both library detection
and vulnerability checking are based on static analysis ap-
proaches. We are aware of the limitations and have de-
scribed future work in previous sections. Another limita-
tion we did not discuss is apps with native code. While
our analysis focuses only on Java-written components, some
Android apps contain both Java-written and native code
components written in C/C++. The use of native code com-
ponents is especially popular in game apps, which are re-
quired to run as quickly as possible. Afonso et al. mentioned
that “Malicious apps can use native code to hide malicious
actions. . . ” and surveyed how actual Android apps use na-
tive code [22]. They revealed that most native code compo-
nents are used to improve CPU-intensive workloads, such as
graphics and audio, while several hundred apps out of 1.2M
contain root exploits written in native code. However, their
work was not a vulnerability survey; thus, investigating vul-
nerabilities in native code remains a challenge.

7.2 Ethics

We finally discuss three ethical issues.
Acquisition of paid apps: All paid apps used for our

analyses originated from the official Android marketplace,
i.e., Google Play. We acquired all apps from the official
marketplace according to the legitimate payment procedure.
This means that we used our owned Google accounts to col-
lect and purchase apps one by one without violating the Ac-
ceptable Use Policy.

No additional harm: We conducted our app analysis
in a test environment without Internet accessibility. There-
fore, there was no damage to the actual apps, devices, and
services.

Responsible disclosure: After finding new vulnerabil-
ities in apps and libraries, we followed the principle of re-
sponsible disclosure and reported them to CSIRTs. The dis-
closure includes the app and library names, the categories
of vulnerability, and the source code, as well as suggested
guidelines to reduce insecure code.

8. Related Work

8.1 Library Analysis

A significant amount of recent research has shed light on

code provenance, which means identifying different com-
ponents of an application, e.g., host apps and libraries and
their developers [3], [5]. These studies tackled the negative
effects of a library and host app running without isolation
with the same privileges. Li et al. indicated that piggybacked
apps with a library containing malicious code can mislead
security analysis [23]. Bhoraskar et al. also mentioned that
a host app as a whole can become vulnerable if there are
bugs in the library [24].

Libraries play a vital role in improving the efficiency of
developing applications and monetization (especially with
ad libraries). As of 2012, 95% of popular free Android apps
contained at least one known ad library [25]. Unfortunately,
several studies have revealed the risk of an ad library au-
tomatically harvesting privacy-sensitive data without suffi-
cient explanation to users [25], [26]. Andow et al. analyzed
popular ad libraries and identified 15 libraries as madware,
which exhibits aggressive advertising behaviors [27]. Chen
et al. addressed the problem of a potentially harmful library
(PhaLib), which is potentially harmful code implemented as
a library, and their developed tool for finding specific code
over different mobile platforms (Android and iOS) discov-
ered 117 Android PhaLibs and 46 iOS libraries [3]. To es-
timate the risk of information leakage, Demetriou et al. de-
veloped a tool to discover apps that expose a targeted user’s
privacy data to an integrated ad library [28].

Although many studies of software libraries aimed to
discover malicious code, the motivation of our work is dis-
covering vulnerabilities in libraries. To the best of our
knowledge, our library analysis is the first work to classify
libraries into three intrinsic categories, i.e., official, private,
and third-party. This fine-grained library analysis helps
app/library developers clarify the boundaries of responsi-
bility for countering vulnerabilities and appropriate triage
countermeasures. Backes et al. developed a library detection
method called LibScout [29]. LibScout is resilient against
common code obfuscations and capable of pinpointing ex-
act library versions. As we demonstrated in Sect. 3.1.1, the
accuracy of Droid-L is high, however, we can also use these
techniques as a complementary to the outputs of Droid-L.

Finally, some recent researches focus on the main-
tenance and updatability of mobile libraries. Yasumatsu
et al. [30] revealed that 50% of library updates were per-
formed for more than 3 months after its release, and 50% of
outdated libraries used in mobile apps were left for more
than 10 months. However, according to Derr et al. [31],
85.6% of the outdated libraries can be upgraded without
modifying the app code. These findings are useful for de-
velopers to fix vulnerabilities in free and paid apps across
various categories we identified and improving mobile apps
market security.

