2414

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.12 DECEMBER 2019

| PAPER Special Section on Empirical Software Engineering

A Study on the Current Status of Functional Idioms in Java

Hiroto TANAKA®, Shinsuke MATSUMOTO", Nonmembers, and Shinji KUSUMOTO', Member

SUMMARY Over the past recent decades, numerous programming lan-
guages have expanded to embrace multi-paradigms such as the fusion of
object-oriented and functional programming. For example, Java, one of the
most famous object-oriented programming languages, introduced a num-
ber of functional idioms in 2014. This evolution enables developers to
achieve various benefits from both paradigms. However, we do not know
how Java developers use functional idioms actually. Additionally, the ex-
tent to which, while there are several criticisms against the idioms, the de-
velopers actually accept and/or use the idioms currently remains unclear.
In this paper, we investigate the actual use status of three functional idioms
(Lambda Expression, Stream, and Optional) in Java projects by mining 100
projects containing approximately 130,000 revisions. From the mining re-
sults, we determined that Lambda Expression is utilized in 16% of all the
examined projects, whereas Stream and Optional are only utilized in 2% to
3% of those projects. It appears that most Java developers avoid using func-
tional idioms just because of keeping compatibility Java versions, while a
number of developers accept these idioms for reasons of readability and
runtime performance improvements. Besides, when they adopt the idioms,
Lambda Expression frequently consists of a single statement, and Stream
is used to operate the elements of a collection. On the other hand, some
developers implement Optional using deprecated methods. We can say that
good usage of the idioms should be widely known among developers.

key words: functional idioms, java, lambda expression, stream, optional

1. Introduction

Programming languages have been evolving in recent
years [1], [2]. This evolution includes the progression of
the programming paradigm [3], which can be defined as
the fundamental style or manner of structuring and orga-
nizing programs [4]-[6]. Thus, language evolution includes
not only idiom-level (e.g., adding sugar syntax) but also
paradigm-level (e.g., new paradigm introduction) changes.
Such paradigm-level enhancements trigger numerous dras-
tic changes in source code structures, unit testing strategies,
and programming experiences. Furthermore, it has recently
become increasingly common for programming languages
to adopt multi-paradigm structures, such as can be seen in
the fusion of object-oriented [7] and functional program-
ming [8] paradigm.

Java, known as a traditional object-oriented language,
also has already become multi-paradigm. In 2014, Java 8
was released with some interesting and attractive new id-
ioms such as Lambda Expression, Stream, and Optional.

Manuscript received February 27, 2019.
Manuscript revised July 1, 2019.
Manuscript publicized September 6, 2019.
"The authors are with Osaka University, Suita-shi, 565-0871
Japan.
a) E-mail: h-tanaka@ist.osaka-u.ac.jp
DOI: 10.1587/transinf.2019MPP0002

These idioms are inspired by the functional programming
paradigm. This evolution allows developers to receive var-
ious benefits from both object-oriented programming and
functional techniques. For instance, by using Stream APIs,
developers can focus on what they want, rather than how
to do it. Lambda Expression helps to avoid side effects in
functions.

On the other hand, there are a number of valid criti-
cisms against Java’s functional idioms [9]-[14]. The most
ideological criticism is that Java is still falling short of sup-
porting some functional features [11], [14]. Lambda Expres-
sion is not a pure first-class object and just a syntax sugar to
generate an anonymous inner class. Java has limited sup-
ports for closures compared to other languages. In terms of
practical usage, it is claimed that Lambda makes harder for
developers to debug programs [9], [10] and decreases pro-
gram performance [11]. Exception handling in Stream with
Lambda is harder to understand. In our best knowledge,
little is known about whether Java developers accept such
arguable idioms or not? and how they actually use the id-
ioms?

In this paper, we investigate the current status of those
idioms in Java projects. More specifically, by investigating
changes to the source code used in Java projects, we will at-
tempt to answer whether the idioms are being accepted and
introduced by object-oriented developers, and how the de-
velopers use the idioms. The subject functional idioms are
Lambda Expression, Stream, and Optional which are imple-
mented to Java in March 2014. In our investigation, we col-
lected 100 Java projects from GitHub which included more
than 130,000 revisions and examined them.

The contributions of this study are as follows:

e We conducted an empirical study to determine how fre-
quently functional idioms are used in Java.

e We collected practical knowledge that may support
Java developers to decide whether to use functional id-
ioms.

e Practical knowledge of actual usages can help Java de-
velopers start to introduce the idioms.

