
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019
2423

PAPER Special Section on Empirical Software Engineering

Understanding Developer Commenting in Code Reviews

Toshiki HIRAO†a), Raula GAIKOVINA KULA†b), Nonmembers, Akinori IHARA††c), Member,
and Kenichi MATSUMOTO†d), Nonmember

SUMMARY Modern code review is a well-known practice to assess
the quality of software where developers discuss the quality in a web-based
review tool. However, this lightweight approach may risk an inefficient
review participation, especially when comments becomes either excessive
(i.e., too many) or underwhelming (i.e., too few). In this study, we inves-
tigate the phenomena of reviewer commenting. Through a large-scale em-
pirical analysis of over 1.1 million reviews from five OSS systems, we con-
duct an exploratory study to investigate the frequency, size, and evolution
of reviewer commenting. Moreover, we also conduct a modeling study to
understand the most important features that potentially drive reviewer com-
ments. Our results find that (i) the number of comments and the number
of words in the comments tend to vary among reviews and across studied
systems; (ii) reviewers change their behaviours in commenting over time;
and (iii) human experience and patch property aspects impact the number
of comments and the number of words in the comments.
key words: modern code review, review comments, mining software repos-
itories, empirical study, machine learning

1. Introduction

Code review is widely recognized as best practice for Soft-
ware Quality Assurance [1]. The highly structured pro-
cesses of Fagan-style reviews [2] are renown for being time-
consuming in nature. Modern code review (MCR) is a
lightweight process—developers informally interact with
other developers and discuss patches in a web-based re-
view tool such as Gerrit Code Review. Companies such as
Microsoft, Facebook and several OSS projects have success-
fully adopted the MCR process [3].

However, code reviews today still have the potential for
being expensive and slow [4], especially in terms of the dis-
cussion size before a final decision is made. For example,
Microsoft engineers raised concerns over modern code re-
view workflows, stating that ‘current code review best prac-
tice slows us down’ [5]. Moreover, it is generally undesir-
able to have bloated reviewer comments in a review sys-
tem [6]. In fact, the design of most modern code review sys-
tems promotes the practice of lazy consensus concept where

Manuscript received February 28, 2019.
Manuscript revised July 1, 2019.
Manuscript publicized September 11, 2019.
†The authors are with Nara Institute of Science and Technol-

ogy, Ikoma-shi, 630–0192 Japan.
††The author is with Wakayama University, Wakayama-shi,

640–8510 Japan.
a) E-mail: hirao.toshiki.ho7@is.naist.jp
b) E-mail: raula-k@is.naist.jp
c) E-mail: ihara@sys.wakayama-u.ac.jp
d) E-mail: matumoto@is.naist.jp

DOI: 10.1587/transinf.2019MPP0005

reviewers reply only to the necessary content to avoid ex-
cessive comments.

Our main objective in this paper is to understand the
most important perspectives on reviewer commenting. To
fulfill this, we analyze the phenomena; namely, how many
comments and words are involved to complete reviews, how
reviewer commenting evolves over time, and what features
drive reviewer comments. The goal of the work is to under-
stand how excessive or underwhelming comments can be
identified and managed.

To this end, we conduct the large-scale exploratory and
modeling studies of over 1.1 million reviews across five
open source projects. We form three research questions to
guide those studies:

• (RQ1) Is there a typical number of reviewer comments
before the final decisions?
Motivation: Towards understanding the most impactful
features on reviewer commenting, we first would like
to explore the phenomenon of reviewer commenting.
Hence, the study investigates the extent to which the
number of reviewer comments and words in the com-
ments range across studied systems. The analysis pro-
vides with the evidence for understanding how many
comments and words normally suffice to complete or
manage reviews.
Results: There is no typical number of review com-
ments across five studied systems. Reviewers reach
a decision on a review ranging up to 13 comments,
with 22 words per a comment on average. Moreover,
the number of comments is mostly correlated with the
number of words in the comments.
• (RQ2) Does reviewer commenting change over the evo-

lution of a project?
Motivation: The evolution of reviewer commenting is
also an essential aspect to thoroughly understand how
reviewers have changed their behaviours in comment-
ing. This analysis enriches our observations of RQ1.
Results: The number of comments tends to steadily in-
crease over time in the largest studied system. Further-
more, the number of comments tends to mostly stabi-
lize in other studied systems.
• (RQ3) What (a) patch, (b) human and (c) management

features drive reviewer comments?
Motivation: Our main objective of this paper is to
discover the most impactful features in reviewer

Copyright c© 2019 The Institute of Electronics, Information and Communication Engineers

2424
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

commenting through a modeling study. The results
(i) allow us to have a deep understanding of the key
features needed to manage reviewer commenting; and
(ii) provide us with considerable findings towards fu-
ture code review studies one of which is a review cost
estimation approach.
Results: Human experience (e.g., reviewer experience)
and patch property (e.g., patch churn) features drive re-
viewer comments and words in the comments. More-
over, both novice authors and experienced reviewers
tend to induce more comments and words, while the
large and widespread modifications also have the ten-
dency to raise more comments and words.

Our contributions are two-fold, with key implications
listed in this paper. The first contribution is an exploratory
study for the phenomenon of reviewer commenting. The
second is the confirmation of review-related features that
drive reviewer comments. We envision the work as a study
towards a review cost estimation approach. Our replication
package that includes our dataset and scripts is available
online.†

The rest of the paper is organized as follows. Section 2
presents work related to the motivation of our study. Sec-
tion 3 describes our research approach. Section 4 describes
our results. Section 5 presents our implications and threats
to validity. Finally, Sect. 6 draws our conclusion and future
work.

2. Related Work

Below we discuss related work with respect to (1) Mod-
ern Code Review, (2) the Effects of Reviewing Time, and
(3) Discussions during code reviews.

