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SUMMARY Time-sequence data is high dimensional and contains a
lot of information, which can be utilized in various fields, such as insur-
ance, finance, and advertising. Personal data including time-sequence data
is converted to anonymized datasets, which need to strike a balance be-
tween both privacy and utility. In this paper, we consider low-rank matrix
factorization as one of anonymization methods and evaluate its efficiency.
We convert time-sequence datasets to matrices and evaluate both privacy
and utility. The record IDs in time-sequence data are changed at regular
intervals to reduce re-identification risk. However, since individuals tend
to behave in a similar fashion over periods of time, there remains a risk of
record linkage even if record IDs are different. Hence, we evaluate the re-
identification and linkage risks as privacy risks of time-sequence data. Our
experimental results show that matrix factorization is a viable anonymiza-
tion method and it can achieve better utility than existing anonymization
methods.
key words: time-sequence data, anonymization, matrix factorization, pri-
vacy and utility

1. Introduction

Personal data is essential to build an efficient and sustainable
society, but at the same time, it is sensitive and must be han-
dled carefully. Time-sequence data, such as purchase and
movement history, has attractive values at a macroscopic
level. For example, vehicle trajectories are useful for find-
ing the cause of a traffic jam and purchase histories help to
create a marketing strategy. In contrast with security, a key
challenge of preserving privacy in personal data is that an
attacker can be an authorized user, who is the anonymized
data receiver, so it is important to keep a balance between
privacy and utility and some techniques for achieving this
balance are being studied [1].

Time-sequence data includes static and dynamic at-
tributes. Static attibutes are identifiers and quasi-identifiers,
such as name, age, and gender. Dynamic attributes are char-
acteristic in time-sequence datasets and they include infor-
mation concerning time-sequence. A pseudonymized ID,
time stamp, location, the direction of movement of a vehi-
cle, engine speed, and number of purchases are included in
dynamic attributes as examples.
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Dynamic attributes are especially important and has
high utility value, but it also presents a high risk leakage
of private information even if some information is general-
ized or deleted. Some previous research such as [2] shows
that the amount of processing needed is surprisingly high to
preserve the privacy of a time-sequence data.

Furthermore, time-sequence data has a potential risk
against an authorized user who is an anonymized data re-
ceiver. Time-sequence data may include the same user’s
data at different time frames. In this case, the primary keys
are changed at regular intervals and the records of a user are
shuffled with those of other users in many cases. However,
there is a tendency for people to take similar action and the
privacy risk to link the same users in anonymized datasets.
There are few studies concerning about the problem, so we
define the attack model and evaluate the risk against an au-
thorized user.

Some time-sequence data such as location data can be
denoted as a matrix and we also consider a matrix data.
There is some research that manages a time-sequence data
as a matrix [1], [3]–[5] and our main proposal is to maintain
the utility and the privacy of a dataset using matrix opera-
tions.

1.1 Our Contribution

There are two main contributions in this paper. The first
one is that we regard a matrix factorization technique as
an anonymization method and evaluate the effect to an ac-
tual data. Furthermore, we propose an anonymization al-
gorithm which is combined a matrix factorization technique
and other anonymization techniques. We apply the algo-
rithm to an actual data and evaluate the privacy risk and the
utility. One of the strengths of our proposed algorithm is that
it can cahnge the rank r to modulate the privacy risk flexibly
compared to previous anonymization algorithms. The other
contribution is that we define linkage attack, which is a pri-
vacy risk peculiar to a time-sequence data, and evaluate the
risk in an actual time-sequence data. The following are the
details.

1.1.1 Anonymization Using Matrix Factorization

Matrix factorization is a fundamental step in data analysis.
In particular, matrix M ∈ Rn×m is decomposed into U ∈ Rr×n

and V ∈ Rr×m. U and V represent properties of rows and
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columns respectively. The matrix X = UTV is an approx-
imation of M and rank r affects the accuracy. We observe
in our later evaluations that low-rank matrix factorization
helps with anonymization, i.e., a low-rank matrix is more
likely to withstand re-identification and linkage attacks. We
propose to anonymize only U, which is the feature matrix
of the users, to maintain the utility because V , which is the
feature matrix of the items, does not have any private infor-
mation. We evaluate the effect of our proposal method in an
actural time-sequence dataset in Sect. 5.