2. Functional Idioms
2.1 Lambda Expression

Lambda Expression represents an anonymous function ob-
ject as its value. Lambda Expression consists of a

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers

TANAKA et al.: A STUDY ON THE CURRENT STATUS OF FUNCTIONAL IDIOMS IN JAVA

comma-separated list of formal parameters, the arrow token
(->), and the body which includes a simple expression or a
block of statements. We show an example of this idiom.

List<User> users = getUsers();
users. forEach(u -> System.out.println(u.name)) ;

In this example, Lambda Expression writes all user names
of users variable to the standard output. We can write clear
and concise code with this idiom. Additionally, the idiom
can be given to method parameters. In other words, we can
give not only values but also operations to method parame-
ters.

2.2 Stream

Stream supports sequential and parallel aggregate opera-
tions. Stream consists of one operation to generate Stream,
zero or more intermediate operations and one terminal op-
eration. An example of this idiom is following.

List<User> users = ...;
users.stream()
.filter(u -> u.age >= 20)
.forEach(u -> System.out.println(u.name)) ;

In this example, Stream is generated by stream() method.
After generating, filter () method, one of the intermedi-
ate operations, extracts users who are 20 years old and over,
and names of these users are written to the standard out-
put by forEach() method which is a terminal operation.
In addition, Stream API allows sequential processing to be
parallel for Collection objects by only switching stream()
method to parallelStream() method.

2.3 Optional

Optional is the object which may or may not contain a non-
null value. For example:

List<User> users = ...;
int firstUserId =
Optional.ofNullable(users.getFirstUserId())
.orElseGet(-1);

In this example, ofNullable() method returns the ID of
the first user of users variable with representing that the
value might be null. -1 is given to firstID variable if the
ID is null, the value of Optional is given otherwise. We can
show that a value might be null without comments by using
this idiom. Additionally, Optional forces us to write code
which runs if a value is null. In other words, we can make
safe programs with Optional.

2.4 Criticisms Against the Use of Functional Idioms in
Java

Although functional idioms can provide some benefits to
Java developers, there are several valid criticisms against
their usage.

Debugging becomes more difficult[9], [10]: The

2415

stack trace becomes significantly longer when Lambda Ex-
pression is called in source code. This makes it harder for
developers to debug.

Stream makes code run slower [11]: Consider an ex-
ample in which we have multiple tasks and one of them
takes significantly longer to complete than the others. In
such a case, if the tasks are executed in parallel using
Stream, the heavy task will degrade the overall performance.

Increased memory overhead[12]: When using
Lambda Expression or Stream, the number of garbage col-
lection executions is greater than when iterator is used be-
cause of the allocation of hidden objects. This may cause
runtime performance problems.

Limitted support for monad [13]: Monad, a design
pattern that allows structuring programs in functional pro-
gramming [15], is not completely implemented in Java.

3. Research Questions
RQ1: Do Java developers accept functional idioms?

As previously mentioned, there are several common criti-
cisms against the use of functional idioms in Java projects.
However, the extent to which such functional idioms are ac-
cepted in Java projects and how frequently they are used
remains unclear. By answering RQ1, we hope to gain an
understanding of how widespread the use of such functional
idioms has become in actual Java projects.

RQ2: Why do they accept or not accept the idioms?

While some Java projects accept the use of functional id-
ioms, other developers do not. Accordingly, we conducted
a qualitatively study to determine why functional idioms are
being accepted or are not being accepted. The results of this
study can be expected to help developers decide whether to
introduce functional idioms to their projects in the future.

RQ3: How do they use the idioms?

We do not know how developers use functional idioms in
Java projects. To see it, we focused on the latest revisions
and studied actual usage of the idioms. The results of this
study can be useful for developers when they try to use the
idioms in their projects.

4. Research Methodology

Figure 1 shows an overview of our methodology to study the
current status of the use of functional idioms. We conducted
our research using the following procedure:

1. Collect 100 Java projects from GitHub.

2. Identify each functional idiom applied to the source
code for each revision.

3. Calculate the densities for each functional idiom (de-
tails of this metric are described later.)

2416
l 1. Collect Java projects
|
i
)
l 2. Identify functional idioms
for each revision
|
3. Calculate
the densities 7. Extract idioms
4. Graph from the latest

the densities revisions

of all revisions

.- EIEIE

5. Focusing 6. Focusing on 8. Focusing on

on commit and actual usage
issues at

== Code snippet using functional idioms

The latest revision

The time when the density changes significantly

Fig.1 Overview of our approach to answer RQs

4. Graph the densities for each revision.

Answer RQ1, focusing on the latest revisions.