Modern Code Review (MCR). The MCR is defined as
a lightweight process where developers informally discuss
patches in a web-based review tool such as Gerrit. The MCR
is a well-established practice and has been studied in recent
years. Bacchelli et al. [3] showed that reviews at Microsoft
carry various benefits such as finding bugs, code improve-
ment, knowledge transfer, team awareness, alternative so-
lutions and shared code ownership, while Baum et al. [6]
found that the web-based reviews in industry have the capa-
bility of generating better ideas. Hirao et al. [7] found that
reviewers raise various discussions during the MCR process,
linking reviews to others due to alternative solutions.

Various factors are related to code reviewing, and
prior work has studied review quality and efficiency.
Rigby et al. [8] showed that changes examined by many
developers are less likely to have future defects, while
Raymond [9] argued that large pools of open source review-
ers are more likely to catch the most serious defects. For
review efficiency, reviewer recommendation systems have
been developed to automatically select appropriate reviewer
candidates [10]–[14].

Effects of Reviewing Time. To evaluate how long
†https://bitbucket.org/toshiki-h/commentanalysis

code review processes take, recent studies have analyzed
reviewing time from the first submission to final accep-
tance. Jiang et al. [15] found that reviewing time is im-
pacted by technical and non-technical factors (e.g., sub-
mission time, number of modified subsystems, developer
experience). Kononenko et al. [16] qualitatively analyzed
how developers feel that size-related factors (e.g., patch
size and number of modified files) are the most influen-
tial factors for reviewing time. Previous studies found that
small patches are likely to receive faster responses [8], [17].
Baysal et al. [18] found that more experienced patch authors
receive faster responses. Thongtanunam et al. [19] found
that feedback delay of prior patches has a relationship with
the likelihood that a patch will receive slow initial responses.

Discussions during code reviews. Recent studies
have analyzed the reviewer discussion process in MCR.
Gousios et al. [20] found that the number of comments is
correlated with how much time the reviews take to com-
plete. Tsay et al. [21] found that pull requests with many
comments from reviewers were much less likely to be ac-
cepted. Moreover, Storey et al. [22] found that the large
number of text-based messages may introduce misunder-
standing through their developer survey.

To adapt the reviewers’ feedback into code, patch au-
thors revise the submitted patches and then resubmit them.
Bosu et al. [23] found that patch authors feel that feed-
backs from experienced reviewers can be helpful in mak-
ing revisions. Rigby and Bird [4] showed that patch au-
thors tend to resubmit roughly once to five times in six OSS
projects. Tao et al. [24] qualitatively analyzed the broad rea-
sons for patch rejection (e.g., problematic implementation,
poor maintainability).

While prior work analyzed how reviewer comments
impact review quality and outcome, this paper focuses on
what features impact reviewer commenting.

3. Methodology

Figure 1 depicts the overall methodology used in the study.
It is broken into two parts, data preparation and data analy-
sis. We describe in detail each part.

3.1 Data Preparation

Figure 1 shows how Data Preparation involves two pro-
cesses of (1) system selection and (2) data cleaning.

System Selection. Table 1 shows our studied systems,
which are Chromium, AOSP, Qt, Eclipse, and Libreoffice.
These five systems use the Gerrit Code Review. In ad-
dition, our selected systems have been used broadly in
code review studies [11], [25], [26] and span over nine
years. We first collect the review history (e.g., code

HIRAO et al.: UNDERSTANDING DEVELOPER COMMENTING IN CODE REVIEWS
2425

Fig. 1 Overview of our methodology. The data analysis is broken into
six different stages (i-vi) and the analysis is used to answer our three re-
search questions.

Table 1 An overview of our five studied systems.

Product #Studied Studied Periods #Developers
Reviews

Chromium 498,821 04/2011–10/2018 7,187
AOSP 282,203 10/2008–10/2018 6,847
Qt 207,217 07/2011–10/2018 2,446
Eclipse 116,353 04/2012–10/2018 2,143
Libreoffice 50,750 04/2012–10/2018 846
Total 1,155,344 32 years 19,469

details) through Gerrit REST API.† The API allows users
to send queries to obtain the detailed information of patch
change, reviewer and author statuses, and general and inline
comments. For example, the query https://codereview.qt-
project.org/changes/102938 provides users with the basic
information of Qt review #102938.†† We collect multiple
types of information that we need to perform our three re-
search questions. After collecting this information, we store
those types of collected data into Mongo DB.

Data Cleaning. We clean data by removing noise in re-
view discussion history. We are only concerned with com-
ments that were provided by human developers. Our data
clearing process comprises three steps.
Step 1. We remove comments that were generated by review
bot systems. To exclude those comments, we first identify
comments that include auto-generated messages (e.g, “Ma-
jor sanity problems found”) by review bot systems. More-
over, since review bots in our studied systems include the
keyword “Bot” in their account names (e.g., Sanity Bot), we
also identify comments that are given by accounts whose
names include the keyword. The auto-generated messages
and bot accounts that are detected by our approach are
shown in the scripts of our replication package.
Step 2. We also remove build log comments that were
generated by continuous integration systems. A build log

†https://gerrit-review.googlesource.com/Documentation/rest-
api.html
††https://codereview.qt-project.org/c/qt-creator/qt-creator/+/

102938

comment can be identified by searching formatted messages
that are generated at the beginning of its comment (e.g.,
“Build succeed”). Our replication package includes a list
of those formatted build log messages.
Step 3. After removing those comments, we exclude re-
views in which there is neither a reviewer comment nor an
author comment. More specifically, after excluding com-
ments that were generated by review bots and continuous
integration systems, we count the number of general and in-
line comments. When there is then at least one comment, we
use the review in our study. We repeat the same procedure
for each studied system. Finally, to study reviews whose
processes have been completed, we select reviews that were
labeled “MERGED” or “ABANDONED” in our database.