8.2 Vulnerability Analysis

There have been numerous studies related to vulnerability
and malware/adware detection. Many of these studies ap-
plied their methods to actual apps for evaluation. Based

288
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

on studies that consider vulnerabilities and threats to mobile
apps and devices, we classify such vulnerabilities into four
categories, i.e., information disclosure, SSL/TLS and cryp-
tography, inter-component communication, and WebView.
The first two are broad underlying issues that are not solely
related to mobile apps and devices. The last two are mobile
app/device-specific issues.

Information disclosure: Apps should be able to care-
fully process sensitive information, such as credentials; oth-
erwise, there is a risk of information disclosure when broad-
casting, logging, storing sensitive information, and setting
improper file permissions. Viennot et al. conducted a sur-
vey on secret tokens for authentication embedded in app
code [10]. Our Secret Token Finder (Sect. 4) also finds se-
cret tokens.

SSL/TLS and cryptography: Misuse of SSL/TLS and
immature implementation of original cryptography can eas-
ily cause serious risks due to insecure communication.
Fahl et al. developed Mallodroid to find apps that mis-
use SSL/TLS APIs, which can result in man-in-the-middle
attacks [12]. We also used MalloDroid to find apps that
misuse SSL/TLS (Sect. 4). In addition to issues with se-
cure communication, we have addressed weak keys used for
APK certificates. Weak keys can potentially be cracked to
obtain a private key, which enables the forging of a signa-
ture on a modified APK [32]. Our Weak Certificate Checker
discovers cryptographically weak certificates used to sign an
APK file (Sect. 4).

Inter-Component Communication (ICC): ICC allows
individual app components to be independent and enables
communication between app components. Felt et al. ad-
dressed the permission re-delegation problem, which occurs
when an app with permissions performs a privileged task for
an app without permissions [33].

WebView: WebView† is an Android class that provides
the functionalities of a custom WebKit browser to render
web pages. Jin et al. revealed a new form of code injec-
tion attack using addJavascriptInterface, which is pro-
vided by WebView and allows an app to add a bridge be-
tween JavaScript and native Java code [34]. Mutchler et al.
analyzed a large number of mobile web apps embedded with
WebView in terms of unsafe and leaky use of browser func-
tionality. They found that 28% of the apps contained at least
one security vulnerability [35].

Our investigation of vulnerabilities (Sect. 4) for lever-
aging both original tools (Weak Certificate Checker and
Secret Token Finder) and free tools (AndroBugs, Mallo-
Droid, and QARK) broadly covered the above four cate-
gories. While AndroBugs finds various types of vulnera-
bilities across the four categories, other tools find different
vulnerabilities that are beyond the scope of AndroBugs.

†iOS also provides similar classes such as UIWebView and
WKWebView.

Table 14 Summary of works on paid app analysis

Ref / Year # apps Object Analytical purpose
[39] / 2011 100 Code To detect overprivilege
[40] / 2012 2 Code To detect pirated apps
[41] / 2013 171,493 Metadata To understand preferences
[42] / 2013 1,223 Metadata To infer rank-demand relationships
[43] / 2014 486 Metadata To analyze review trends
[44] / 2015 234 Code To analyze location privacy

8.3 Paid App Survey at Market Scale

A recent survey effort conducted by Martin et al. [36] re-
ported that the first research into the mobile marketplaces
began in 2010, and, as of the end of 2015, 155 papers have
been published.

In 2012, Chakradeo et al. collected 36,710 apps from
Google Play and third-party marketplaces, and they pro-
posed lightweight triage techniques for market scale analy-
sis in 2013 [37]. In 2014, Viennot et al. presented a detailed
crawler architecture to acquire apps from Google Play in a
scalable manner and compiled metadata corresponding to
over 1.1M apps, where they downloaded free apps and the
metadata of free and paid apps [10].