6. Answer RQ2, focusing on the commit messages and is-
sues discussed at times when the densities change sig-
nificantly.

7. Extract functional idioms from the latest revisions.

8. Answer RQ3 focusing on actual usage.

9]

We collected the top 100 Java projects currently on
GitHub, ranked them by the number of assigned stars based
on our expectation that those projects would be large-scale
and widely known, and then identified Java source code sub-
ject revisions for each project for the period from Septem-
ber 18, 2013 (half a year before Java 8 release) to April 10,
2018.

For each functional idiom (Lambda Expression,
Stream, and Optional), we calculated the density, which
indicates how frequently these idioms are used in Java
projects. The calculations were performed by normaliz-
ing the number of Java files using functional idioms by
the number of all Java files. Dyer et al. [16] applied this

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.12 DECEMBER 2019

metric in an investigation aimed at determining how fre-
quently new Java language features are used. To iden-
tify the idioms, first, we construct Abstract Syntax Trees
(ASTs) using Eclipse JDT (org.eclipse. core.dom pack-
age). Then, we detect AST nodes corresponded to each id-
iom. Lambda Expression can be easily detected by finding
LambdaExpression node belonging to the JDT package.
Since no AST node directly corresponds to Stream idiom,
we detect all SimpleName nodes which are identifiers in
Java like variable name and method name. Detected nodes
are filtered by two conditions; nodes contain identifier name
stream, nodes are bound to java.util.Stream package.
Optional idiom is identified in a similar way: detecting all
SimpleName nodes, filtering by identifier optional, and
filtering by java.util.Optional package. Note that den-
sities calculated for the functional idioms will be denoted as
dlambdw dxtream, and doptiunal hereinafter.

To answer the RQ1, we investigated how frequently
functional idioms are accepted in Java projects at the lat-
est revision and determined the density value transitions for
all subject revisions based on the density which is calculated
for each revision.

To answer the RQ2, we conducted a qualitative study to
collect reasons why developers use the idioms or not. In this
study, the first research subjects are commit messages and
issues discussed at the time when the density changes sig-
nificantly from the previous revision. The second subjects
include README.md, CONTRIBUTING.md, wiki page on
GitHub, and their web site. As an extra study, we manually
checked commit messages, issues, and comment sentences
in source code by combining the following queries in order
to cover the period while the density does not change sig-
nificantly. The queries are not runnable language such as
SQL, but just a pseudo-language for an explanation. We ex-
tract subject commits, issues and comment statements from
all Java projects on GitHub using equivalent queries through
the web user interface of GitHub.

Scope = ("java 8" OR "java8")

Fi = ("lambda" OR "stream" OR "optional")

Action = ("use" OR "accept" OR "remove" OR
"replace" OR "reason")

Query = (Scope OR Fi) AND Action

Please note that, because of the manual effort required,
we limited our investigations to 100 commits, 100 issues,
and 100 comments extracted from the GitHub search results.

We conducted static source code analysis at the latest
revisions with focusing on what kind of usages are mainly
adopted by the projects, and answer the RQ3. Note that sub-
ject projects are not all projects but ones whose developers
accept the idioms. We focused on what form developers use
functional idioms, what method they select on the idioms
and how they use the method, and studied the following four
themes:

o Number of statements in Lambda Expressions
e Number of cases which each Stream method is used in
e Patterns of method chain on Stream

TANAKA et al.: A STUDY ON THE CURRENT STATUS OF FUNCTIONAL IDIOMS IN JAVA

e Number of cases which each Optional method is used in

5. RQ1: Do Java Developers Accept Functional Id-
ioms?

5.1 Results

Figure 2 shows the result of classifying 100 subject projects
into either accept and not-accept based on the density at the
latest revision. We define projects whose densities at the
latest revisions are more than 1% as accept and all others as
not-accept. As shown in the figure, we can see that Lambda
Expression is the most accepted functional idiom, being ac-
cepted by 16% of the projects. In contrast, Stream and Op-
tional are only accepted by 2 to 3% of the projects.