3.2 Data Analysis

As shown in Fig. 1, we describe in detail the approaches
we use to answer all three research questions. Those ap-
proaches are broken into six stages.

(1) Approach for RQ1

The approach is the (i) Discussion Calculation stage. For
this research question, we set out to understand the extent
to which reviewers provide comments to complete reviews.
To do so, we compute how many comments each review
involves during its reviewing. In addition, to consider com-
ment size aspect, we compute how many words are included
in a reviewer comment. Moreover, in Gerrit, any devel-
oper is able to provide a general comment (i.e., placed on
a reviewing board) and an inline comment (i.e., placed on
a specific line of modified code). Thus, we investigate the
number of general and inline comments and the number of
words in a general and an inline comment separately, and
analyze their distributions in our studied systems by using
the beanplot function in the beanplot R package.

(2) Approach for RQ2

The approach is the (ii) Evolution Analysis stage. In this
analysis, we study the extent to which the number of com-
ments and the number of words in the comments have
changed over time. To conduct the analysis, we compute the
average number of comments per a developer and the aver-
age number of words per a developer throughout a studied
timeframe. Those two metrics can show how reviewers have
changed their behaviours in commenting as studied systems
evolved.

(3) Approach for RQ3

In Fig. 1, our RQ3 approach is split into three parts. We
first describe a feature extraction to prepare studied features.
Then, we describe collinearity analysis and model construc-
tion. Finally, we explain how we evaluate our models to
find features that impact the number of comments and num-
ber of words in the comments per a review. We explain in
detail each stage.

The (iii) Feature Extraction stage studies the overall

2426
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

perspectives in code review activities. We choose features
based on prior work [19]. Table 2 describes each feature
with its definition. In summary, our selected features are di-
vided into three segments. The first segment is Patch Prop-
erty in which its features characterize patch information.
The second segment is Human Experience that provides fea-
tures related to the activity of developers who have submit-
ted or reviewed patches in the past. The third segment is
Project Management where features quantify the extent to
which the workload is intense in a project.

The (iv) Collinearity Analysis stage identifies and re-
moves highly correlated features and redundant features
due to the risk for disturbing results of our modeling anal-
ysis. Highly correlated features are features that have a
high correlation with other ones. However, after removing
highly correlated features, some features might still quantify
the same phenomenon and show homogeneous outcomes.
Those features are considered as the redundant features.
To counteract those two types of features, we conduct two
methods to eliminate high correlation and redundancy be-
tween our features. We measure the possible correlation
among our features using Spearman’s rank correlation co-
efficients (ρ) to remove highly correlated features. Simi-
lar to prior work [19], we use Spearman’s rank correlation
coefficient |ρ| = 0.7 as the threshold to eliminate highly

Table 2 The description of our selected features in Patch Property, Hu-
man Experience and Project Management segments.

Feature Description
Patch Property

Patch Churn Number of lines added to and deleted from
changed files.

#Subsystems Number of subsystems that are changed.
#Directories Number of directories that are changed under

the subsystem(s). For example, in QT review
#265820, since the modification appears in three
different directories (coreplugin, projectexplorer,
vcsbase) under one subsystem (qt-creator), #sub-
systems and #directories are counted as one and
three, respectively.

Description Length The length of a commit message i.e., Number of
words.

Purpose (Doc) Whether the purpose of a patch is documentation.
Purpose (Feature) Whether the purpose of a patch is feature introduc-

tion.
Human Experience

Author Experience Number of reviews that an author has submitted
in past development. For example, suppose an au-
thor has made three submissions under subsystem
A and two submissions under subsystem B in a
past development, we count the author’s experi-
ence as five (submissions).

Reviewers Experience Number of reviews that reviewers have reviewed
in past development. For example, suppose a re-
view involves two reviewers one of which has re-
viewed five past submissions and another has re-
viewed ten past submissions, we count the review-
ers’ experience as 15 (reviews).

Project Management
Overall Workload Number of reviews that have been submitted in a

certain period (i.e., within 7 days).
Directory Workload Number of reviews that have been submitted under

the same directory in a certain period (i.e., within
7 days).

#Days since Last Modifi-
cation

Number of days since the last time when a file in
a patch was modified

#Prior Defects Number of prior defects that have appeared in a
file of a patch under review.

correlated features. Furthermore, features that do not have
a high correlation might still be redundant and result in
misleading conclusions [27]. To remove them, we use the
redun function in the rms R package. The redun function
uses a flexible additive model to predict each feature from
remaining features to find the redundant feature(s).†

The (v) Model Construction stage is when we train re-
gression models using our features. A regression model is a
commonly used type that describes the relationship between
a dependent variable and independent variables. From our
preliminary investigation, we decided to use a logarithmic
scale in independent variables for the best performance. To
construct models, we use the lm function in the R package.
Moreover, since our features are computed in their different
approaches, we standardize the coefficients that our regres-
sion models generate to measure the degree of impact for
each feature. To compute standardized coefficients, we use
the lm.beta function in the lm.beta R package.

Finally, the (vi) Evaluation stage analyzes the impor-
tance of each feature for general and inline comments. The
evaluation is done by computation of the standardized co-
efficient of each feature that explains the degree to which
the feature impacts the number of comments and number of
words in the comments. We then analyze each high value of
the coefficients and use them as discussions for rationale.

4. Results

In this section, we provide the results to each of the research
questions. First, we highlight our findings and then answer
each question.

4.1 Answering RQ1

Table 3 and Fig. 2 show the results of RQ1. We were able to
make two observations as outlined below.
The number of comments and number of words in a
comment vary among reviews and across systems. Ta-

Table 3 The statistics of numbers of total comments, general comments
and inline comments for each system.