1.1.2 Privacy Definition against an Authorized User

Most of the existing research [6] considers that the privacy
leaks when an anonymized record is linked to the original
record. However, especially in time-sequence data, there is
a possibility that an authorized user be an attacker. More
precisely, continuity of time-sequence datasets is an impor-
tant factor in some use-cases, such as medical care, but it
may lead to increased risk of re-identification. Therefore,
the primary keys are changed at regular intervals and the
records of a user are shuffled with those of other users in
many cases. However, there is a tendency for people to take
similar action. For example, people follow the same trajec-
tory at the same time (e.g., during the commute to work)
and there are some people who buy their favorite products,
which remain the same over time. Hence, there are some
linkage risks between records that represent the same user
even if the primary keys are different. Linking the records
themselves may lead to leakage of some other information.
We define linkage attack in Sect. 3 to address the privacy and
evaluate the effect in Sect. 5.

This paper is expanded from [7]. The matrix factor-
ization algorithm is changed and stochastic gradient descent
(SGD) based matrix factorization, which is widely used in
many fields such as recommender system, is applied.

2. Related Work

The related work presented below is grouped under k-
anonymization and noise addition as anonymization meth-
ods and we present some matrix factorization techniques ap-
plied to time-sequence data.

2.1 Existing Anonymization Methods

2.1.1 k-Anonymization

k-anonymity [8]–[10] is a well-known privacy model. The
property of k-anonymity is that each published record is
such that every combination of values of quasi-identifiers
can be matched to at least k respondents. This idea is easy to
understand and many types of k-anonymization algorithms
have been proposed: The Incognito algorithm [11] general-
izes the attributes using taxonomy trees and the Mondrian
algorithm [12] averages or replaces the original data for rep-
resentative values and achieves k-anonymization. In this pa-

per, we use a k-anonymization algorithm based on cluster-
ing and denote Ak(D) as k-anonymization for dataset D. The
algorithm finds close records and consists of clusters, such
that each partition contains at least k records. For details of
the algorithm, see [13].

2.1.2 Noise Addition

Noise addition works by adding or multiplying stochastic or
randomized numbers to confidential data [14]. The idea is
simple and is also well known as an anonymization tech-
nique. The first work on noise addition was proposed by
Kim [15] and the idea was to add noise ε with distribution
ε ∼ N(0, σ2) to original data. Additive noise is uncorrelated
noise and preserves the mean and covariance of the orig-
inal data but the correlation coefficients and variances are
not sustained. Another variation of additive noise is corre-
lated additive noise that keeps the mean and allows the cor-
relation coefficients in the original data to be sustained [16].
Differential privacy is a state-of-the-art privacy model that
is based on the statistical distance between two database ta-
bles differing by at most one record. The basic idea is that,
regardless of background knowledge, an adversary with ac-
cess to the dataset draws the same conclusions, irrespective
of whether a person’s data is included in the dataset. Dif-
ferential privacy is mainly studied in relation to perturbation
methods in an interactive setting, although it is applicable to
certain generalization methods.

In this paper, we use Laplace noise as a noise addition
and add noise ε ∼ Lap(0, 2φ2) to each attribute. We can
apply any types of noise addition to evaluate the privacy risk.
Compared with normal distribution, Laplace noise has small
effect to many records and we can obtain better results in
experiments when we use Laplace noise.

We denote Aφ(D) as noise addition for a dataset D.

2.2 Matrix Factorization

Matrix factorization is a fundamental task in data analysis
and the technique is used in various scenes, such as text data
mining, acoustic analysis, and product recommendation by
collaborative filtering. We use a matrix factorization as an
anonymization technique, so we present the overview of a
matrix facorization in this section.

2.2.1 SGD Matrix Factorization

Let an unknown rank-r matrix be M ∈ Rn×m, of which we
know set Ω ⊂ [n] × [m] of elements. PΩ(M) ∈ Rn×m is
defined below:

PΩ(M) =

⎧⎪⎪⎨⎪⎪⎩
Mi j if (i, j) ∈ Ω,

0 otherwise.
(1)

The goal of a matrix factorization is to find two matri-
ces U ∈ Rr×n and V ∈ Rr×m which approximate the original
matrix Mi j ≈ Xi j s.t. ∀Mi j ∈ Ω(M) with lower dimensional-
ity r << min(n,m). Here, X = UTV .
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This problem is defined to solve the following opti-
mization problem:

min
u∗,v∗

∑

(i, j)∈PΩ(M)

(Mi j − uT
i v j)