Figure 3 shows the density transition of the accept
projects. Note that in the result of Lambda Expression, only
the top-five projects, ranked based on the density, are shown
in this figure. Since djumpq, 18 higher than dy,eqm and dopriona
in all cases, it can be said that Lambda Expression is more
frequently used in Java projects than Stream and Optional.
Focusing on the result of Lambda Expression, the idiom was
rapidly introduced to the vert.x, and spark projects right af-
ter Java 8 was released, whereas PocketHub project intro-
duced the idiom assertively at a particular point in time and
proxyee-down began to use the idiom just after their project

Lambda Expression Stream Optional
9 2%
16% 3% i
84% 98%

[accept [] not-accept

Fig.2 Results of classifying 100 projects into either accept or not-accept

2417

started. Taken together, we can say that the developers of
these top five projects were interested in Lambda Expres-
sion. In contrast, the maximum values of dgyeqm and doprionai
do not exceed 3%. Furthermore, there has been little in-
crease in the density of the idioms in any of the surveyed
projects. We conclude that Stream and Optional were hardly
ever used.

5.2 Discussion

We anticipated that there would be numerous opportuni-
ties to introduce functional idioms in source code because
the idioms can be used as alternative code to frequent code
snippet such as manipulating the collection element and
defining anonymous functions. Furthermore, we set a very
low threshold in defining accept. However, the percentage
of projects accepting Lambda Expression is only 16% and
those accepting Stream and Optional are no greater than 3%.
Accordingly, it cannot be said that functional idioms are be-
ing frequently introduced into Java projects.

RQ1 conclusions

It cannot be said that functional idioms are being fre-
quently accepted into Java projects.

6. RQ2: Why Do They Accept or not Accept the Id-
ioms?

6.1 Results

The numbers of revisions, while the density was signifi-
cantly changed, were 87 for Lambda Expression, 53 for
Stream and 69 for Optional. We manually investigated both
the above revisions and extra revisions retrieved by GitHub
search.

Table 1 (a) summarizes the primary reasons why Java
developers accept functional idioms. The v/indicates which
idioms were accepted by the described reason. In guava, de-
velopers accepted Lambda Expression and Stream because
the improvements they provide make collections perform

50 50 50
Java 8 was released Java 8 was released Java 8 was released
vert.x proxyee-down
< PocketHub < =®
= = =
E spark § .g
= & 5
java-design-patterns
selenium selenium java-design-patterns
0 0 I TR 0 I
2014 2015 2016 2017 2018 2014 2015 2017 2018 2014 2015 2016 2017 2018

Fig.3 The density translation of the accept projects. Note that only the top-five projects, ranked by

the density, are shown in the graph of digmpda

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.12 DECEMBER 2019

2418
Table 1 Reasons for accepting or not accepting functional idioms
(a) Reasons for accepting
. Lambda .
Project Reason . Stream Optional Reference Date
Expression
spark To make the code cleaner v pull/134 2014/04/07
selenium To reduce the final jar size v issues/4867 2014/11/01
guava To make Guava’s collections perform better with Stream v v discussion 2016/11/05
retrofit To make converters for wrapping values into Optional v commit/e985d | 2017/03/12
realm-java To support RxJava 2, which uses Lambda Expression v commit/9ac68 | 2017/09/12
selenium To write code more easily v v pull/3495 2017/12/03
(b) Reasons for not accepting
. Lambda . .
Project Reason . Stream Optional Reference Date
Expression
GraalVM To prevent recursion from overflowing the stack prematurely v commit/bca7c | 2014/09/09
guava To avoid complications when handling exceptions issues/1670 2014/11/01
presto To avoid decreasing performance v README.md | 2015/10/10
RxJava To maintain backward compatibility v v v commit/000al | 2016/02/04
Hystrix To maintain backward compatibility v v v commit/e102e | 2016/08/19
selenium To avoid making it harder to call methods v commit/4c38c | 2017/03/30
lottie-android | To keep support for JDK6/7 v commit/fa239 | 2017/04/08

better. However, it should be noted that the kinds of per-
formance improvements that result from the idioms have
not been specified. For realm-java, developers decided to
introduce functional idioms for supporting RxJava 2 which
uses functional idioms in method APIs. Selenium develop-
ers used Lambda Expression and Stream in order to make
writing code easier, and spark developers accepted Lambda
Expression for the same reason. Additionally, Spark devel-
opers used Lambda Expression in order to reduce the final
jar size. In retrofit, developers introduced Optional for the
purpose of making converters that can wrap values into Op-
tional because the tool that they use in retrofit does not allow
null values in Stream.