Project Min. 1st Qu. Med. Mean 3rd Qu. Max.
Total Comments (i.e., the sum of general and inline comments)
Chromium 1 4 8 12.59 14 1,372
AOSP 1 3 6 9.27 11 503
Qt 1 1 3 6.68 6 2,632
Eclipse 1 1 3 5.23 5 338
Libreoffice 1 1 2 2.99 3 81
General Comments
Chromium 1 4 7 10.49 13 905
AOSP 1 3 5 7.86 10 247
Qt 1 1 2 4.06 5 367
Eclipse 1 1 2 3.31 4 106
Libreoffice 1 1 2 2.37 3 34
Inline Comments
Chromium 0 0 0 2.10 1 1,144
AOSP 0 0 0 1.41 1 365
Qt 0 0 0 2.62 1 2,630
Eclipse 0 0 0 1.92 1 232
Libreoffice 0 0 0 0.62 0 70

†https://www.rdocumentation.org/packages/Hmisc/versions/
4.2-0/topics/redun

HIRAO et al.: UNDERSTANDING DEVELOPER COMMENTING IN CODE REVIEWS
2427

Fig. 2 The distributions of the number of general and inline comments and number of words in the
comments across our studied systems.

ble 3 shows that the number of total comments approxi-
mate 9–13 on average in the two largest studied systems
(i.e., Chromium and AOSP). In contrast, Qt, Eclipse, and
Libreoffice reviews comprise 3–7 comments on average.
We assume that the results are reflective of a system size
(i.e., the number of reviews). Indeed, we observe that
the larger a system size is, the more comments the sys-
tem’s reviews garner (see Table 1 and Table 3). Further-
more, inline comments have the tendency to include more
words than general comments. Figure 2 (a) and Fig. 2 (b)
show that despite general comments are provided more fre-
quently than inline comments, inline comments tend to in-
volve more words than general comments. For example,
Fig. 2 (b) shows that the median of the number of words
in a inline comment is larger than the number of words
in a general comment in Chromium, AOSP, Eclipse, and
Libreoffice.

Prior studies found that useful comments are consid-
ered as comments that trigger code changes [23], and are
different from non-useful comments with regard to several
textual properties [28]. Basically, inline comments are pro-
vided to trigger specific code changes, requiring much con-
text to clarify such needs. Our results complement prior
studies, suggesting that inline comments have the potential
to include more insights than general comments in terms of
comment size.
Reviewers treat general and inline comments differently.
Table 3 and Fig. 2 (a) show that general comments often
appear during reviewing at 3–13 comments on average,
whereas reviewers rarely provide inline comments. We sus-
pect that developers tend to discuss the abstract impact of
the patch rather than looking into specific modification or
enhancement of the submitted patch. Interestingly, the dis-
tributions in Fig. 2 (a) visually show that developers tend
to write more general comments than inline comments.
Indeed, this figure shows that a majority of the Libreoffice
reviews contained no inline comments (i.e., the inline count

Table 4 The correlations between the number of general and inline com-
ments and the number of words in general and inline comments.

Comment Chromium AOSP Qt Eclipse Libreoffice
Type
General 0.23 0.65 0.30 0.74 0.76
Inline 0.89 0.83 0.67 0.85 0.77

is zero). Table 3 shows that 25% of reviews (above 3rd
Qu.) in the two most studied and largest systems (i.e.,
Chromium and AOSP) used more than ten general comments
to make their final decisions. Although MCR is known as
lightweight [3], those systems have the potential for requir-
ing more comments.

Table 4 shows that the number of inline comments per
a review have a substantial correlation (0.67–0.89) with the
number of words in the inline comments per a review across
our studied projects. This result indicates that the number of
words in inline comments is mostly consistent in each stud-
ied system, proportionally increasing with the number of in-
line comments. Indeed, we find that AOSP, Eclipse, and
Libreoffice systems have a substantial correlation (0.65–
0.74) between the number of general comments and the
number of words in the general comments, while Chromium
and Qt systems do not. General comments are provided not
only to discuss the abstract impacts, but also to simply show
their agreements, which may cause the inconsistent degree
of correlation in general comments among studied systems.

We return to answer (RQ1) Is there a typical number of
reviewer comments before the final decisions?:

2428
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

4.2 Answering RQ2

Figure 3 shows the results of RQ2. From this figure, we
make two following observations:
Reviewer comments have increased over time for
Chromium. Figure 3 shows that the average number of total
comments that a reviewer provides in a review has increased
over time in the largest system Chromium. For example,
the system reached the first peak in late 2014. After this
peak, its average number of total comments per a developer
grew rapidly again in recent months. Conversely, the num-
ber of words per a developer has decreased after the peak
in Chromium, implying that reviewers are likely to partici-
pate more actively rather than just commenting. Our results
complement prior work [4], suggesting that the number of
comments in modern code review environments has the po-
tential to increase as a system evolves.
In contrast, reviewer comments tend to stabilize or stall
in other studied systems. Figure 3 shows that the aver-
age number of total comments per a developer in AOSP and
Qt systems has increased until early 2016, while the aver-
age number roughly tended to stabilize in recent months.
Although the number of total comments per a developer in
Eclipse and Libreoffice has the slight increase from their
initial start until mid 2016, those numbers stalled in recent
months. We assume that the project which has a frequent
release schedule may induce more comments because de-
velopers feel pressure to catch up with every release. In-
deed, the Chromium system has a major release every month,
while the rest of our studied systems release a main version
once every six months or twelve months. Moreover, Fig. 3
also shows that the number of words per a developer has a
stable tendency to the number of comments per a developer

Fig. 3 The evolution of the (i) number of total comments per a devel-
oper and (ii) number of total words per a developer throughout a studied
timeframe.

in AOSP, Eclipse, and Libreoffice over time. For exam-
ple, the number of comments per a developer and number
of words per a developer in Libreoffice gradually increased
until late 2016. After that time, the decrease tendency has
been found in recent periods. We observe that an increase
in correlations between comment and word aspects (see Ta-
ble 4) across AOSP, Eclipse, and Libreoffice had led to the
similar tendencies of the evolution between the number of
comments per a developer and the number of words per a
developer. However, Fig. 3 shows that the number of words
per a developer in Chromium and Qt has decreased, while
the number of comments per a developer in those systems
has increased rapidly or gradually over time. This inverse
result might be related to the weak correlations of those two
systems that we showed in the second observation of the
previous research question.