Although the scale of the analyzed data dramatically
increases year-by-year with the exponential growth of mar-
ketplaces, the analysis of mobile apps was primarily per-
formed in the above representative market-scale studies, ex-
cept for paid apps. The total number of apps available
on Google Play was approximately 2 million, and approx-
imately 10% of these apps were paid apps as of February
2016 [38]. Although the current market share of paid apps
should be considerable and paid apps serve an important role
in monetization in marketplaces, in most studies conducted
at the market scale, only free apps were examined. Thus, the
insights obtained from such studies were implicitly confined
to free apps. Therefore, the actual security aspects of paid
apps have not been considered adequately.

We investigated prior studies focusing on paid apps in
terms of the number of paid apps, the origin of apps (mar-
ket), analyzed object, and analytical purpose (Table 14).
While most studies of paid apps covered a broad range of
security topics, the analyzed properties were only extracted
from market-level metadata, e.g., reviews, ratings, and the
number of installs. This means that such studies did not re-
quire the actual code of the apps. There have been conven-
tional studies that analyze the code of paid apps; however,
only several hundreds of paid apps at most were analyzed.
Our work achieves a double-digit increase in dataset size
compared to such studies. In addition, our work was ac-
complished using both the code information of paid apps
and market information. To the best of our knowledge, this
study is the first to successfully bridge the software analysis
of paid apps and market analysis at a large scale and suc-
cessfully make the security of paid apps understandable at a
high level.

WATANABE et al.: STUDY ON THE VULNERABILITIES OF FREE AND PAID MOBILE APPS
289

9. Conclusion

To establish the assessment and remediation of mobile app
vulnerabilities, understanding their origins is an impera-
tive approach. This study has focused on mobile app li-
braries, which constitute most of the code in mobile apps.
We have attempted to understand the provenance of mobile
app libraries that cause vulnerabilities, which we have clas-
sified into four major classes, i.e., information disclosure,
SSL/cryptography, ICC, and WebView. By linking the out-
puts of Droid-L and Droid-V, we can accurately specify the
vulnerable libraries contained in apps.

A unique and noteworthy approach of this study is that
we used both free and paid apps for our analysis. Since
paid apps have different software development and mainte-
nance methods, compared to free apps, they exhibit a dif-
ferent use of libraries or software update frequencies, and
these differences affect the characteristics of vulnerabilities
in the apps. Our analyses using Droid-L and Droid-V re-
vealed that most vulnerabilities in mobile apps are caused
by third-party libraries. We also found that even top paid
apps do have vulnerabilities in their libraries, and many have
not been updated. It was somewhat surprising that more ex-
pensive/popular paid apps tend to have more vulnerabilities.
Based on the findings derived through our extensive analy-
sis, we have proposed guidelines for mobile app developers,
mobile OS developers, mobile app market operators, mobile
app library providers, and vulnerability test developers.

While this work addressed the fundamental research
question: “how are the vulnerabilities of mobile apps as-
sociated with libraries?”, we can further generalize it to:
“where do the vulnerabilities of mobile apps come from?”.
There are many research aspects that could address this
question; e.g., the app development environments, the eco-
nomic models of mobile app ecosystems, the sources of in-
formation for coding, and the reuse of code. An in-depth
study of such research aspects is left for future work.

References

[1] T. Watanabe, M. Akiyama, F. Kanei, E. Shioji, Y. Takata, B. Sun, Y.
Ishi, T. Shibahara, T. Yagi, and T. Mori, “Understanding the Origins
of Mobile App Vulnerabilities: A Large-scale Measurement Study
of Free and Paid App,” Proc. of MSR, 2017.

[2] H. Wang, Y. Guo, Z. Ma, and X. Chen, “WuKong: A Scalable and
Accurate Two-phase Approach to Android App Clone Detection,”
Proc. of ISSTA, pp.71–82, 2015.