Table 1(b) summarizes the reasons for rejection. In
GraalVM, Stream was not accepted, because the idiom
causes the recursion to overflow the stack prematurely. As
for guave, developers did not use Lambda Expression be-
cause it makes it necessary to create complex code to deal
with checked exceptions. Project presto developers some-
times do not implement Stream for the same reason as a
general criticism[11]. They avoid using Stream in inner
loops and performance sensitive sections in order to de-
crease performance. Since we cannot catch checked ex-
ceptions thrown by Lambda Expression on the outside, it is
necessarily needed to wrap the exceptions on the inside and
unwrap the same type on the outside. Furthermore, Hys-
trix, lottie-android, and RxJava developers decided to re-
ject functional idioms for backward compatibility reasons.
One of the advantages of using Optional is that it prevents
NullPointerException. However, some selenium developers
decided not to use the idiom, because they claim that Op-
tional does not prevent NullPointerException when used as
parameters.

Thttps://groups.google.com/d/msg/guava-announce/0954Pqva
XLY/7ss96X6sAWAJ

6.2 Discussion

From the results shown in Table 1(a), we broadly catego-
rize the reasons for the acceptance into the following three:
to make source code simpler, to improve the performance
of programs, and to facilitate compatibility with tools which
use functional idioms. On the other hand, the rejection rea-
sons can be classified into: to ensure backward compatibil-
ity, to facilitate debugging maintainability, and to prevent
complications when handling checked exceptions.

RQ2 conclusions

Developers introduce functional idioms mainly with
hoping to make simple and high performant programs.
On the other hand, they do not use the idioms just be-
cause they should keep Java compatibility.

7. RQ3: How Do They Use the Idioms?
7.1 Results

e Number of statements in Lambda Expressions
Figure 4 shows the result of calculating the number of
statements in Lambda Expression. From the result, we
can see that 1 statement is the most popular case for
Lambda Expression. It is as twice as the second most
popular case, 2 statement case. On the other hand, there
is one case that Lambda Expression is composed of 29
statements.

e Number of cases which each Stream method is used in
Figure 5 shows how frequently each Stream method is
used. From the result, map() method is used in 129
cases, and it can be said that the method is the most
popular among all Stream methods. This method ap-
plies the given function to the elements of Stream, and
it is one of the intermediate operations. The second most

TANAKA et al.: A STUDY ON THE CURRENT STATUS OF FUNCTIONAL IDIOMS IN JAVA

5000

of cases

o Hﬂ’—"—\r—u—\ﬁ

N
1 23456782910 &

24 27 29

of statements

Fig.4 Number of statements in Lambda Expressions

of cases
0
19314

yoe3.04

U

(2] o4 o =h 2 o T L T
3 8 © 3 5 @ o ¢ = o
o = >332 23 = =3
T o S 32T =9 o > x

Q O < o 9 o =3

< w © T = o

~ >

Method name

Fig.5 Number of cases which each Stream method is used in

pervasive intermediate operation is filter () that returns
elements which match the given condition. We can also
see that collect () is the second most frequently used of
all methods. This method aggregates elements of Stream,
and it is one of the terminal operations. From there re-
sults, It is expected that these three methods are often
combined and used to operate elements and aggregate
them. On the other hand, peek () method is the most un-
familiar intermediate operation and al1Match() method
which is one of the terminal operations is hardly used.
peek () method returns Stream consisting of the elements
at the time of the method being called. This method exists
mainly to support debugging. Therefore, it might not be
used frequently in released source code. al1Match() re-
turns true when all Stream elements match the provided
predicate. Otherwise, it returns false. This method re-
turns true also when the Stream is empty. However, this

2419

behavior cannot be matched with the one expected by de-
velopers. Therefore, allMatch() method may not be
used in many cases.

e Patterns of method chain on Stream

Figure 6 (a) shows the transitions of Stream methods. The
numbers corresponded the arrows are the percentage of
transitions from one node to another. We can see that
the most frequent chain pattern is composed of map(),
filter() and collect() method. Figure 6(b), 6(c)
shows which method is most commonly used in the start
or end of method chain. We defined the first immedi-
ate operation which is run after generating Stream as the
start of method chain. Note that only top-three methods
are mentioned in both figures. From these three results,
there are many cases which developers modify elements
of Stream by map () and filter (), and aggregate the el-
ements by collect(). In other words, we can say that
developers use Stream mainly to operate its elements.