We now return to answer (RQ2) Does reviewer com-
menting change over the evolution of a project?:

4.3 Answering RQ3

Table 5 and Table 6 show our twelve features that remain
after collinearity and redundancy analyses. To answer RQ3,
we make two observations.
Human experience features can drive general comments
across studied systems. Table 5 shows that for both the
number of general comments and number of words in the
general comments, reviewer experience is the most impact-
ful feature in all studied systems. Specifically, reviewer ex-
perience has an increase impact across our studied systems,
indicating that experienced reviewers tend to provide more
general comments and include more words. This is because
experienced reviewers are capable of pointing out broader
issues than inexperienced ones. In contrast, author experi-
ence shows a decrease impact across our studied systems,
suggesting that since experienced authors are more knowl-
edgeable than novice ones, they can address issues that
may induce discussion before they submit patches. We find
that the more the author is experienced, the less likely that
the number of general comments and the number of words
in the general comments will decrease across our studied
systems.

Table 5 also shows that patch churn can be observed
as a relatively impactful feature in Chromium, AOSP, Qt,
and Eclipse for the number of general comments and num-
ber of words in the general comments. This result suggests
that the larger the patch churn is, the more likely the review
will receive comments and words. Moreover, dispersion of
changes (i.e., #Subsystems and #Directories) mostly shows
the increase impact on the number of general comments and
number of words in the general comments. The results im-

HIRAO et al.: UNDERSTANDING DEVELOPER COMMENTING IN CODE REVIEWS
2429

Table 5 The standardized coefficient of each feature for general comments and words in the general
comments. The blue colour cell depicts the most impactful metric.

Feature General Comments General Words
Chromium AOSP Qt Eclipse Libreoffice Chromium AOSP Qt Eclipse Libreoffice

Patch Property
Patch Churn 0.16 0.13 0.15 0.12 0.05 0.10 0.06 0.11 0.12 0.01
#Subsystems 0.04 – 0.14 0.01 0.04 0.03 – 0.18 0.01 0.04
#Directories 0.11 – -0.04 – 0.01 0.02 – -0.05 - 0.01
Description Length 0.02 0.07 0.10 0.12 0.03 0.06 0.08 0.08 0.14 0.05
Purpose (Doc) 0.02 0.01 -0.01 < 0.01 0.02 < 0.01 < 0.01 -0.02 < 0.01 0.02
Purpose (Feature) 0.03 0.03 0.02 0.01 < 0.01 0.02 0.01 < 0.01 -0.01 -0.01
Human Experience
Author Experience -0.10 -0.04 -0.13 -0.10 -0.21 -0.08 0.01 -0.23 -0.14 -0.23
Reviewers Experience 0.34 0.41 0.19 0.28 0.23 0.68 0.75 0.24 0.36 0.27
Project Management
Overall Workload 0.10 0.16 0.02 < 0.01 -0.02 0.02 0.04 0.05 -0.07 -0.03
Directory Workload 0.04 < 0.01 0.01 < 0.01 0.01 0.07 -0.01 0.04 -0.01 < 0.01
#Days since Last Modification 0.03 0.02 0.01 < 0.01 0.03 0.04 0.03 < 0.01 < 0.01 0.01
#Prior Defects -0.03 0.03 0.05 < 0.01 0.02 -0.07 0.01 0.02 -0.01 0.01

Table 6 The standardized coefficient of each feature for inline comments and words in the inline
comments. The blue colour cell depicts the most impactful metric. Note that the standardized coefficient
of Patch Churn (0.145) is larger than of Reviewers Experience (0.138) in Eclipse.

Feature Inline Comments Inline Words
Chromium AOSP Qt Eclipse Libreoffice Chromium AOSP Qt Eclipse Libreoffice

Patch Property
Patch Churn 0.22 0.19 0.10 0.14 0.10 0.30 0.22 0.29 0.16 0.10
#Subsystems 0.04 – < 0.01 -0.01 0.02 0.05 – 0.02 -0.02 0.03
#Directories -0.02 – 0.03 – -0.01 -0.04 – -0.04 – -0.01
Description Length 0.03 0.04 -0.01 0.05 -0.02 0.03 0.07 0.11 0.08 -0.03
Purpose (Doc) 0.03 0.01 < 0.01 0.01 < 0.01 0.02 0.01 0.01 < 0.01 < 0.01
Purpose (Feature) 0.03 0.02 < 0.01 0.02 0.01 0.04 0.02 0.02 0.02 0.01
Human Experience

Author Experience -0.12 -0.05 -0.01 -0.08 -0.14 -0.15 -0.06 -0.13 -0.10 -0.19
Reviewers Experience 0.10 0.01 0.02 0.14 0.08 0.24 0.11 0.21 0.30 0.17
Project Management

Overall Workload < 0.01 0.04 < 0.01 0.02 0.01 -0.01 0.01 -0.01 0.02 0.04
Directory Workload 0.01 < 0.01 -0.01 0.01 0.02 0.05 0.03 < 0.01 0.02 0.03
#Days since Last Modification 0.02 < 0.01 < 0.01 0.01 0.04 0.08 0.04 0.03 0.03 0.06
#Prior Defects -0.01 0.03 < 0.01 0.01 0.02 -0.07 0.03 0.07 < 0.01 0.05

ply that when modification spreads across multiple subsys-
tems or directories, reviewers may raise a broader discus-
sion to avoid unexpected problems that might affect external
components. Indeed, maintainability issues are raised more
frequently than functional defects in reviews [29], [30].