2 + λ(||ui||2 + ||v j||2), (2)

where ui is a user-factors vector and v j is an item-factors
vector. When ui and v j are variables, this function is not a
convex set, so that the problem described above cannot be
solved. The second term of Eq. (2) is for regularization and
the regularization parameter λ prevents overfitting. In this
paper, we consider the rank r is a parameter of matrix fac-
torization as an anonymization method, but actually, λ can
suppress the complexity of the model and we can consider
that λ is also a parameter of matrix factorization. However,
the effect of plural parameters is difficult to evaluate, so that
we fix λ = 0.5, which is the typical value, and consider only
rank r is the parameter of matrix factorization. Equation (2)
is widely used and you can find details in some references
(e.g. [17]). Some techniques are proposed to solve the prob-
lem and gradient descent [18], for example, is a fundamental
technique to find a local minimum value. However, it needs
to update the vectors iteratively to obtain an optimal solution
and using gradient descent is computationally expensive, so
that stochastic gradient descent (SGD) is widely used such
as in KDDCup 2011 [19] and Netflix Prize [17].

There are some research to speed up SGD-based matrix
factorization such as [20]–[23] and each algorithm updates
the matrices in parallel or in a distributed manner.

In this paper, we apply simple SGD technique to op-
timize the formular (2) and denote Update(A) to update a
matrix A using SGD technique.

2.3 Matrix Factorization for Time-Sequence Data

There are some studies using matrices for time-sequence
data. Zheng et al. [3], [24] proposed to predict a user’s in-
terests in an unvisited location. They assumed users’ GPS
trajectory as a user-location matrix and each value of the ma-
trix means the number of visits of a user to a location. The
matrix is very sparse because each user visits only a hand-
ful of locations, so a collaborative filtering model is applied
to the prediction. Zheng et al. [4] built a location-activity
matrix, M, which has missing values. M is decomposed
into the two low-rank matrices, U and V . The missing val-
ues can be filled by X = UVT 	 M and the locations can
be recommended when some activities are given. Chawla
et al. [5] constructed a graph from trajectories of taxis and
transformed the graph into matrices. The authors of [1] pro-
posed a method of identifying the traffic flows that cause an
anomaly between two regions.

3. Definitions

3.1 Privacy Definition

We define two types of attack models for time-sequence

datasets. The first one, re-identification attack, is a general
attack model and an attacker has information on the original
dataset M and tries to re-identify it in an anonymized dataset
A(M). This model assumes that an attacker has maximum
information about the original dataset. This model is same
as that of k-anonymization where even if an attacker has an
original dataset, the probability of re-identification of a k-
anonymized dataset is 1/k.

Definition 1 Re-identification attack: Let an attacker
have matrix Mt1 ∈ Rn×m and an anonymized matrix A(Mt1 ) ∈
R

n×m. Mt1 represents a time-sequence data, which is ob-
served during t1, and n is the number of records and m is the
number of items. A re-identification attack against a record
ri succeeds if record ri ∈ Mt1 is linked to record r′j ∈ A(Mt1 ),
where r′j is the anonymized ri or belongs to the cluster which
includes the anonymized ri.

The linkage attack, which is the attack of an authorized
user, is that an attacker tries to obtain some information from
the given datasets A(Mt1 ) and A(Mt2 ). A(Mt1 ) and A(Mt2 ) are
assumed to be included the same users but the primary keys
are different. An attacker in this model has only anonymized
datasets, so that an authorized user is assumed to be an at-
tacker in this model. There are few studies concerning this
problem and we evaluate the risk using actual datasets in
this paper.

Definition 2 Linkage attack: Let an attacker have two
anonymized matrix A(Mt1 ) ∈ Rn×m and A(Mt2 ) ∈ Rn×m. MT

represents a time-sequence data, which is observed during
T , n is the number of records, m is the number of items
and both Mt1 and Mt2 include the same users and items. A
linkage attack against a record ri succeeds if record r′i ∈
A(Mt1 ) is linked to record r′′j ∈ A(Mt2 ), where r′i and r′′j
represent the same user or r′′j belongs to the cluster which
includes the same user of r′i .

We next define privacy metric as follows:
Definition 3 Privacy metric: Let n be the total number

of users of a dataset M and n′ be the number of users which
are attacked succesfully. The privacy risk of M is defined
n′
n .