e Number of cases which each Optional method is used in
Figure 7 shows how frequently each Optional method is
used. From the result, empty () is used on 29 cases, and
it may be the most popular method of all Optional meth-
ods. This method returns an empty Optional object. It
is expected that this method might be commonly used
when developers initialize Optional objects. On the other
hand, equals() is used in only 1 case, and we can say
that it is not popular among developers. equals () deter-
mine if two Optional objects are equal. We expect that
this method is not commonly used because there might
be many cases of comparing the elements of Optional,
instead of the Optional objects. orElse() is also in
only 1 case. It returns the value given to its parameter
when the element wrapped into Optional is not present.
However, the method is called also when the element is
present. This may differ from the expectation of develop-
ers. Therefore, this method might not be used frequently.
In some cases, get() and isPresent() are adopted.
However, it is generally said that developers should not
use these methods [17], [18].

7.2 Discussion

There are many cases using Lambda Expression composed
of a single statement. Generally speaking, good usage of
the idiom is not deeply nested and written in one line [19].
Thus, it can be said that Java developers keep this manner in
their mind. Stream is mainly used to operate the elements
of collections. Therefore, we can say that this usage is the
accepted one among Java developers, and might be a good
usage of the idiom. In contrast, there are several Lambda
Expression consisting of a large number of statements. This
use is against the benefit that Lambda Expression enables
us to make code clear. Additionally, some developers intro-
duce Optional with methods which they should not use. We
expect that the tools which suggest refactoring deprecated
usage are needed.

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.12 DECEMBER 2019

2420
44[%)
map
21 12
12 25 —
filter collect
15 16
+ 15
conc
25 onea findFirst
6
flatMap
14 forEach
14
2
peek 5
33
7 toArray
57
distinct

Intermediate operation

Terminal operation

(a) Percentage of method transitions from one method to another. Note that this figure shows only top-three transitions for each node.

66% E

3%

[filter

other methods and
O flatMap [project-specified methods

[map

(b) Percentage of intermidiate operations
which are run for the first time after generat-
ing Stream. Note that only top-three methods
are mentioned.

[collect [forEach
[toArray [other methods

(c) Percentage of terminal operations which are
run at the end of method chain. Note that only
top-three methods are mentioned.

Fig.6 Patterns of method chain on Stream

RQ3 conclusions

While Lambda Expression and Stream are used fre-
quently in the form of good usage, Optional is applied
with deprecated methods. Thus, it is needed to develop
tools to suggest refactoring bad usage.

8. Threats to Validity

The most serious threat to the validity of this study is that
the definition of accepting idioms is ambiguous. Herein, we
focused on the value of density at the latest revision and as-
sessed the likelihood that the examined projects accept func-
tional idioms. However, this method is unable to precisely
determine whether functional idioms were adopted.

As for the threat to external validity, our subject was
100 Java projects collected from GitHub. Nevertheless, even
though this subject provided a somewhat wide range of ap-
plication domains, it might not be considered sufficient to
produce generalizable results. Another threat to generaliza-
tion is that we studied limited themes for answering RQ3.
Therefore, our results may not cover all actual usages. In
other words, if we had included a wider range of projects
and themes, we might have obtained different results.

In both RQ1 and RQ2, we do not identify whether each
idiom usage is appropriate or not. Our expectation is that
the latest version of the master branch is more likely to con-
tain appropriate usage because of some git-relating practice
such as GitHub flow and pull-requests. If a project strictly

TANAKA et al.: A STUDY ON THE CURRENT STATUS OF FUNCTIONAL IDIOMS IN JAVA

j0

o
™ [
172
[0}
(2]
©
o
S
o
H*
o T
[0 =
5 g
g

as[340]

Adwes
1u9saldsl
weals
s|qe(InNjo
s|enba

Method name

Fig.7 Number of cases which each Optional method is used in

follows GitHub flow, the master branch is always reviewed
and approved by at least one other developer. However,
sometimes, inappropriate API usages may occur due to a
lack of developer’s knowledge. The results of the study are
threatened by the problem. Identifying inappropriate usage
would enable to organize bad practice.

The density metric used in RQ1 is calculated based on
the information about whether there are functional idioms
in source code or not. Thus, the metric ignores the numbers
of using a specific idiom in a single Java file. Due to this,
the density sometimes may not reflect how frequently the
functional idioms are used.