The project management segment shows both increase
and decrease impacts across our studied systems. For ex-
ample, overall workload feature is increased and relatively
impactful compared to other features in AOSP. The results
imply that the impact of the project management segment
varies due to a system size. Indeed, our RQ2 shows that the
growth of the number of comments and number of words in
the comments vary across systems (see Fig. 3).
Patch property features are likely to drive inline com-
ments. However, different from the number of general com-
ments and number of words in the general comments, patch
churn feature plays a considerable role on both the num-
ber of inline comments and number of words in the inline
comments. Table 6 shows that Patch Churn is ranked at the
1st place in Chromium, AOSP, Qt, and Eclipse. Similarly,
the feature is most considerable in Chromium, AOSP, and
Qt for the number of words in the inline comments. This
result indicates that if the modified lines of code increase,
the number of inline comments and number of words in the
inline comments will rise due to various issues (e.g., typo,
code style).

Table 6 also shows that author experience has a de-
crease impact on the number of inline comments and words
in the inline comments, similar to general comments. More-
over, reviewer experience has an increase impact on the
number of inline comments and the number of words in
the comments. Similar to our previous observation, our re-
sults suggest that novice authors and experienced reviewers
can increase the number of inline comments and number
of words in the inline comments. Besides, both increase
and decrease impacts on the number of inline comments
and number of words in the inline comments are shown in
overall workload and directory workload features across our
studied systems, implying that the impact of project man-
agement features for inline comments depends on a system’s
size.

We now answer (RQ3) What (a) patch, (b) human and
(c) management features drive reviewer comments?:

2430
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

5. Discussion

In this section, we discuss the implications and the threats
to the validity of this study.

5.1 Implications

Based on the results, we now discuss some of the implica-
tions and actionable contributions from our findings.

1. There are no magic number of comments and num-
ber of words to complete reviews. Our results sug-
gest that reviewers can complete a review in 3–13 com-
ments on average. This is a wide range, showing that
review participation can range and cannot be fit into a
smaller range. Importantly, it is possible to identify re-
view participation (number of comments) and the com-
ment size (number of words in a comment) that go out-
side of their ranges as either underwhelming or becom-
ing bloated. This can become actionable, as we can
now flag and identify these abnormal reviews outside
of their ranges.

2. The number of comments and number of words
fluctuate over time. Our results show that the number
of comments and number of words in the comments
change over the lifetime of the system. Moreover, we
also find that the number of comments and the number
of words in the comments have the potential to increase
as studied systems grow. Due to a lazy consensus i.e.,
reviewers responding only to necessary contents, a lack
of interest or maybe if there is an overload of develop-
ers, there is no incentive to respond to every comment.
For future work, we would like to also explore how
commenting is affected by the external factors, such as
being a newcomer to a project, the increase in source
code and review requests, and the maturity of the soft-
ware project. The actionable implication is that we now
know that outside factors have an impact on reviewer
commenting.

3. Human experience and patch property features
have the strongest impact on general and inline
comments, respectively. In RQ3, our results show
that novice authors or experienced reviewers can in-
crease the number of general comments and number
of words in the general comments across our studied
systems. Our results also show that patch churn and
dispersion of modified codes can increase the number
of inline comments and number of words in the inline
comments. We suggest that to minimize the discus-
sion, the experience of the author and reviewers and
the property size of patches should be more carefully
considered before starting with the discussion.

We envision this paper as working towards a review
cost estimation approach. In our future plans, we would like
to (i) analyze the relationship between review cost and qual-
ity; and (ii) build models that automatically determine the

extent to which a review will take a certain time by ma-
chine learning techniques. We envision that this work can
also open up research into the effective management of code
reviews.

5.2 Threats to Validity

In this section, we present construct, internal and external
threats to our study.

(1) Construct Validity

Construct threats to validity refer to the concerns between
the theory and achieved results of the study. To prevent
noise from interfering with our observations, we clean our
raw data by removing potential noisy comments. However,
there might be cases where our comment extraction mis-
takenly excludes actual human comments or includes com-
ments of CI or Bot systems. Thus, we preliminarily inves-
tigated continuous integration log and bot comments, and
then excluded comments that were generated by those auto-
mated tools.

(2) Internal Validity

Internal threats to validity refer to the concerns that are in-
ternal to the study. We discuss two threats. The first threat
is the coverage of the features used in the study. We an-
alyze a broad range of patch property, human experience,
and project management features; nonetheless, our study
has not covered other possible aspects. Therefore, to mit-
igate the threat, we select features based on similar prior
work [19], [25], [31].

The second threat is the validity of our methodology
for the modeling study. There might be cases where we
could use another sophisticated algorithm. However, we
choose regression models which prior studies have used for
years [19], [32].

(3) External Validity

External threats to validity refer to the generalization con-
cerns of this study’s results. The main external threat is
the generality of our studied systems. Although we col-
lected studied systems based on their popularity and quality
of their datasets, there might be a threat such that our results
do not generalize to all software systems. We chose five
studied systems in terms of their popularity in the code re-
view research field to ensure that our studied systems show
valid information. Therefore, we are confident that we have
addressed the threads of our studied systems as they have
been used in prior studies [11], [32]–[34] and were released
as official MSR datasets [26], [35].

6. Conclusions

We conducted exploratory and modeling studies over 1.1
million reviews across five studied systems (i.e., Chromium,
AOSP, Qt, Eclipse, and Libreoffice). Through those stud-
ies, our results indicate that:

HIRAO et al.: UNDERSTANDING DEVELOPER COMMENTING IN CODE REVIEWS
2431

• The number of both general and inline comments
varies among reviews and across studied systems.
• Reviewers change their behaviours in commenting as a

system evolves.
• Reviewer comments are most likely to be affected by

developer experience and patch property size.