[3] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma, A.
Wang, Y. Zhang, and W. Zou, “Following Devil’s Footprints: Cross-
Platform Analysis of Potentially Harmful Libraries on Android and
iOS,” the 37th IEEE S&P, 2016.

[4] Statista, “Statistics and facts about mobile app usage.” http://www.
statista.com/topics/1002/mobile-app-usage/.

[5] Z. Ma, H. Wang, Y. Guo, and X. Chen, “LibRadar: fast and accurate
detection of third-party libraries in Android apps,” Proc. of ICSE,
2016.

[6] LibRadar, “LibRadar.” https://github.com/pkumza/LibRadar.
[7] AppBrain, “Android Ad networks.” http://www.appbrain.com/stats/

libraries/ad.

[8] A. Desnos, “Androguard.” https://github.com/androguard/
androguard.

[9] “AndroBugs.” https://github.com/AndroBugs/.
[10] N. Viennot, E. Garcia, and J. Nieh, “A Measurement Study of

Google Play,” Proc. of SIGMETRICS, 2014.
[11] “Mallodroid.” https://github.com/sfahl/mallodroid.
[12] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and

M. Smith, “Why Eve and Mallory Love Android: An Analysis of
Android SSL (In)Security,” Proc. of CCS, 2012.

[13] LinkedIn, “QARK.” https://github.com/linkedin/qark.
[14] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna,

“Execute This! Analyzing Unsafe and Malicious Dynamic Code
Loading in Android Applications,” Proc. of NDSS, 2014.

[15] H. Lockheimer, “Android and Security.” http://googlemobile.
blogspot.jp/2012/02/android-and-security.html.

[16] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An Input Gen-
eration System for Android Apps,” Proc. of FSE, 2013.

[17] “Google Play.” https://play.google.com/store.
[18] D.R. Lichtenstein and S. Burton, “The Relationship between Per-

ceived and Objective Price-Quality,” Journal of Marketing Research,
vol.26, no.4, pp.429–443, 1989.

[19] G.W. Snedecor and W.G. Cochran, “Statistical methods, 8th edn,”
Ames: Iowa State Univ. Press Iowa, 1989.

[20] H. Akoglu, “User’s guide to correlation coefficients,” Turkish jour-
nal of emergency medicine, vol.18, no.3, pp.91–93, 2018.

[21] I.J.M. Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and
A. Hassan, “On ad library updates in Android apps,” IEEE Softw.,
2014.

[22] V. Afonso, P. de Geus, A. Bianchi, Y. Fratantonio, C. Kruegel, G.
Vigna, A. Doupe, and M. Polino, “Going Native: Using a Large-
Scale Analysis of Android Apps to Create a Practical Native-Code
Sandboxing Policy Slides,” Proc. of NDSS, 2016.

[23] L. Li, T.F. Bissyandé, J. Klein, and Y.L. Traon, “Parameter Values of
Android APIs: A Preliminary Study on 100,000 Apps,” 23rd IEEE
SANER, 2016.

[24] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath, R.
Wang, and D. Wetherall, “Brahmastra: Driving Apps to Test the Se-
curity of Third-Party Components,” Proc. of 23th USENIX Security,
2014.

[25] M.C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe Expo-
sure Analysis of Mobile In-App Advertisements,” Proc. of WiSec,
2012.

[26] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “In-
vestigating User Privacy in Android Ad Libraries,” Proc. of MoST,
2012.

[27] B. Andow, A. Nadkarni, B. Bassett, W. Enck, and T. Xie, “A Study
of Grayware on Google Play,” Proc. of MoST, 2016.

[28] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C.A. Gunter,
“Free for All! Assessing User Data Exposure to Advertising Li-
braries on Android,” Proc. of NDSS, 2016.

[29] M. Backes, S. Bugiel, and E. Derr, “Reliable Third-Party Library
Detection in Android and its Security Applications,” Proc. of CCS,
2016.