Example: We consider the attacks to be the same as
those to solve an assignment problem. An assignment prob-
lem is to find the task assignment properly when there are n
users and tasks and the Hungarian algorithm [25] solves the
assignment problem in such a way that the entire cost is min-
imal. We apply the algorithm as re-identification and link-
age attacks and consider when an attacker assigns the same
user, the attack succeeds. When a dataset is k-anonymized,
there are the same records at least k − 1. Hence, when a
record is assigned to the cluster that the correct record be-
longs to, we regard the record as being assigned correctly
even if the assigned record is not actually correct. Further-
more, we define the privacy metric as the result obtained by
multiplying the probability and 1/k because the probability
means the ratio of correct assignment of clusters.

Figure 1 shows an example of risk evaluation. The
dataset on the left is the original dataset and that on the right
is the anonymized dataset. The arrows indicate the assign-
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Fig. 1 Example of a risk evaluation.

ment result. User 2 of the original dataset, for instance, is as-
signed to user 3 of the anonymized dataset, so the attack for
user 2 fails. When noise addition is used as the anonymiza-
tion method, users 2, 3, 4, and 5 are assigned to the wrong
users and the privacy risk is 3/7. On the other hand, when
k-anonymization is used, in this case k = 2, users 4 and 5 are
assigned to the wrong users (blue arrows) but assigned to the
clusters that are the same as the correct users. Therefore, we
consider the attack for users 4 and 5 to be successful. The
failed attacks are only for users 2 and 3 (red arrows) and the
privacy risk is 5/7 × 1/2 = 5/14.

3.2 Utility Definition

We define the utility metric here. In previous research, most
utility metrics are based on either the distance between the
original dataset and the anonymized dataset, or the amount
of information loss [13], [26]. However, the utility depends
on the situation (i.e., context, use-case) and these metrics do
not necessarily match the actual utility. Therefore, we con-
sider a use-case scenario and present a utility definition that
matches the scenario. Specifically, we consider a use-case
in which an anonymized dataset is used as training data for
a machine learning algorithm. In the case of a web access
log dataset, for example, a client, who is a developer of an
anti-virus software, may generate a machine learning model
from an anonymized dataset and predict whether their user
will access a phishing website.

Definition 4 Utility metric: Let F(M, E) be the F-
measure of a machine learning model, where the training
data is M and the test data is E. The utility metric is defined
as follows:

Uti(A(M)) =
F(A(M), E)

F(M, E)
, (3)

where A(M) is an anonymized M.
We consider an actual use-case and generate machine

learning model. When we consider the risk of documents,
it is diffucult to evaluate the utility because documents have
been anonymized subjectively so far. Therefore, some re-
searchers such as [27] use F-measure to evaluate the utility.
On the other hand, we apply F-measure assuming actual us-
age. Figure 2 gives an overview of the utility evaluation. We
first generate two machine learning models; one is from an

Fig. 2 Overview of utility evaluation.

original dataset and the other is from its anonymized dataset.
An item is randomly chosen as a objective variable and the
remainders are explanation variables. And then, we use
these models and predict an attribute of each record of an
evaluation dataset that has the same attributes as the origi-
nal dataset. This operation is performed several times while
an objective variable is changed. The utility is defined as
the average of the ratio of the F-measure of a model of the
anonymized dataset to that of a model of the corresponding
original dataset. In this paper, we apply logistic regression
as the machine learning algorithm and predict for fifty at-
tributes.

4. Anonymization Using Matrix Factorization

We consider matrix factorization as an anonymization
method and rank r contributes to the accuracy of the ma-
trix approximation. Moreover, we combine anonymiza-
tion methods as same as some previous studies [28], [29].
Specifically, we propose to combine matrix factoriza-
tion with another anonymization method ano, such as k-
anonymization and noise addition. We denote p as a param-
eter of the anonymization method and p is k or φ in this pa-
per. Basis matrix U and weighting matrix V can be assumed
as the characteristics of rows and columns, respectively, and
U is a characteristic matrix of users in our dataset. There-
fore, we propose to anonymize U and maintain V so that the
characteristics of domain is preserved. In our algorithm, we
first divide the dataset M into U and V , and anonymize U.
After that, we optimize V once and recombine it with the
anonymized U. The algorithm is described as follows.

We indicate that Ar(D) applies matrix factorization to
matrix D and that A(ano,r)(D) combines matrix factorization
and the anonymization method ano as follows.

A(ano,r)(D) = (A(ano)(U))TV, where U∈Rr×n, V∈Rr×m.