The main goal of this work is to move towards a review
cost estimation approach for effective code reviews in the
modern code review. We also hope that this research has
implications for future research.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
ber 17J09333, 17H00731, and 18H04094, and the Support
Center for Advanced Telecommunications (SCAT) Technol-
ogy Research, Foundation.

References

[1] K.E. Wiegers, Peer Reviews in Software: A Practical Guide,
Addison-Wesley Longman Publishing Co., Inc., 2002.

[2] M.E. Fagan, “Design and code inspections to reduce errors
in program development,” IBM Systems Journal, vol.15, no.3,
pp.182–211, 1976.

[3] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” Proc. 35th International Conference on
Software Engineering, pp.712–721, 2013.

[4] P.C. Rigby and C. Bird, “Convergent contemporary software peer
review practices,” Proc. Joint Meeting on Foundations of Software
Engineering, pp.202–212, 2013.

[5] J. Czerwonka, M. Greiler, and J. Tilford, “Code reviews do not find
bugs: How the current code review best practice slows us down,”
Proc. 37th International Conference on Software Engineering - Vol-
ume 2, ICSE ’15, Piscataway, NJ, USA, pp.27–28, IEEE Press,
2015.

[6] T. Baum, O. Liskin, K. Niklas, and K. Schneider, “Factors influ-
encing code review processes in industry,” Proc. 24th International
Symposium on Foundations of Software Engineering, pp.85–96,
Nov. 2016.

[7] T. Hirao, S. McIntosh, A. Ihara, and K. Matsumoto, “The Review
Linkage Graph for Code Review Analytics: A Recovery Approach
and Empirical Study,” Proc. International Symposium on the Foun-
dations of Software Engineering, pp.578–589, 2019.

[8] P.C. Rigby, D.M. German, and M.-A. Storey, “Open source software
peer review practices: a case study of the apache server,” Proc. 30th
International Conference on Software Engineering, pp.541–550,
2008.

[9] E.S. Raymond, “The cathedral and the bazaar,” Knowledge, Tech-
nology & Policy, vol.12, no.3, pp.23–49, 1999.

[10] V. Balachandran, “Reducing human effort and improving quality in
peer code reviews using automatic static analysis and reviewer rec-
ommendation,” Proc. 35th International Conference on Software En-
gineering, pp.931–940, 2013.

[11] P. Thongtanunam, C. Tantithamthavorn, R.G. Kula, N. Yoshida, H.
Iida, and K. Matsumoto, “Who should review my code? a file
location-based code-reviewer recommendation approach for mod-
ern code review,” Proc. 22nd International Conference on Software
Analysis, Evolution, and Reengineering, pp.141–150, 2015.

[12] X. Xia, D. Lo, X. Wang, and X. Yang, “Who should review this
change? putting text and file location analyses together for more
accurate recommendations,” Proc. 31st International Conference on
Software Maintenance and Evolution, pp.261–270, 2015.

[13] M.B. Zanjani, H. Kagdi, and C. Bird, “Automatically recommending
peer reviewers in modern code review,” IEEE Trans. Softw. Eng.,
vol.42, no.6, pp.530–543, June 2016.

[14] A. Ouni, R.G. Kula, and K. Inoue, “Search-based peer review-
ers recommendation in modern code review,” 2016 IEEE In-
ternational Conference on Software Maintenance and Evolution
(ICSME), pp.367–377, Oct. 2016.

[15] Y. Jiang, B. Adams, and D.M. German, “Will my patch make it?
and how fast?: Case study on the linux kernel,” Proc. 10th Working
Conference on Mining Software Repositories, pp.101–110, 2013.

[16] O. Kononenko, O. Baysal, and M.W. Godfrey, “Code review qual-
ity: How developers see it,” Proc. 38th International Conference on
Software Engineering (ICSE), pp.1028–1038, 2016.

[17] P. Weißgerber, D. Neu, and S. Diehl, “Small patches get in!,” Proc.
International Working Conference on Mining Software Repositories
(MSR’08), pp.67–76, 2008.

[18] O. Baysal, O. Kononenko, R. Holmes, and M.W. Godfrey, “The in-
fluence of non-technical factors on code review,” Proc. 20th Working
Conference on Reverse Engineering, pp.122–131, 2013.

[19] P. Thongtanunam, S. McIntosh, A.E. Hassan, and H. Iida, “Review
participation in modern code review: An empirical study of the an-
droid, qt, and openstack projects,” Empirical Software Engineering,
vol.22, no.2, p.768–817, 2017.

[20] G. Gousios, M. Pinzger, and A.v. Deursen, “An exploratory
study of the pull-based software development model,” Proc. 36th
International Conference on Software Engineering, ICSE 2014,
pp.345–355, 2014.

[21] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and techni-
cal factors for evaluating contribution in github,” Proc. 36th Interna-
tional Conference on Software Engineering, ICSE’14, pp.356–366,
2014.

[22] M.-A. Storey, A. Zagalsky, F.F. Filho, L. Singer, and D.M. German,
“How social and communication channels shape and challenge a
participatory culture in software development,” IEEE Trans. Softw.
Eng., vol.43, no.2, pp.185–204, Feb. 2017.

[23] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code
reviews: An empirical study at microsoft,” Proc. 12th International
Working Conference on Mining Software Repositories, pp.146–156,
2015.

[24] Y. Tao, D. Han, and S. Kim, “Writing acceptable patches: An empir-
ical study of open source project patches,” Proc. International Con-
ference on Software Maintenance and Evolution, pp.271–280, 2014.

[25] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and N.
Ubayashi, “An empirical study of just-in-time defect prediction us-
ing cross-project models,” Proc. 11th Working Conference on Min-
ing Software Repositories, MSR 2014, pp.172–181, 2014.