The manual investigation for RQ2 was conducted in a
limited number of commits and issues by focusing on den-
sity changes. Thus, it cannot be said that this study covers
all of the reasons for accepting or not accepting functional
idioms. It must be acknowledged that any discussions out-
side of our subjects will not be reflected in our results.

9. Related Work

There have been several previous studies on programming
language evolution [3], [16], [20]-[22]. For example, Dyer
et al. [16] studied Java feature adoption over time by analyz-
ing over 18 billion abstract syntax tree nodes, while Parnin
et al. [20] examined the adoption and use of generics, which
were introduced into Java in 2004.

However, research into the introduction of functional
idioms is becoming more active these days[23], [24]. For
example, Mazinanian et al.[23] have conducted a large-
scale empirical study of Lambda Expression to answer how
Java developers introduce Lambda, and what are the rea-
sons that motivate Java developers to use the Lambda. Our
study shares some findings of their work on the positive
reasons (e.g., the terseness of Lambda is the most general
reason for accepting). On the other hand, our work exam-
ined both positive and negative reasons which motivate or

2421

prevent the use of Lambda. As a result, the most frequent
negative reason is from backward compatibility rather than
the powerful benefits of Lambda. This result might be one
of the decision-making factors for developers who expect
their developing system (especially library) to be used on
various JVM versions. Usebeck et al. [24] conducted quali-
tative studies to determine the impact of Lambda Expression
in C++ by comparing it to iterator. In our current study, we
examine the use of all functional programming-inspired fea-
tures including Lambda Expression, Stream and Optional in
Java and survey the reasons why developers accept or do not
accept the use of those idioms.

10. Conclusion

In this study, we investigated the current status of the use
of functional idioms in Java projects and found that the id-
ioms are not being frequently used, primarily because Java
project developers avoid their use in order to facilitate back-
ward compatibility and maintainability. On the other hand,
some Java projects accept these idioms because they can im-
prove performance and produce short, clear, and readable
code. They use Lambda Expression frequently in the form
of a single statement and adopt Stream to operate collec-
tion. However, in several cases, developers introduce Op-
tional with using methods which they should not use.

According to the previous works, it has been revealed
that a small number of developers account for the major-
ity of using new language feature [16], and such fact can be
seen also in Lambda Expression [23]. However, it should be
considered the extent to which applying functional idioms
affect development activities in projects and developers. By
revealing the activeness change, we can grasp from a differ-
ent point of view whether the idioms are accepted.

In the future, it will be interesting to define examples of
bad usage of functional idioms in Java by conducting a sur-
vey of actual cases in which developers found it necessary
to rewrite idioms. This would enable us to develop a tool
which detects bad usage and suggest ways that developers
could refactor idioms.

Acknowledgments

This work was supported by JSPS/MEXT KAKENHI Grant
Number 16H02908 and 18H03222.

References

[1] PJ. Landin, “The next 700 programming languages,” Communi-
cations of the Association for Computing Machinery, vol.9, no.3,
pp.157-166, 1966.

[2] D. Spinellis, P. Louridas, and M. Kechagia, “The evolution of
¢ programming practices: A study of the unix operating system
1973-2015,” Proc. 38th International Conference on Software En-
gineering, pp.748-759, 2016.

[3] J.-M. Favre, “Languages evolve too! changing the software time
scale,” Proc. 8th International Workshop on Principles of Software
Evolution, pp.33-42, 2005.

http://dx.doi.org/10.1145/365230.365257
http://dx.doi.org/10.1145/2884781.2884799
http://dx.doi.org/10.1109/iwpse.2005.22

2422

(4]

[3]
(6]

[7

—

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

R.W. Floyd, “The paradigms of programming,” Communica-
tions of the Association for Computing Machinery, vol.22, no.8,
pp.455-460, 1979.

D.A. Watt, Programming Language Concepts and Paradigms,
Prentice-Hall, Inc., 1990.

D.M. Simmonds, “The programming paradigm evolution,” Com-
puter, vol.45, no.6, pp.93-95, 2012.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen,
Object-oriented Modeling and Design, Prentice-Hall, Inc., 1991.

P. Henderson, Functional programming: application and implemen-
tation, Prentice-Hall, Inc., 1980.

R. Fischer, Java Closures and Lambda, ch. 7, Apress., 2015.

T. Weiss, “The Dark Side Of Lambda Expressions in Java 8 |
OverOps Blog.” https://blog.takipi.com/the-dark-side-of-lambda-
expressions-in-java-8/, (accessed Jan. 5, 2019).