(4)

5. Experiment

5.1 Dataset

We use an actual web access log dataset as a time-sequence
dataset. The dataset consists of an ID, a time-stamp, and the
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Algorithm 1 (M, r, I, ano, p): Anonymization using Matrix
Factorization
Require: Original dataset M, rank r, anonymization function and the pa-

rameter (ano, p), and the number of iteration I.
1: t = 0
2: Construct Ut ∈ [0, 1]n×r and Vt ∈ [0, 1]m×r randomly
3: while t < I do
4: Ut+1 = Update(Ut)
5: Vt+1 = Update(Vt)
6: t = t + 1
7: end while
8: U′t+1 = A(ano)(Ut+1)

9: return X = U
′T
t+1Vt+1

Table 1 Dataset format.

ID (= i) Date URL (= j)

xt1 (= 1) 2016-12-01 16:13:48 www.google.com (= 1)
yt1 (= 2) 2016-12-01 16:15:14 mail.google.com (= 2)
xt1 2016-12-01 16:17:13 www.youtube.com (= 3)
zt1 (= 3) 2016-12-01 16:19:01 www.facebook.com (= 4)
xt2 (= 1) 2016-12-01 16:21:15 www.youtube.com
xt2 2016-12-01 16:22:42 www.google.com
zt2 (= 3) 2016-12-01 16:25:01 www.youtube.com

access domain as shown in Table 1. We convert the dataset
into a matrix as follows.

MT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 · · · r1m

r21 r22 · · · r2m
...

...
. . .

...
rn1 rn2 · · · rnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Here, T is the observation time.
We denote ri j = 1 if a user whose ID is i accesses do-

main j during time T , and otherwise ri j = 0. For example,
we denote the datasets in Table 1 as follows.

Mt1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (6)

Mt2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 1 0
0 0 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (7)

Here, t1 is the 10-minutes span between 2016-12-01
16:10:00 and 2016-12-01 16:19:59, and t2 is the similar 10-
minutes span between 2016-12-01 16:20:00 and 2016-12-01
16:29:59. The IDs are different between t1 and t2 but xt1 and
xt2 , and zt1 and zt2 represent the same users.

In the following experiments, we chose 200 users and
1,000 domains randomly from an actual web access log and
let the pseudonymous ID be changed at every designated
time T .

5.2 The Privacy Risk against the Linkage Attack

First, we evaluate whether a linkage attack is possible or
not. We set the observation time t1 as 2, 4, and 8 hours from
16:00 on a weekday and observation time t2 as the same time

Table 2 Linkage attack against non-anonymized dataset.

Observation Time Risk against Linkage attack

2h 0.51
4h 0.64
8h 0.80

Fig. 3 The relationship between the error and the number of iteration.

on another weekday. The probability of a linkage attack be-
tween Mt1 and Mt2 is shown in Table 2.

The matrix only includes the information on whether a
domain has been accessed or not, and even if the observa-
tion time is 2 hours, the linkage attack probability, i.e., risk,
is very high (over 50%). Moreover, the risk rises as the ob-
servation time increases because when the observation time
increases, the tendency of a user becomes remarkable. The
result shows that the pattern of web access for people bear
consistent characteristics. Hence, we need to care not only
of the re-identification attack but also of the linkage attack
so as to avoid privacy leakages.

5.3 Effects of Matrix Factorization Itself

Observation time t1 and t2 are fixed as 8 hours from 16:00
hours on a weekday in the following experiments. The
inputs of matrix factorization are original dataset M ∈
R

200×1000, number of iterations I, and rank r. Further-
more, λ and γ are the hyper parameters. When γ = 0.05,
and λ = 0.5, the relationship between the error, namely∑

i j |(Mt1 )i j − (Xt1 )i j|, and the iteration number is in Fig. 3.
The figure shows the error is almost fixed when the number
of iteration is over 25. Hence, we fix I = 100, which is
enough to converge. Rank r can be treated as the parameter
of anonymization by matrix factorization because the accu-
racy of dataset X = UVT depends on rank r, so that r is the
parameter of our algorithm and we set r = 10, 20, 30, 40.
We set larger values in the experiments in [7] but the re-
sults of the case r > 40 are saturated. The probabilities of
re-identification and linkage attack are shown in Table 3.

The results show that matrix factorization itself does
not have much effect on re-identification attacks. Note that
matrix factorization can preserve the relative positional rela-
tionship among the records, so that the privacy risk of the re-
identification attack does not decrease so much by a match-
ing algorithm. When the rank is small enough, r = 10, the
positional relationship is broken and the privacy risk is low-
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Table 3 Attacks against matrix factorization.