[26] X. Yang, R.G. Kula, N. Yoshida, and H. Iida, “Mining the modern
code review repositories: A dataset of people, process and product,”
Proc. 13th Working Conference on Mining Software Repositories,
pp.460–463, 2016.

[27] J. Jiarpakdee, C. Tantithamthavorn, A. Ihara, and K. Matsumoto, “A
study of redundant metrics in defect prediction datasets,” Proc. Inter-
national Symposium on Software Reliability Engineering, pp.51–52,
2016.

[28] M.M. Rahman, C.K. Roy, and R.G. Kula, “Predicting usefulness
of code review comments using textual features and developer ex-
perience,” Proc. 14th International Conference on Mining Software
Repositories, pp.215–226, 2017.

[29] M.V. Mäntylä and C. Lassenius, “What types of defects are really
discovered in code reviews?,” IEEE Trans. Softw. Eng., vol.35, no.3,
pp.430–448, 2009.

[30] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern
code reviews in open-source projects: Which problems do they
fix?,” Proc. Working Conference on Mining Software Repositories,
pp.202–211, 2014.

[31] Y. Kamei, E. Shihab, B. Adams, A.E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time qual-

http://dx.doi.org/10.1147/sj.153.0182
http://dx.doi.org/10.1109/icse.2013.6606617
http://dx.doi.org/10.1145/2491411.2491444
http://dx.doi.org/10.1109/icse.2015.131
http://dx.doi.org/10.1145/2950290.2950323
http://dx.doi.org/10.1145/1368088.1368162
http://dx.doi.org/10.1007/s12130-999-1026-0
http://dx.doi.org/10.1109/icse.2013.6606642
http://dx.doi.org/10.1109/saner.2015.7081824
http://dx.doi.org/10.1109/icsm.2015.7332472
http://dx.doi.org/10.1109/tse.2015.2500238
http://dx.doi.org/10.1109/icsme.2016.65
http://dx.doi.org/10.1109/msr.2013.6624016
http://dx.doi.org/10.1145/2884781.2884840
http://dx.doi.org/10.1145/1370750.1370767
http://dx.doi.org/10.1109/wcre.2013.6671287
http://dx.doi.org/10.1007/s10664-016-9452-6
http://dx.doi.org/10.1145/2568225.2568260
http://dx.doi.org/10.1145/2568225.2568315
http://dx.doi.org/10.1109/tse.2016.2584053
http://dx.doi.org/10.1109/msr.2015.21
http://dx.doi.org/10.1109/icsme.2014.49
http://dx.doi.org/10.1145/2597073.2597075
http://dx.doi.org/10.1145/2901739.2903504
http://dx.doi.org/10.1109/msr.2017.17
http://dx.doi.org/10.1109/tse.2008.71
http://dx.doi.org/10.1145/2597073.2597082
http://dx.doi.org/10.1109/tse.2012.70

2432
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.12 DECEMBER 2019

ity assurance,” IEEE Trans. Softw. Eng., vol.39, no.6, pp.757–773,
2013.

[32] S. McIntosh, Y. Kamei, B. Adams, and A.E. Hassan, “An em-
pirical study of the impact of modern code review practices on
software quality,” Empirical Software Engineering, vol.21, no.5,
pp.2146–2189, 2016.

[33] P. Thongtanunam, S. McIntosh, A.E. Hassan, and H. Iida, “Revisit-
ing code ownership and its relationship with software quality in the
scope of modern code review,” Proc. 38th International Conference
on Software Engineering, pp.1039–1050, 2016.

[34] S. McIntosh, Y. Kamei, B. Adams, and A.E. Hassan, “The impact
of code review coverage and code review participation on software
quality: A case study of the qt, vtk, and itk projects,” Proc. 11th
Working Conference on Mining Software Repositories, pp.192–201,
2014.

[35] K. Hamasaki, R.G. Kula, N. Yoshida, A.E.C. Cruz, K. Fujiwara, and
H. Iida, “Who does what during a code review? datasets of oss peer
review repositories,” Proc. Working Conference on Mining Software
Repositories, pp.49–52, 2013.

Toshiki Hirao is a PhD student at Nara In-
stitute of Science and Technology, Japan. He
has been a doctoral course fellowship student
(DC1) in JSPS from 2017 to present. His PhD
thesis aims to improve code review efficiency.
He received Master’s degree from Nara Institute
of Science and Technology, Japan.

Raula Gaikovina Kula is an assistant pro-
fessor at Nara Institute of Science and Technol-
ogy. He received the Ph.D degree from Nara In-
stitute of Science and Technology in 2013. His
interests include Software Libraries, Software
Ecosystems, Code Reviews and Mining Soft-
ware Repositories.

Akinori Ihara is a lecturer at Waka-
yama University in Japan. His research in-
terests include empirical software engineering,
open source software engineering, social soft-
ware engineering and mining software reposito-
ries (MSR). His work has been published at pre-
mier venues like ICSE, MSR, and ISSRE. He
received the M.E. degree (2009) and Ph.D. de-
gree (2012) from Nara Institute of Science and
Technology.

Kenichi Matsumoto is a professor in the
Graduate School of Science and Technology
at Nara Institute of Science and Technology,
Japan. He received the Ph.D. degree in Engi-
neering from Osaka University. His research
interests include software measurement and the
software process. He is a fellow of the IEICE
and the IPSJ, a senior member of the IEEE, and
a member of the JSSST.

http://dx.doi.org/10.1109/tse.2012.70
http://dx.doi.org/10.1007/s10664-015-9381-9
http://dx.doi.org/10.1145/2884781.2884852
http://dx.doi.org/10.1145/2597073.2597076
http://dx.doi.org/10.1109/msr.2013.6624003