A. Zhitnitsky, “The 6 biggest problems of Java 8 - JAXenter.”
https://jaxenter.com/java-8-problems-112279.html, (accessed Dec.
26, 2018).

Y. Cheon and A. Torre, “Impacts of java language features on the
memory performances of android apps,” tech. rep., University of
Texas at El Paso, 2017.

PY. Saumont, “What’s Wrong in Java 8, Part IV: Monads -
DZone Performance.” https://dzone.com/articles/whats-wrong-java-
8-part-iv, (accessed Jan. 5, 2019).

S. Rauh, “Is Java 8 a Functional Programming Language?.”
https://www.beyondjava.net/java-8-functional-programming-langu
age, (accessed June 26, 2019).

P. Wadler, “The essence of functional programming,” Proc. 19th
Principles of Programming Languages, pp.1-14, 1992.

R. Dyer, H. Rajan, H.A. Nguyen, and T.N. Nguyen, “Mining billions
of ast nodes to study actual and potential usage of java language fea-
tures,” Proc. 36th International Conference on Software Engineer-
ing, pp.779-790, 2014.

M. Winnicki, “Optional isPresent() Is Bad for You - DZone
Java.” https://dzone.com/articles/optional-ispresent-is-bad-for-you,
(accessed Dec. 21, 2018).

M.P. Gioiosa, “Java 8 Optional - Replace Your Get() Calls
- DZone Java.” https://dzone.com/articles/java-8-optional-replace-
your-get-calls, (accessed Dec. 21, 2018).

V. Subramaniam, “Java 8 idioms: Why the perfect lambda expres-
sion is just one line.” https://www.ibm.com/developerworks/library/
j-java8idioms6/index.html, (accessed Dec. 26, 2018).

C. Parnin, C. Bird, and E. Murphy-Hill, “Java generics adoption:
How new features are introduced, championed, or ignored,” Proc.
8th Working Conference on Mining Software Repositories, pp.3—12,
2011.

L.A. Meyerovich and A.S. Rabkin, “Empirical analysis of program-
ming language adoption,” Special Interest Group on Programming
Languages Notices, vol.48, no.10, pp.1-18, 2013.

M. Hoppe and S. Hanenberg, “Do developers benefit from generic
types?: An empirical comparison of generic and raw types in java,”
SIGPLAN Not., vol.48, no.10, pp.457—474, 2013.

D. Mazinanian, A. Ketkar, N. Tsantalis, and D. Dig, “Understand-
ing the use of lambda expressions in java,” Proc. Association for
Computing Machinery on Programming Languages, pp.85:1-85:31,
2017.

P.M. Uesbeck, A. Stefik, S. Hanenberg, J. Pedersen, and P. Daleiden,
“An empirical study on the impact of c++ lambdas and programmer
experience,” Proc. 38th International Conference on Software Engi-
neering, pp.760-771, 2016.

IEICE TRANS. INF. & SYST., VOL.E102-D, NO.12 DECEMBER 2019

Hiroto Tanaka received the BI degree from
Osaka University in 2018. He is a master course
student at Osaka University. His research inter-
ests include mining software repositories.

Shinsuke Matsumoto received the ME and
Ph.D degrees from Nara Institute of Science and
Technology in 2008 and 2010, respectively. He
is currently an assistant professor in the Gradu-
ate School of Information Science and Technol-
ogy at Osaka University. His research interests
include empirical software engineering.

Shinji Kusumoto received the BE, ME, and
DE degrees in information and computer sci-
ences from Osaka University in 1988, 1990, and
1993, respectively. He is currently a professor in
the Graduate School of Information Science and
Technology at Osaka University. His research
interests include software metrics and software
quality assurance technique. He is a member of
the IEEE, IEICE, and JFPUG.

http://dx.doi.org/10.1145/359138.359140
http://dx.doi.org/10.1109/mc.2012.219
http://dx.doi.org/10.1145/143165.143169
http://dx.doi.org/10.1145/2568225.2568295
http://dx.doi.org/10.1145/1985441.1985446
http://dx.doi.org/10.1145/2544173.2509515
http://dx.doi.org/10.1145/2544173.2509528
http://dx.doi.org/10.1145/3133909
http://dx.doi.org/10.1145/2884781.2884849