Rank Risk against Re-identification attack Risk against Linkage attack

10 0.98 0.31
20 1.00 0.45
30 1.00 0.54
40 1.00 0.58

ered.
On the other hand, compared with the re-identification

attack in Table 2, the linkage attack probability between
Ar(Mt1 ) and Ar(Mt2 ) is better. This is because the relation-
ship between the records of Mt1 and Mt2 is weaker than that
of between Mt1 and Ar(Mt1 ). In our experiment, the dataset
of the observation time is 8 hours and r = 30 has almost the
same privacy level as that of the observation time is 2 hours.

5.4 Risk Evaluation

We evaluate our anonymization method, algorithm 1, in
the following experiments. In the following experiments,
we apply [13] as k-anonymization and Laplace noise as a
noise addition. When noise addition is applied, noise ε ∼
Lap(0, 2φ2) is added to each element and the parameter is φ.

1. Evaluate the privacy risk of re-identification attack be-
tween Ak(Mt1 ) and Mt1 , and linkage attack between
Ak(Mt1 ) and Ak(Mt2 ).

2. Evaluate the privacy risk of re-identification attack be-
tween Aφ(Mt1 ) and Mt1 , and linkage attack between
Aφ(Mt1 ) and Aφ(Mt2 ).

3. Evaluate the privacy risk of re-identification attack be-
tween Ak(Ut1 )TV and Mt1 , and linkage attack between
Ak(Ut1 )TV and Ak(Ut2 )TV .

4. Evaluate the privacy risk of re-identification attack be-
tween Aφ(Ut1 )TV and Mt1 , and linkage attack between
Aφ(Ut1 )TV and Aφ(Ut2 )TV .

The evaluations of the re-identification attack in exper-
iments 1 and 2 are almost the same as those conducted in
many previous research. The difference is the privacy met-
ric (see Sect. 3.1) and these results are used for comparison
with experiments 3 and 4, which are the evaluations of our
algorithm. There are few studies on linkage attacks, and
evaluations of the attack are one of our contributions.

The evaluation of re-identification attack in experi-
ment 1 (Fig. 4) is simple and the result is almost the same
as k-anonymization. However, our privacy metric is a little
different from that for k-anonymity, so the result is also a
little different from 1/k. The result of the linkage attack also
shows that k-anonymization can greatly improve the privacy
of linkage attack and 2-anonymization can reduce the pri-
vacy lisk by 77% (0.8→ 0.185).

The evaluations in experiment 2 are shown in Table 5.
The privacy of the re-identification attack is improved from
φ ≥ 0.9 and when φ is large, for example φ = 1.5, the score
looks good. However, almost the half records are changed
more than 1 by the adding noise and the each original value
of M is 0 or 1, namely, Mi j ∈ {0, 1}, so that the noise is

Fig. 4 Overview of experiment.

Table 4 Experiment 1: The privacy risk of a k-anonymized data.

k Re-identification Attack Linkage Attack

2 0.500 0.185
4 0.250 0.050
6 0.167 0.038
8 0.125 0.027

10 0.098 0.023

Table 5 Experiment 2: The privacy risk of a noise added data.

φ Re-identification Attack Linkage Attack

0.3 1.00 0.33
0.6 1.00 0.10
0.9 0.95 0.01
1.2 0.81 0.03
1.5 0.62 0.00

Table 6 Experiment 3: The privacy risk of a data applied with
Algorithm 1 (SGD + k-anonymization) for Re-identification attack.

k r = 10 r = 20 r = 30 r = 40

2 0.44 0.50 0.50 0.50
4 0.21 0.24 0.25 0.25
6 0.12 0.14 0.15 0.16
8 0.10 0.11 0.11 0.12

10 0.08 0.08 0.08 0.08

too large to preserve the utility. Therefore, we conclude that
simple noise addition is not good, in terms of utility preser-
vation, as an anonymization method. On the other hand, we
obtain an interesting result for linkage attack. The privacy
for linkage attack is improved even if the noise is very small
and we can say that the adding even small noise is an effec-
tive countermeasure against the linkage attack.

In experiment 3, we evaluate the effect of our proposed
algorithm, which is a combined matrix factorization and k-
anonymization. Table 6 is the result of the re-identification
attack. In the experiment, we cannot find the effect of the
matrix factorization a lot but the privacy improves slightly
as r increases. This is because, k-anonymization has a large
effect on the re-identification risk and the effect of the matrix
factorization does not appear.