[30] T. Yasumatsu, T. Watanabe, F. Kanei, E. Shioji, M. Akiyama, and T.
Mori, “Understanding the Responsiveness of Mobile App Develop-
ers to Software Library Updates,” Proc. of CODASPY, 2019.

[31] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me
updated: An empirical study of third-party library updatability on
Android,” Proc. of CCS, 2017.

[32] C.V. Bockhaven, “Weak key cracking of Android applications.”
https://os3.nl/ media/2013-2014/courses/ot/cedric sharon.pdf.

[33] A.P. Felt, H.J. Wang, and A. Moshchuk, “Permission Re-Delegation:
Attacks and Defenses,” Proc. of USENIX Security, 2011.

[34] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G.N. Peri, “Code In-
jection Attacks on HTML5-based Mobile Apps: Characterization,
Detection and Mitigation,” Proc. of CCS, 2014.

[35] P. Mutchler, A.D.J. Mitchell, C. Kruegel, and G. Vigna, “A

http://dx.doi.org/10.1109/msr.2017.23
http://dx.doi.org/10.1145/2771783.2771795
http://dx.doi.org/10.1109/sp.2016.29
http://dx.doi.org/10.1145/2889160.2889178
http://dx.doi.org/10.1145/2637364.2592003
http://dx.doi.org/10.1145/2382196.2382205
http://dx.doi.org/10.14722/ndss.2014.23328
http://dx.doi.org/10.1145/2491411.2491450
http://dx.doi.org/10.2307/3172763
http://dx.doi.org/10.1016/j.tjem.2018.08.001
http://dx.doi.org/10.1109/saner.2016.51
http://dx.doi.org/10.1145/2185448.2185464
http://dx.doi.org/10.1145/2976749.2978333
http://dx.doi.org/10.1145/3292006.3300020
http://dx.doi.org/10.1145/3133956.3134059
http://dx.doi.org/10.1145/2660267.2660275

290
IEICE TRANS. INF. & SYST., VOL.E103–D, NO.2 FEBRUARY 2020

Large-Scale Study of Mobile Web App Security,” Proc. of MoST,
2015.

[36] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of
app store analysis for software engineering,” tech. rep., University
College London, 2016.

[37] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck, “MAST: Triage
for Market-scale Mobile Malware Analysis,” Proc. of WiSec, 2013.

[38] AppBrain, “Free vs. paid Android apps.” http://www.appbrain.com/
stats/free-and-paid-android-applications.

[39] A.P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
Permissions Demystified,” Proc. of CCS, 2011.

[40] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song,
“Juxtapp: A Scalable System for Detecting Code Reuse among
Android Applications,” Proc. of DIMVA, 2012.

[41] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why
People Hate Your App: Making Sense of User Feedback in a Mobile
App Store,” Proc. of KDD, 2013.

[42] R. Garg and R. Telang, “Inferring App Demand from Publicly Avail-
able Data,” MIS Quarterly, vol.37, no.4, pp.1253–1264, Dec. 2013.

[43] D. Erić, R. Bačı́k, and I. Fedorko, “Rating Decision Analysis Based
on iOS App Store Data,” Quality Innovation Prosperity, vol.18, no.2,
2014.

[44] S. Seneviratne, H. Kolamunna, and A. Seneviratne, “Short: A Mea-
surement Study of Tracking in Paid Mobile Applications,” Proc. of
WiSec, 2015.

Takuya Watanabe recieved M.E. degree in
computer science and engineering from Waseda
University, Japan in 2016. Since joining Nippon
Telegraph and Telephone Corporation (NTT) in
2016, he has been engaged in research of con-
sumer security and privacy. He is now with the
Cyber Security Project of NTT Secure Platform
Laboratories.

Mitsuaki Akiyama received his M.E. and
Ph.D. degrees in information science from Nara
Institute of Science and Technology, Japan in
2007 and 2013. Since joining Nippon Telegraph
and Telephone Corporation (NTT) in 2007, he
has been engaged in research and development
on network security, especially honeypot and
malware analysis. He is now with the Cyber
Security Project of NTT Secure Platform Lab-
oratories.