The results of linkage attack in experiment 3 are shown
in Table 7. In the experiment, we cannot obtain new knowl-
edge about the effect of the matrix factorization. When the
datasets, which are observed at different time periods, are
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Table 7 Experiment 3: The privacy risk of a data applied with
Algorithm 1 (SGD + k-anonymization) for Linkage attack.

k r = 10 r = 20 r = 30 r = 40

2 0.11 0.15 0.15 0.15
4 0.05 0.07 0.08 0.07
6 0.04 0.03 0.03 0.04
8 0.03 0.03 0.03 0.03

10 0.02 0.02 0.02 0.02

Table 8 Experiment 4: The privacy risk of a data applied with
Algorithm 1 (SGD + noise addition) for Re-identification attack.

φ r = 10 r = 20 r = 30 r = 40

0.05 0.75 0.95 0.97 1.00
0.10 0.42 0.72 0.85 0.86
0.15 0.25 0.50 0.61 0.70
0.20 0.18 0.28 0.40 0.49

Table 9 Experiment 4: The privacy risk of a data applied with
Algorithm 1 (SGD + noise addition) for Linkage attack.

φ r = 10 r = 20 r = 30 r = 40

0.05 0.21 0.34 0.34 0.50
0.10 0.12 0.15 0.14 0.20
0.15 0.07 0.11 0.09 0.10
0.20 0.03 0.03 0.03 0.02

sufficiently anonymized by k-anonymization, there is no re-
lation among the same users of each dataset and only out-
liers can be linked.

In experiment 4, we evaluate the impact of our method,
which is a combination of matrix factorization and noise ad-
dition. The evaluation results of the re-identification attack
are shown in Table 8. The noise is added to U, which is
the user’s characteristics, and then, UT is multiplied with
V . Therefore, we cannot compare the results with those of
experiment 2 simply, but the impact of the matrix factoriza-
tion is high. This result shows that using matrix factoriza-
tion can help to construct anonymized datasets flexibly from
the viewpoint of privacy. For example, the privacy risk of
A(φ=0.15,r=20)(Mt1 ) and A(φ=0.20,r=40)(Mt1 ) is almost the same
as that of A(k=2)(Mt1 ) and A(φ=1.5)(Mt1 ).

The results of the linkage attack in experiment 4 are
described in Table 9. The tendency is the same as that of
re-identification attack and the matrix factorization is com-
patible with the noise addition. We present the details of the
results of the re-identification attack and the linkage attack
in Figs. 5, 6.

5.5 Utility Evaluation

We next evaluate the utility of anonymized datasets. We
evaluate the utility of datasets applying a machine learn-
ing algorithm. A logistic regression (https://scikit-learn.org/
stable/modules/generated/sklearn.linear model.LogisticReg
ression.html) is applied in the following experiment and the
parameters are default setting. One of utilizations of an ac-
cess log dataset is to prevision a malignant site and inform
the web browser’s users. Therefore, we use a machine learn-

Fig. 5 The re-identification risk of combination of matrix factorization
and noise addition.

Fig. 6 The linkage risk of combination of matrix factorization and noise
addition.

ing algorithm and predict whether each user will access a
malignant site or not. We generate learning models using
the original (non-anonymized) dataset and the anonymized
datasets and input the test dataset into these models. The
utility score is defined in Definition 4 and the F-measure of
the model of the original dataset was 0.763. Each result of
the evaluation is shown in Tables 10, 11, 12, and 13.

1. Evaluate the utlity of A(k)(Mt1 ) for k = 2, 4, 6, 8, 10.
2. Evaluate the utlity of A(φ)(Mt1 ) for φ = 0.3, 0.6, 0.9,

1.2, 1.5.
3. Evaluate the utlity of A(k=2,r)(Mt1 ) for r = 10, 20, 30, 40.
4. Evaluate the utlity of A(φ,r)(Mt1 ) for φ = 0.1, 0.15 and

r = 10, 20, 30, 40.

The actual dataset we use is Mi j ∈ {0, 1} and the matrix
is sparse. Moreover, some people have the same tendency
in the dataset we use, so that k-anonymization is effective in
our experiment. However, when the dataset is more complex
such as image data, which can not be expressed only by 0 or
1, the utility of k-anonymization will decrease.

The results of the experiment 2 shows that the utility
of the dataset decreases as the noise increases. As denoted
in the risk evaluation section, each element of the original
dataset is 0 or 1 and the utility gets worse drastically when
the noise parameter is large such as φ = 1.5.

When k-anonymization and the matrix factorization is
combined, the effect of the matrix factorization is small as
well as the case of the privacy risk. In this experiment, the
effect of k-anonymization is large and the effect of the matrix
factorization is relatively small.
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Table 10 Utility Evaluation 1: The utility of k-anonymized data.

Dataset D Precision Recall F measure Uti(D)

A(k=2)(Mt1 ) 0.780 0.720 0.749 0.981
A(k=4)(Mt1 ) 0.741 0.688 0.714 0.936
A(k=6)(Mt1 ) 0.755 0.691 0.721 0.946
A(k=8)(Mt1 ) 0.737 0.659 0.696 0.913
A(k=10)(Mt1 ) 0.748 0.677 0.711 0.932

Table 11 Utility Evaluation 2: The utility of noise added data.

Dataset D Precision Recall F measure Uti(D)

A(φ=0.3)(Mt1 ) 0.780 0.664 0.717 0.941
A(φ=0.6)(Mt1 ) 0.738 0.610 0.668 0.876
A(φ=0.9)(Mt1 ) 0.719 0.541 0.618 0.810
A(φ=1.2)(Mt1 ) 0.652 0.507 0.571 0.748
A(φ=1.5)(Mt1 ) 0.625 0.520 0.567 0.744

Table 12 Utility Evaluation 3: The utility of data applied with
Algorithm 1 (SGD + k-anonymization)

Dataset D Precision Recall F measure Uti(D)

A(k=2,r=10)(Mt1 ) 0.686 0.735 0.710 0.930
A(k=2,r=20)(Mt1 ) 0.699 0.767 0.731 0.959
A(k=2,r=30)(Mt1 ) 0.695 0.773 0.732 0.960
A(k=2,r=40)(Mt1 ) 0.712 0.786 0.747 0.980

Table 13 Utility Evaluation 4: The utility of data applied with
Algorithm 1 (SGD + noise addition)

Dataset D Precision Recall F measure Uti(D)

A(φ=0.10,r=10)(Mt1 ) 0.742 0.650 0.693 0.909
A(φ=0.10,r=20)(Mt1 ) 0.752 0.688 0.719 0.943
A(φ=0.10,r=30)(Mt1 ) 0.736 0.703 0.719 0.943
A(φ=0.10,r=40)(Mt1 ) 0.737 0.735 0.736 0.965

Table 14 Utility Evaluation 5: The utility of data applied with
Algorithm 1 (SGD + noise addition)

Dataset D Precision Recall F measure Uti(D)

A(φ=0.15,r=10)(Mt1 ) 0.718 0.614 0.662 0.868
A(φ=0.15,r=20)(Mt1 ) 0.748 0.655 0.698 0.915
A(φ=0.15,r=30)(Mt1 ) 0.704 0.680 0.692 0.907
A(φ=0.15,r=40)(Mt1 ) 0.716 0.711 0.713 0.935

The evaluaton results of the combination of the noise
addition and the matrix factorization present a good parfor-
mance (Tables 13 and 14). A dataset generated by com-
bining the matrix factorization and noise addition has more
utility than a dataset generated by noise addition when each
dataset has the same privacy level.

In the experiments, we can say that our proposal al-
gorithm has at least three strengths. Firstly, the proposed
algorithm can control the privacy risk using the parameter
r flexibly. For example, Fig. 5 shows that the privacy im-
proves as the rank r becomes smaller. Secondly, matrix
factorization itself is efficient when we consider a linkage
attack model. The relationship between the records of Mt1
and Mt2 is weak, so that the privacy for linkage attack can
be improved easily by using matrix factorization. Finally,
the proposed algorithm improves the privacy of a dataset
while maintaining the utility of the dataset especially when

the noise addition and the matrix factorization is combined.
For example, the privacy risk and the utility of A(φ=1.5)(Mt1 )
are 0.62 and 0.744. On the other hand, those of A(φ=0.15,r=30)

are 0.61 and 0.907. This means our proposal algorithm can
improve the utility maintaining the privacy of the dataset.

6. Conclusion

In this paper, we proposed an anonymization method using
matrix factorization. Moreover, we conducted some exper-
iments and showed that an anonymization method combin-
ing a matrix factorization and noise addition can maintain
higher utility than only noise addition. Furthermore, we
consider the risk of the linkage between the same records
that are pseudonymized. The experimental results show that
the linkage risk remains if the anonymization is insufficient,
but the privacy can be improved by noise addition for in-
stance, even if it is very small.
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