Fumihiro Kanei Fumihiro Kanei received
his M.E. degree in computer science from
Yokohama National University in 2015. Since
joining Nippon Telegraph and Telephone Cor-
poration (NTT) in 2015, he has been engaged in
research and development on cyber security, es-
pecially mobile security, web security, and pro-
gram analysis. He is now a researcher in the
Cyber Security Project of NTT Secure Platform
Laboratories.

Eitaro Shioji received his B.E. in computer
science and M.E. in communications and inte-
grated systems from Tokyo Institute of Technol-
ogy in 2008 and 2010, respectively. Since join-
ing NTT in 2010, he has been engaged in R&D
on computer security. His research interests in-
clude software security, program analysis, and
reverse engineering.

Yuta Takata received his B.E., M.E., and
Ph.D. degrees in computer science and engi-
neering from Waseda University, Japan in 2011,
2013, and 2018. He was engaged in R&D of
new technologies related to cyber security at
NTT from 2013 to 2018. Since joining PwC Cy-
ber Services LLC in 2019, he has been focusing
on developing new solutions to effectively ana-
lyze and detect cyber attacks.

Bo Sun received B.E degree in science
from Jilin University in 2007, M.E degree in
engineering from Yokohama National Univer-
sity in 2012, and Ph.D degree in engineering
from Waseda University in 2018. He was with
the University of Waseda as a research asso-
ciate from 2016 to 2018. He is currently a re-
searcher with the National Institute of Informa-
tion and Communications Technology and visit-
ing researcher at the University of Waseda. His
research interest includes web security, mobile

security and offensive security.

Yuta Ishii Yuta Ishii received B.E and M.E
degree in computer science from Waseda Uni-
versity in 2015 and 2017. His research intrerest
is network security and mobile security.

Toshiki Shibahara is currently a researcher
at NTT Secure Platform Laboratories, Tokyo,
Japan. He received his B.E. degree in engi-
neering and M.E degree in information science
and technology from The University of Tokyo,
Japan in 2012 and 2014. Since joining Nippon
Telegraph and Telephone Corporation (NTT) in
2014, he has been engaged in research on cyber
security and machine learning.

http://dx.doi.org/10.1145/2462096.2462100
http://dx.doi.org/10.1145/2046707.2046779
http://dx.doi.org/10.1007/978-3-642-37300-8_4
http://dx.doi.org/10.1145/2487575.2488202
http://dx.doi.org/10.25300/misq/2013/37.4.12
http://dx.doi.org/10.12776/qip.v18i2.337
http://dx.doi.org/10.1145/2766498.2766523

WATANABE et al.: STUDY ON THE VULNERABILITIES OF FREE AND PAID MOBILE APPS
291

Takeshi Yagi received his B.E. degree
in electrical and electronic engineering and his
M.E. degree in science and technology from
Chiba University, Japan in 2000 and 2002. He
also received his Ph.D. degree in information
science and technology from Osaka Univer-
sity, Osaka, Japan in 2013. He joined the
Nippon Telegraph and Telephone Corporation
(NTT) in 2002 and transferred to NTT Secu-
rity (Japan) KK in 2018, where he is currently
researching honeypots, security-data analysis

based on machine learning, and security intelligence technologies such as
URL/domain/IP blacklisting and reputation. He is a member of the In-
stitute of Electrical and Electronics Engineers (IEEE) and the Institute of
Electrical Engineers of Japan (IEEJ) and IEICE.

Tatsuya Mori is currently an associate
professor at Waseda University, Tokyo, Japan.
He received B.E. and M.E. degrees in applied
physics, and Ph.D. degree in information sci-
ence from the Waseda University, in 1997, 1999
and 2005, respectively. He joined NTT corpo-
ration in 1999. Since then, he has been en-
gaged in the research of measurement and anal-
ysis of networked systems and network security.
From Mar 2007 to Mar 2008, he was a visit-
ing researcher at the University of Wisconsin-

Madison.

